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Abstract 

In beef cattle production, the reduction of the number of days from birth until the target weight at 

slaughter is reached, represents a sustainable option to increase efficiency and reduce the environmental 

impact. In the presence of genotype by environment interaction (GxE), selection of resilient animals is 

important. We estimated GxE for age at slaughter in an Irish dairy and beef crossbred population using 

an analysis protocol modelling either homogeneous or heterogeneous SNP-(co)variances across the 

genome based on readily available BLUP software packages. We allowed for heterogeneous SNP 

(co)variances by using different weights across SNPs. In our approach, we divide the data set of interest 

in two subsets and follow a 2-step approach: (1) derive SNP (co)variances from SNP effects estimated 

in the first data set, and (2) weight the SNP genotypes using estimated SNP (co)variances from (1) to 

re-estimate SNP effects in the second data set. The data set consisted of 14,193 genotyped crossbred 

heifers, steers and bulls in 2,041 herds. Phenotypes used in the genomic analysis were yield deviations 

for age at slaughter. We estimated contemporary group (CG) effects for age at slaughter in a univariate 

BLUP analysis to be subsequently used as continuous environmental descriptor in the genomic reaction 

norm models. Results show large genetic variations for age at slaughter. The average heritability 

estimated across all CG was 0.24. The genetic parameters for age at slaughter estimated along the 

environmental gradient support the existence of GxE in extreme environments. Nevertheless, the genetic 

correlation between the majority of environments was greater than 0.89. Higher accuracy for young 

selection candidates were achieved when using genomic information instead of using pedigree 

information only. However, modeling homo- or heterogeneous SNP (co)variances across the genome 

resulted in similar accuracy of genomic breeding values for age at slaughter.  

Key words: genotype by environment interaction, genomic reaction norm model, heterogeneous SNP 

variance, age at slaughter  

 

Introduction 

 Age at slaughter is a novel trait with the 

potential to increase efficiency and reduce the 

environmental impact of beef production. Berry 

et al. (2017) have shown the potential of genetic 

selection for a younger age at slaughter 

exploiting large amounts of genetic variation 

for this trait. Selection of resilient animals is 

important, specifically when genotype by 

environment interaction (GxE) exists. 

Genotype by environment interaction is often 

modelled by a multi-trait approach, where the 

same trait measured in different environments 

is considered being a genetically different, but 

correlated trait (Falconer, 1952). Alternatively, 

reaction norm models are used, where the 

breeding values are modelled as a function of 

the environment defined as a continuous 

variable. Both, genomic multi-trait models or 

reaction norm models, implicitly assume the 

same (co)variance matrix for every SNP. Since 

certain regions in the genome may contain 

QTL, the assumption of equal (co)variances 

across the genome may be violated. To 

overcome this limitation, we have developed an 
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analysis protocol allowing for heterogeneous 

SNP (co)variances across the genome in 

genomic GxE models. The analysis protocol 

can be implemented using standard BLUP 

software packages. The analysis protocol has 

been tested in simulated data resulting in a 

slight increase in accuracy of genomic breeding 

values (Gredler-Grandl and Calus, 2021). The 

objective of this study was to quantify GxE for 

age at slaughter and to evaluate the accuracy of 

genomic reaction norm models allowing for 

heterogeneous SNP (co)variances in an Irish 

dairy and beef crossbred population. 

Materials and Methods 

Phenotypes and genotypes 

14,193 genotyped and phenotyped bulls, 

steers and heifers were available. The data set 

included purebred Holstein, Limousin, 

Charolais, Aberdeen Angus, Belgian Blue, 

Hereford, Simmental, Saler, Aubrac, Blonde 

d’Aquitaine, Parthenaise animals as well as 

crosses thereof. The genotypes were imputed to 

a high density SNP chip level and consisted of 

662,011 SNP. Yield deviations (YD) for age at 

slaughter were used as phenotypes for genomic 

GxE analyses. The effects accounted for were 

contemporary group (CG), interactions between 

gender (bull, steer, heifer) and carcass weight 

and as well as gender and carcass fat, parity of 

dam, herd source (dairy or beef herd), heterosis 

class and recombination loss. Contemporary 

group effects, reflecting management and 

environmental conditions and estimated in the 

model described above, were used as 

continuous environmental descriptor. Animals 

of the same gender, and similar birthday or day 

purchased into the same herd in close period of 

time were assigned to the same CG. 

Analysis protocol  

A protocol consisting of several steps has 

been developed to allow for heterogeneous SNP 

(co)variances across the genome in genomic 

GxE models. Firstly, the data set is split in two 

subsets: the subset 1 is used to estimate SNP 

effects 𝛼̂ using a model that assumes equal 

(co)variances for all SNP; the subset 2 is 

analysed with a model with heterogenous SNP 

covariances computed as described below.  

 A K-means clustering approach (Saatchi 

et al., 2011) applied to the genomic relationship 

matrix of the herds has been used to assign the 

animals to subset 1 and 2. Average genotypes 

per herd were calculated and the genomic 

relationship matrix computed as 𝐆𝐡𝐞𝐫𝐝𝐬 =
𝐙𝐙′

2 ∑ 𝑝𝑘(1−𝑝𝑘)
 , where 𝐆𝐡𝐞𝐫𝐝𝐬   is the genomic herd 

relationship matrix, 𝐙 is the incidence matrix 

containing average genotypes for all herds for 

all SNP and 𝑝𝑘 is the allele frequency of SNP k 

in the genotyped animals. A dissimilarity 

matrix between all herds was calculated based 

on the elements of the genomic relationship 

matrix. The number of clusters were set to 12 to 

ensure that all main breeds are represented at 

least by three clusters. Four clusters mainly 

representing the main breeds Holstein, 

Limousin, Charolais and Angus with the 

highest importance for crossbreeding have been 

chosen for subset 1. The remaining eight 

clusters were used in subset 2.  

Analysis subset 1 

A univariate linear genomic reaction norm 

model has been applied to subset 1 using the 

software package mtg2 (Lee et al., 2016): 

𝐲 = 𝟏𝜇 +  𝛃𝟎 +  𝐐𝛃𝟏 + 𝝉𝟎 + 𝝉𝟏 

where 𝐲 is a vector of YD, 𝜇 is an overall mean, 

𝛃𝟎 and 𝛃𝟏 are the vectors of intercept and first 

order of regression coefficients for the random 

genetic effects, 𝟏 is a vector of ones, 𝐐 is a 

(diagonal) incidence matrix storing the 

environmental values (contemporary group 

effects) for each individual, and 𝝉𝟎  and 𝝉𝟏 are 

intercept and second order of regression 

coefficients for the random residual effects to 

account for heterogeneous residual variances 

across environments. It is assumed that 

[
𝛃𝟎

𝛃𝟏
] ~ 𝑁 ([

𝟎
𝟎

] , 𝐆𝐕𝐑 [
𝜎𝛽0

2 𝜎𝛽0𝛽1

𝜎𝛽0𝛽1 𝜎𝛽1
2 ]), 

where 𝐆𝐕𝐑 is a genomic relationship matrix of 

the animals in subset 1 using the first method of 

VanRaden (2008). It is assumed that 
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 [
𝛕𝟎

𝛕𝟏
] ~ 𝑁 ([

𝟎
𝟎

] , 𝐈 [
𝜎𝜏0

2 𝜎𝜏0𝜏1

𝜎𝜏0𝜏1 𝜎𝜏1
2 ]). 

Calculation of SNP specific weights 

For the model with heterogeneous SNP 

(co)variances (HET), SNP specific weights for 

each SNP k for each coefficient i of the reaction 

norm model (i.e. intercept 𝛽0 and the linear 

regression coefficient 𝛽1) were calculated as 

𝐷𝑘𝑖 =  √2𝑝𝑘(1 − 𝑝𝑘)𝛼̂𝑘𝑖 

where 𝐷𝑘𝑖 is diagonal element i of diagonal 

matrix 𝐃𝒌 that stores the weights for SNP k, 𝑝𝑘 

is the allele frequency of SNP k, and 𝛼̂𝑘 is the 

estimated effect of SNP k for coefficient i. The 

SNP effects 𝛼̂𝑘 for intercept and linear 

regression coefficient were obtained by 

backsolving GEBV for 𝛽0 and 𝛽1 obtained from 

the genomic reaction norm model and the subset 

1. SNP effects were calculated following the 

approach described in Bouwman et al. (2017) 

and implemented in the companion program 

compute_SNP_effects of calc_grm (Calus and 

Vandenplas, 2016). 

Analysis subset 2 

In subset 2, a seven-fold cross validation has 

been applied, where each cluster has been used 

once as validation set for genomic prediction. 

The number of animals in each cross validation 

is shown in Table 1. 

The following SNP-BLUP model was 

applied to subset 2 using the MiXBLUP 

software (ten Napel et al. 2020): 

𝐲 =  𝟏𝝁 + 𝐙𝛄𝟎 + 𝐐𝐙𝛄𝟏 + 𝐞 

where 𝐲 is the vector of YD of animals in the 

training set of each cross validation run, 𝜇 is an 

overall mean, 𝐙 is a matrix including the 

centered genotypes for each SNP, 𝐐 is a 

diagonal matrix storing the environmental 

values for each individual, 𝛄𝟎 and 𝛄𝟏 are 

vectors of estimated SNP effects for random 

intercept and linear regression coefficient, 

respectively, and 𝐞 is a random residual term. 

For HET the following (co)variance matrix is 

used for SNP k: 

 

𝑉𝑎𝑟([𝛄𝟎, 𝛄𝟏]′) =  𝐃𝒌 ∗ 𝐆 ∗  𝑫𝒌
′  

where 𝐆 is the estimated genetic (co)variance 

matrix between intercept and quadratic 

regression coefficient obtained from the 

reaction norm model in the analysis of subset 1. 

For HOM, homogeneous SNP variances for 

intercept and linear regression coefficient are 

provided by 𝜎𝑔
2/2 ∑ 𝑝𝑘(1 − 𝑝), where 𝜎𝑔

2 is the 

genetic variance for either intercept or linear 

regression coefficient estimated in subset 1. The 

GEBV for validation animals were calculated as  

𝐆𝐄𝐁𝐕 =  𝟏𝜇̂ +  𝐙𝛄̂𝟎 + 𝐙𝐐𝛄̂𝟏 . The accuracies 

of GEBV for individuals in the validation set 

were obtained as the correlation coefficient 

between the observed YD and predicted GEBV 

divided by the square root of heritability.  

Results & Discussion 

The estimated genetic variances for intercept 

and the quadratic regression coefficients were 

670.87 and 19.99, respectively. The estimated 

heritability across all environments is shown in 

Figure 1. Highest heritabilities were observed 

for very extreme environments (CG effects). 

The average heritability across all environments 

was 0.242 (SD 0.017). Estimated heritabilities 

in this study are similar as reported by Berry et 

al. 2017.  

Genetic correlations between environments 

were in the range between 0.57 and 1. The 

lowest genetic correlation was observed 

between extreme and intermediate 

environments, indicating that breeding values 

may change in different environments. 

However, for the majority of environments (CG 

effects greater than -1.8 or below 1.8) all 

genetic correlations were higher than 0.89 so 

that one breeding program seems justified 

across all environments.  
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Figure 1.  Heritability of age at slaughter across 

environments (i.e. CG effects standardized to mean 

of 0 and SD of 1).  

Accuracies of genomic breeding values 

modelling homogeneous (HOM) and 

heterogeneous (HET) SNP (co)variances are 

shown in Table 1. Accuracy for HOM were 

between 0.193 and 0.607 across all CV. For 

HET, accuracies were slightly lower compared 

to HOM across all CV except for CV2, where 

Holstein and Aberdeen Angus are the main 

breeds contributing gene proportion. Overall, 

modelling heterogeneous SNP (co)variances 

did not result in higher accuracies of genomic 

breeding values for age at slaughter. Reasons 

may be that the genetic architecture of age at 

slaughter is highly polygenic or that it is 

difficult to take advantage of the proposed 

method given the very heterogeneous data set 

including different breeds and crossbred 

animals. 

Table 1. Number of animals in the training (TRAIN) 

and validation (VAL) set for each cross validation 

(CV) and accuracy of genomic prediction for HOM 

and HET 
CV TRAIN VAL HOM HET 

1 7,333 1,664 0.298 0.279 

2 8,495 502 0.607 0.613 

3 7,476 1,521 0.193 0.184 

4 7,248 1,749 0.319 0.295 

5 8,454 543 0.237 0.191 

6 7,626 1,371 0.329 0.314 

7 7,350 1,647 0.334 0.315 

Conclusions 

The results show large genetic variations for 

age at slaughter in an Irish dairy and beef 

crossbred population. The estimated genetic 

correlations for age at slaughter between 

different environments suggest the existence of 

GxE to some extent. Modelling heterogeneous 

SNP (co) variances did not increase the 

accuracy of genomic breeding values.  
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