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__________________________________________________________________________  

Abstract 

Interbull’s multiple across country evaluation provides national breeding organisations with breeding 

values for internationally used bulls which must be integrated into the domestic evaluation. For that 

purpose several methods have been proposed which either model Interbull breeding values as prior 

information in a Bayesian approach, or as additional pseudo data points. Single-step random 

regression test-day models add complexity to the integration because of the dimensionality 

discrepancy between the number of Interbull breeding values and the number of modelled genetic 

effects. This paper presents the results from integrating 16,063 Interbull breeding values into the 

domestic single-step random regression test-day model for milk, fat and protein yield for Australian 

red dairy cattle breeds. Results suggest that the integration was successful with regard to alignment of 

Interbull breeding values with their domestic equivalent as well as with regard to the individual and 

population-wide increase in reliabilities. 

___________________________________________________________________________ 

 

Introduction 

National breeding programs can only 

benefit from Interbull’s multiple across 

country evaluation if the breeding values 

reported by Interbull are integrated into the 

national evaluation system. This is even more 

relevant for single-step genetic evaluation as 

the number of breeding values affected by the 

integration is expected to increase. External 

breeding values can be integrated as prior 

information in a Bayesian approach 

(Vandenplas et al., 2014) which requires 

manipulation of the mixed model equation 

system’s right-hand side and a special co-

variance matrix between animals, or as 

additional pseudo data (Pitkänen et al., 2020) 

which requires derivation of one or several 

additional data points and manipulation of the 

residual co-variances matrix. The integration  

 

for production traits like milk, fat and protein 

yield is complicated due dimensionality 

discrepancies between the Interbull model and 

the domestic multiple-trait random regression 

test-day models. In this paper we present 

results from the integration of 

Interbull breeding values for milk fat and 

protein yield into the domestic single-step 

random regression test-day model genetic 

evaluation for Australian Red Dairy breeds. 

 

Material and Methods 

The data set for genetic evaluation of 

production traits of Australian red dairy breeds 

consisted of test-day observation on litre milk, 

kilogram fat and kilogram protein in the first 

three lactations with a total of 10,000,614 

observations across all nine traits. The 
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pedigree consisted of 73 phantom parents and 

975,532 individuals of which 8,191 were 

genotyped on various platforms. Genotypes 

underwent internal quality control and 

imputation procedures and after being imputed 

to a common set of about 73,000 markers were 

used to construct a genomic relationship 

matrix. The total number of bulls to be 

integrated was 16,063 where 466 bulls had 

Australian information provided to Interbull 

(Abulls), and 15,597 bulls may have had 

Australian information but it was not provided 

to Interbull or did not have Australian 

information at all (Bbulls). Breeding values of 

Abulls for integration were identified by a 

positive difference between the 

Interbull reliability and the local reliability of 

at least 0.01. If the difference was only 

achieved for a subset of an Abulls’s breeding 

values, e.g. for milk yield, but not for fat and 

protein yield, only the subset was integrated. 

All breeding values of Bbulls were integrated 

regardless of the Interbull reliabilities. The 

genetic evaluation model into which the 

Interbull breeding values were integrated 

modelled phenotypic observations as linear 

functions of fixed herd-year, season, age and 

lactation curve effects, where the latter used 

Legendre polynomials of order 1 to 4, of 

correlated direct random genetic effects using 

Legendre polynomials of order 0 to 2, of 

correlated direct random permanent 

environment effects of the animal using 

Legendre polynomials of order 0 to 2, and 

correlated random residuals. Vectors of direct 

genetic effects  

          ∼ 𝑵(𝟎, 𝜞 ⊗ Σ𝑎)  

and vectors of permanent environmental 

effects     

          ∼ 𝑵(𝟎, 𝑰 ⊗ Σ𝑞),  

where 𝚺𝒒 is co-variance matrix of the 

permanent environmental effects of dimension 

27×27 and 𝚺𝒂 is the genetic co-variance 

matrix of dimension 27×27, and  

𝒗𝒆𝒄(𝜞) = [𝚯, 𝑸𝚯, 𝚯𝑸ʹ, 𝑸𝚯𝑸ʹ + 𝑯]  

where 𝚯 is a diagonal matrix with elements 

equal to 0.62, 𝑸 is the pedigree derived genetic 

group regression matrix, and 𝑯 is the single-

step relationship matrix (Christensen and 

Lund, 2010) constructed using a polygenic 

weight of 0.2. Interbull breeding values were 

modelled as additional data points with the 

data point specific residual variance as the 

single tuning parameter. For aligning within 

animal dimensions Interbull breeding values 

𝑢𝑀𝐴𝐶𝐸 and reliabilities 𝑟𝑀𝐴𝐶𝐸, and domestic 

breeding values 𝑢𝐷𝑂𝑀 and reliabilities 𝑟𝐷𝑂𝑀 

provided to Interbull were mapped from ℜ3 to 

ℜ9 using a block-diagonal matrix 𝐾 of 

dimension 9×3 containing 3×1 column blocks 

of ones. Further Σ𝑎  was mapped from ℜ27 

to ℜ9 using a 9×27 block diagonal matrix 𝐿 =

𝑡 ⊗ 𝐼9 with 

      𝒕 = [𝟏ʹ𝒇𝟎(𝒅), 𝟏ʹ𝒇𝟏(𝒅), 𝟏ʹ𝒇𝟐(𝒅)]  

where 𝑰𝟗 is an identity matrix of dimensions 

9×9, 𝒕 is a vector of length 3, 𝒅 is a vector 

containing a consecutive sequence from 6 to 

305, 𝒇𝑖 is a vector-valued function applying 

the Legendre polynomial order 𝒊 to the 

argument, and 𝟏 is a vector of ones.   

Therefore 𝒖:,𝒎 = 𝑲𝒖: and 𝒓:,𝒎 = 𝑲𝒓:,  

where “:” was either MACE or DOM  

and 𝚺𝒂, 𝒎 = 𝑳𝚺𝒂 𝑳′.  

In case only a subset of breeding values within 

animal met the integration requirement the 

above dimension, were adjusted accordingly. 

Within animal a vector of prediction error 

variances was calculated by  

𝒑: = 𝒅𝒊𝒂𝒈(𝚺𝒂, 𝒎)(𝟏 − 𝒓:,𝒎),  

where 𝒅𝒊𝒂𝒈() denotes a vector of diagonal 

elements of a squared matrix. The system for 

deriving a diagonal matrix 𝐷: of inverse 

residual variances across traits within animal 

was diag((D: + (Σa,m)−1)−1) ≡ p; 

where 𝐷: was be obtained directly only if the 

system’s dimension was 1. Otherwise 𝐷: was 

established iteratively using a procedure 

similar to Vandenplas and Gengler (2012). 
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Within animal vectors of pseudo-phenotypes 

𝑦:
∗ were calculated for Abulls as  

𝑫𝒓 = 𝑫𝑴𝑨𝑪𝑬 − 𝑫𝑫𝑶𝑴  

and  

y∗ = Dr
−1 ((DMACE + (Σa,m)−1)uMACE,m − 

(DDOM + (Σa,m)−1)uDOM,m) 
 and for Bbulls as  

y∗ = DMACE
−1(DMACE + (Σa,m)−1)uMACE,m. 

A maximum of nine pseudo-phenotypes 𝑦∗ 

of animal 𝑖 were added to the evaluation. 

Data preparation and derivation of 𝐷: was 

done using the R computing environment (R 

Development Core Team 2011). The genetic 

evaluation model was solved and reliabilities 

were deterministically calculated using MiX99 

and Apax, respectively (Lidauer et al., 2017). 

 

Results 

Generally, results for all three traits were 

very similar. Therefore, only results for milk 

yield are summarised in Figures 1, 2, and 3. 

Correlations between Interbull breeding values 

and domestic evaluation breeding values 

increased from about 0.05, 0.05 and 0.04 pre-

integration to 0.99, 0.98 and 0.99 post-

integration for milk, fat and protein yield 

respectively. The regression intercept changed 

from 392, 12.4 and 11.3 to 261, 14.3 and 7.11, 

and the regression slope from 0.05, 0.06 and 

0.06 to 1.01, 1.01 and 1.01 for milk fat and 

protein yield, respectively. Therefore, the non-

zero intercept when regressing pre-integration 

breeding values on Interbull breeding values 

was also found when post-integration breeding 

values were used as response variables. 

Further, pre-integration breeding values of 

Bbulls which did not have domestic 

information constituted a horizontal line, the 

genetic group solution, in the first plot of 

Figure 1 which was found in plots using post-

integration breeding values. 

Results were similar for the reliabilities, but 

correlations and regression parameters are 

weaker and, due to the nature of reliabilities, 

do not provide the same goodness-of-fit 

information as for the breeding values. 

However, post-integration reliabilities for all 

bulls were at least as high as the 

Interbull reliabilities.  

 

 

Figure 1. Breeding values for litre milk per 305 

day lactation pre-integration (first plot) and post-

integration (second plot) for bulls with (Abulls) and 

without (Bbulls) Australian information in the 

Interbull evaluation, respectively. 

For Abulls, the post-integration reliabilities 

aligned very well with the Interbull 

reliabilities. Further, for Bbulls breeding 

values with a pre-integration reliability of zero 

the procedure returned a post-integration 

reliability similar to the Interbull reliability. 

For the entire evaluation population, but 

excluding the integrated bulls, about 40% of 

the reliabilities of all three traits were not 

affected by the integration, and only 5% of the 

reliabilities increased by more than 0.1 when 
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compared to their pre-integration value. 

Contrarily, every single breeding value 

changed as a result of the integration with 

27%, 29%, and 29% of the breeding values for 

milk, fat and protein yield, respectively, 

having changed by more than 10% when 

compared to their pre-integration value. 

However, for all three traits only about 15% of 

the breeding values changed by more than 

25%. 

 

 

 

Figure 2. Reliabilities for litre milk per 305 day 

lactation pre-integration (first plot) and post-

integration (second plot) for bulls with (Abulls) and 

without (Bbulls) Australian information in the 

Interbull evaluation, respectively.  

 

 

 

 

Figure 3. Histograms of the integration impact on 

breeding values and reliabilities of the entire 

evaluation population 

 

Discussion 

Results align very well with the 

expectations and therefore the integration of 

Interbull breeding values into the domestic 

single-step random regression test-day 

evaluation is regarded as successful. The non-

zero intercept when regressing 

Interbull breeding values on domestic breeding 

values, pre- as well as post-integration, is a 

result of the average superiority of the 

integrated bulls within the Australian 

population as all base population differences 
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were accounted for by fitting bull group 

specific fixed effects. The finding that all 

breeding values were affected by the 

integration but more than 50% off all 

reliabilities remained unaffected is a feature of 

the reliability approximation (Jamrozik et al., 

2000). While the added data points change the 

information content for all modelled factor 

levels, the reliability approximation can only 

account for information changes within groups 

of closely related animals (e.g. full-sib and 

half-sib families). 

The current integration approach ignores 

the relationships between integrated bulls 

when deriving individual specific residual 

variances. Empirically, ignoring the 

relationships between integration animals does 

not pose a problem if the reliabilites are high 

and integration candidates are not closely 

related. Accounting for relationship poses a 

computational problem (Vandenplas et al., 

2014). For the approach presented the 

procedure for deriving 𝐷: required up to tens 

of thousand of inversions. Extending the 

approach to system of  

Σa
-1⊗ (Γ:,:)−1 will certainly affect inversion 

time and most likely also the required number 

of iterations, and will also require block 

extractions from a complex 𝛤 matrix. An 

intermediate approach is to approximate some 

matrix  

𝑲 = 𝑪𝒂𝒊,𝒂𝒊
− 𝑪𝒂𝒊,−𝒂𝒊

(𝑪−𝒂𝒊,−𝒂𝒊
)−𝟏𝑪−𝒂𝒊,𝒂𝒊), 

where 𝑪 is the mixed model coefficient matrix 

and 𝑎𝑖 is a vector indexing the block in 𝐶 

related to animal 𝑖. Subsequently 𝐾 is used 

instead of Σa in 𝒅𝒊𝒂𝒈((𝑫: + 𝑲)−𝟏) ≡ 𝒑: 

(Pitkänen, personal communication). 

Depending on the actual implementation the 

approach either ignores that all other bulls 

have fractional observations when deriving 𝐽 

for bull 𝑖, or it must be run iteratively until 

convergence. However, it might be 

computationally prohibitive to apply such 

procedure to a single-step system. In any case 

computation time maybe crucial as imputing 

data points is done within the genetic 

evaluation pipeline before the actual solving 

step and the frequency of evaluation and 

available hardware resources may set a tight 

time frame. 

 

Conclusion 

The outlined methodology and presented 

results demonstrate a possible approach for 

integrating Interbull breeding values into the 

domestic single-step random regression test-

day model where the pseudo data approach 

provides good alignment between 

Interbull and post-integration breeding values 

and is applicable to software which does not 

allow for manipulating the mixed model 

equation system’s right-hand side or a special 

co-variance structure between individuals. 

Further work may be required to allow for co-

variance between integration candidates. 
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