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Abstract  
 
It has been previously shown that in breeding programs that do not use external data, genomic models 
estimate breeding values of preselected animals without preselection bias and with minimal accuracy 
loss, as long as genotypes of preselected animals and of their parents are used in the evaluation. The 
objective of this paper was to show that genomic models account for genomic preselection (GPS) by 
correctly estimating the Mendelian sampling terms (MSTs) of preselected animals. We simulated a 
single-trait breeding goal with heritability of 0.1, and 15 recent generations undergoing selection. To 
select the parents of the next generation from the animals in the most recent generation, we 
genomically preselected 10% of males and 15% of females in generation 15. We then performed 
evaluations of the preselected animals with both genomic and pedigree models, both including and 
excluding records on the preselected animals. We also conducted another set of genomic and pedigree 
evaluations without preselection, to serve as control. Results showed that both the true and estimated 
MSTs in the control scenario were on average zero, regardless of whether they were estimated with 
genomic or pedigree models. With GPS, the average true MST was positive, was correctly estimated 
by genomic models, and hugely underestimated by pedigree models. Compared to the MSTs estimated 
by pedigree models, the MSTs estimated by genomic models in both GPS and control scenarios had 
variances that were closer to the variances of the corresponding true MSTs. We concluded that 
genomic models indeed correctly estimate Mendelian sampling terms of preselected animals, and that 
how they are able to account for GPS. 
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Introduction 
 

Using both simulated and real data from 
animal breeding programs that do not use 
external data such as MACE proofs, Jibrila 
(2022) showed that genomic models such as 
single-step genomic best linear unbiased 
prediction (ssGBLUP) estimate breeding 
values of preselected animals without 
preselection bias and with minimal accuracy 
loss, as long as genotypes of preselected 
animals and of their parents are used in the 
evaluation. In this paper, we showed that 
genomic models account for genomic 
preselection (GPS) by correctly estimating  
 

 
Mendelian sampling terms (MSTs) of 
preselected animals. 
 
Materials and Methods 

We simulated a single-trait breeding goal, 
with heritability of 0.1. We produced 15 recent 
generations with pedigree BLUP (PBLUP)-
based selection, after a historical population of 
3000 generations of random mating. In every 
generation of the recent population, we 
produced 8000 male and 8000 female 
offspring, from which 100 males and 1000 
females were selected to produce the next 
generation. For this study, we used the entire 
pedigree of the recent population, genotypes of 
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the three most recent generations (i.e. 
generations 13 to 15) and phenotypes of the 
five most recent generations (i.e. generations 
11 to 15). To select the parents of the next 
generation from the animals in the most recent 
generation, we genomically preselected 10% 
of males and 15% of females in generation 15. 
We used ssGBLUP with the entire pedigree of 
the recent population, genotypes of animals in 
generations 13 to 15, and phenotypes of 
animals in generations 11 to 14 to produce the 
genomically enhanced estimated breeding 
values (GEBVs) used to perform this 
preselection. After preselection, we conducted 
two evaluations, one with ssGBLUP and the 
other with PBLUP, using the data remaining 
after preselection (i.e. without any information 
from preculled animals/animals removed from 
the breeding program at preselection stage). 
These evaluations included the entire pedigree 
of the recent population until the preselected 
animals in generation 15, genotypes of animals 
in generations 13 until the preselected animals 
in generation 15, and phenotypes of animals in 
generations 11 to 14. We refer to these 
evaluations as ‘initial evaluations’, because 
they mimicked the evaluations that take place 
mainly in dairy cattle before the preselected 
animals have own or daughter records. We 
then conducted another set of two evaluations, 
one ssGBLUP-based and the other PBLUP-
based, with the same data as in initial 
evaluations, plus own records of the 
preselected animals. We refer to these 
evaluations as ‘subsequent evaluations’, 
because they mimicked the evaluations that 
take place in breeding programs of all 
livestock species when the preselected animals 
have own or progeny records. We also 
conducted another set of subsequent 
evaluations on the entire kept recent data 
without preselection, using both ssGBLUP and 
PBLUP, to serve as control. We computed 
averages and variances of MSTs of preselected 
animals from all the above six evaluations. 

Because this is a simulated dataset, we 
knew the true MSTs of preselected animals. 

So, we also computed the means and variances 
of the true MSTs of preselected animals in 
both the control and GPS scenarios. 
Everything (i.e. from the simulation of the 
dataset to subsequent evaluations and 
computation of means and variances of MSTs) 
was replicated 10 times. More details on the 
design and analysis of the simulated data are in 
Jibrila et al. (2021). We redid the ssGBLUP 
evaluations with GBLUP, and we recorded 
statistically similar results. Therefore, we 
decided to report results from ssGBLUP to 
represent results from genomic models. 
 
Results & Discussion 

Means of MSTs, in genetic standard 
deviation units (GSDs) of the trait, and 
averaged over 10 replicates, are in Figure 1. 
Both the true and estimated MSTs in the 
control scenario are on average zero, 
regardless of whether the estimated MSTs 
came from ssGBLUP or from PBLUP. With 
GPS, the average true MST is positive (0.57 ± 
0.01 GSD), and was correctly estimated by 
ssGBLUP both at the initial evaluation (0.57 ± 
0.01 GSD) and subsequent evaluation (0.57 ± 
0.01 GSD). The deviation of average true and 
estimated MSTs from zero with GPS is 
expected, since GPS preselects on average 
animals with positive MSTs. PBLUP greatly 
underestimated the average MSTs of the 
preselected animals, at both the initial 
evaluation (0.00 ± 0.00 GSD) and the 
subsequent evaluation (0.02 ± 0.00 GSD). 
Variances of MSTs, also in GSDs of the trait 
and averaged over 10 replicates, are in Figure 
2. True MSTs in the control and GPS scenarios 
have variances of 1.19 ± 0.08 and 0.86 ± 0.03 
GSDs, respectively. The decrease in variance 
of true MSTs from control to GPS scenario is 
because GPS preselected more genetically (and 
genomically) similar animals. Both ssGBLUP 
and PBLUP underestimated the variances of 
MSTs of both control and GPS scenarios, both 
at initial and subsequent evaluations. This is 
because both ssGBLUP and PBLUP predicted 
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 Figure 1 Mean Mendelian sampling terms of preselected animals, expressed in genetic standard deviation units 
of the trait, and averaged over 10 replicates 

 
 

 
Figure 2 Variances of Mendelian sampling terms of preselected animals, expressed in genetic standard deviation 
units of the trait, and averaged over 10 replicates 
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the true breeding values with accuracies less 
than 1. Estimated MSTs by ssGBLUP and 
PBLUP in the subsequent evaluation of the 
control scenario have variances of 0.65 ± 0.02 
and 0.04 ± 0.00 GSDs, respectively. In the 
initial evaluation of the GPS scenario, MSTs 
estimated by ssGBLUP and PBLUP have 
variances of 0.29 ± 0.01 and 0.00 ± 0.00, 
respectively. Finally, in the subsequent 
evaluation of the GPS scenario, MSTs 
estimated by ssGBLUP and PBLUP have 
variances of 0.31 ± 0.02 and 0.04 ± 0.00, 
respectively. This means that the compared to 
the MSTs estimated by PBLUP, MSTs 
estimated by ssGBLUP at both initial at 
subsequent evaluations have variances that are 
closer to the variances of the corresponding 
true MSTs. 

Using both simulated and real data from 
animal breeding programs that do not use 
external data such as MACE proofs, Jibrila 
(2022) showed that genomic models such as 
single-step genomic best linear unbiased 
prediction (ssGBLUP) estimate breeding 
values of preselected animals without 
preselection bias and with minimal accuracy 
loss. Jibrila (2022) also showed, using a full 
sib family of 6 individuals, how preselection 
on a correlated trait is accounted for by 
pedigree and genomic models in both single-
trait and two-trait subsequent evaluations. The 
author showed that MSTs of preselected and 
preculled animals are better differentiated 

moving from single-trait PBLUP to two-trait 
PBLUP, to single-trait ssGBLUP, to two-trait 
ssGBLUP. The author concluded that the 
MSTs of the preselected (and preculled) 
animals were closer to their true values, 
accuracy of prediction was higher, and bias 
was lower, moving from single-trait PBLUP to 
two-trait PBLUP, to single-trait ssGBLUP, to 
two-trait ssGBLUP. True MSTs of the 
preselected (and preculled) animals were not  
known in Jibrila (2022), because real data was 
used for this particular exercise. In the current 
study, we used simulated data and showed that 
genomic models are indeed able to correctly 
estimate the average MSTs of preselected 
animals using just the genotypes of the 
preselected animals and their parents, as shown 
by the ‘initial’ evaluation of the GPS scenario 
in the current study. 

To show why genomic models are able to 
correctly estimate MSTs of preselected 
animals using just the genotypes of preselected 
animals and of their parents, we extracted 
genomic relationships among full sibs and 
among half sibs in generation 15 from the 
genomic relationship matrix (G), and their 
corresponding entries in the inverse of the 
genomic relationship matrix (G-1), in both the 
GPS and the control scenarios of this study. In 
Table 1, we see that among full sibs and 
among half sibs, genomic relationships are 
statistically higher, and their corresponding 
entries in G-1 are statistically lower, in the GPS 
scenario than in the control scenario.  

 

Table 1 Average genomic relationships (G) and their corresponding entries in the inverse of the genomic 
relationship matrix  (G-1) among different groups of preselected animals 

Parameter Among Preselection scenario 
Control GPS Difference Significance of the difference (p-value) 

G Full sibs 0.68 0.69 -0.01 0.01 
 Half sibs 0.50 0.51 -0.01 0.00 
G-1 Full sibs 0.00 -0.02 0.02 0.00 
 Half sibs 0.00 -0.01 0.01 0.00 
Control: scenario without preselection, GPS: scenario with genomic preselection 
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The idea that within a family preselected 
animals tend to have higher genomic 
relationships among themselves than among all 
sibs in the family has also been reported by 
Gondro et al. (2013), Hayes et al. (2009) and 
VanRaden (2008). The higher genomic 
relationships and the lower corresponding G-1 
entries among preselected animals are reflected 
in their coefficients of the inverse of the left 
hand side of the mixed model equation. This 
reflection ensures that preselected animals get 
the positive MS terms they truly have, 
regardless of whether or not the preselected 
animals have own/progeny records in the 
evaluation. 

It is common to observe bias in genomic 
evaluations in dairy cattle if external 
information such as MACE proofs is included 
in the evaluations (e.g. Patry et al., 2013). 
Countries participating in MACE send 
deregressed EBVs (DEBVs, produced using 
PBLUP) to the Interbull Centre, and the 
Interbull Centre uses these DEBVs to produce 
MACE proofs. Then participating countries 
integrate these MACE proofs into their 
national genomic evaluations. Because these 
MACE proofs are produced from DEBVs that 
are themselves produced without using 
genomic information, MACE proofs of 
genomically preselected animals may be 
downward biased (e.g. Patry et al., 2013). This 
downward bias is transmitted to national 
genomic evaluations that use MACE proofs. If 
deregressed GEBVs (DGEBVs, instead of 
DEBVs) are submitted to the Interbull Centre, 
then the MACE proofs produced by the 
Interbull Centre will be free of GPS bias. 
However, this will result in double-counting of 
genomic information if these MACE proofs 
are integrated in national genomic evaluations. 
This is why DEBVs (instead of DGEBVs) are 
still sent to the Interbull Centre. The ‘Future 
MACE’ working group of the Interbull Centre 
is now working toward coming up with 
ways(s) of accounting for GPS in both national 
and Interbull PBLUP evaluations, without 

necessarily utilizing genomic information (e.g. 
Sullivan et al., 2019, 2022). 
 
Conclusions 

As long as genotypes of preselected 
animals and of their parents are used, genomic 
evaluation systems that do not use external 
data, such as closed-line breeding and national 
genomic evaluations of dairy (and beef) cattle 
that do not integrate foreign data, are expected 
to estimate GEBVs of preselected animals 
without preselection bias, even if the 
preselected animals do not have own or 
progeny records in the evaluations. This is 
because use of genomic information enables 
such systems/evaluation models to correctly 
estimate the average Mendelian sampling 
terms of preselected animals. 
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