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Abstract 
 
Genomic pre-selection (GPS) has altered the distributions of breeding values for AI bulls, because 
genomics made it possible to identify above average bulls within a family prior to progeny testing.  
Before genomics, it was reasonable to assume within-family pre-selection was random in EBV models, 
but this assumption is no longer valid.  The international MACE model was thus modified to account 
for non-random within-family GPS of AI bulls.  The effects of GPS are estimated and included in the 
international EBV of sires in the new model: GPS-MACE.  The estimates reflect different intensities of 
GPS across traits, breeds, countries of selection and time, and the accumulation of differential effects of 
GPS across multiple generations in a bull’s ancestry, and across international borders.  Estimates of GPS 
effects, and differences between EBV from GPS-MACE versus MACE were studied for three breeds 
(Holstein, Brown Swiss, and Jersey) and eight traits (milk fat, milk protein, conformation score, udder 
score, somatic cell score, fertility interval, cow conception, and milking speed).  The effects of GPS 
were generally largest for countries that have shared genotypes of proven bulls to improve national 
genomic predictions and the effectiveness of national GPS programs.  The countries identified as sharing 
genotypes were in the Inter-continental and Eurogenomics Holstein consortia, and the Intergenomics 
Brown Swiss service provided by Interbull.  Estimates of GPS effects were largest and almost always 
favourable across all breeds and countries for the main traits of selection (fat, protein, conformation 
score, and udder score), and were generally centred on zero for the traits under weaker selection 
intensities (milking speed).  The addition of GPS effects to the international model caused generally 
higher estimates of Mendelian sampling effects and correspondingly lower EBV for the dams of GPS 
bulls, when the estimated effects of GPS were positive.  The net effects on EBV were small for older 
GPS bulls with high national EBV reliabilities, but they were notably larger and favourable for the most 
recent AI bulls from countries with effective GPS programs.  The benefits of GPS-MACE over MACE 
were likely underestimated in the present study because GPS effects are only partially included in the 
current national EBV.  As national EBV models are improved to more fully account for the effects of 
GPS, benefits of using GPS-MACE are expected to grow. 
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Introduction 
 

MACE evaluations use biased input EBV 
that were generated without genotypes, and 
therefore ignoring genomic pre-selection (GPS) 
effects on the distributions of breeding values 
for most recent AI bulls.  Theories and 
modeling options to better account for GPS 
effects on these distributions in MACE results 
have been proposed (e.g. Patry et al, 2013; 
Fikse, 2014; Sullivan et al, 2019, 2022). 
 

Objectives of the present study were to 
develop and describe a new model, which 
accounts for GPS effects in national EBV used 
as input to MACE and includes the GPS effects 
in international MACE evaluations published 
by Interbull.  Impacts of GPS effects on MACE 
results for different traits, breeds, countries of 
selection and population scales of evaluation 
were studied. 

The new model will be referred to as GPS-
MACE to emphasize the addition of new 
parameters to estimate and include the effects of 
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GPS in the international EBV of selected AI 
bulls and their progeny. 
 
Materials and Methods 
 

Input data for eight traits from the MACE 
evaluations published in April 2022 for each of 
three breeds (Holstein, Brown Swiss, and 
Jersey) were re-analyzed using GPS-MACE.  
The traits were milk fat and milk protein yields 
(FAT and PRO), overall conformation and 
udder scores (OCS and OUS), somatic cell 
score (SCS), cow conception rate one (CC1), 
fertility interval (INT) and milking speed 
(MSP).  International GPS programs have been 
in place for these three breeds of varying 
population size, while intensities of GPS vary 
among traits generally, and among 
combinations of trait by breed. 

Bulls with national EBV based on progeny 
phenotypes for the 24 breed-trait combinations 
studied were born as recently as 2017.  
Approximately eight completed years of GPS 
bulls, born between 2009 and 2016, were 
included in these data. 
 
1 - Estimating GPS effects 

Genomic evaluation models can account for 
GPS effects when the genomic information 
used for selection is included in the evaluated 
data (Jibrila, 2022; Jibrila et al, 2023).  For 
MACE, however, it is not possible to include 
genotypes directly, nor use national GEBV as 
input data without double-counting the 
predictive information from genotypes when 
MACE results are subsequently used as input in 
national genomic evaluations.  Additionally, 
Interbull does not have access to all genotypes, 
so the GPS effects must be estimated without 
genotypes in GPS-MACE. 

The effects of GPS are included in true 
breeding values (TBV) of selected sires and 
expressed in phenotypes of daughters of the 
GPS sires.  The distributions of TBV for groups 
of GPS sires have shifted means and reduced 
variances, and these changes due to selection 

can be estimated from the EBV input data used 
currently by Interbull for MACE. 

A simulation study confirmed that GPS 
effects on groups of AI bulls can be estimated 
without genotypes if the input national EBV 
include GPS effects on the EBV means for GPS 
groups of bulls.  An analysis of national EBV 
currently available to Interbull showed a partial 
correction for GPS effects is possible, because 
the national EBV presumably include a portion 
of the true GPS effects (Sullivan et al, 2022).  
Conclusions from these studies were that 
MACE evaluations can be improved by 
updating both the international MACE model 
and the national EBV models, by: 
 
A. adding GPS trend effects to the MACE 

model, to improve evaluation of the current 
input data. 

B. adding GPS effects in national EBV 
models, while excluding the individual 
genotype effects, to reduce GPS biases and 
improve future MACE input data. 

 
2 - The GPS-MACE model 

With the currently proposed model changes 
for MACE, international EBV of GPS sires 
include Mendelian sampling terms (MS=EBV-
PA) that are assumed to be drawn from 
selection-modified distributions, having altered 
means and variances due to increasing GPS 
intensities for AI sires born since 2009.  The 
GPS effects are estimated based on national 
EBV distributions of males born at a given point 
in time, relative to parent average (PA) 
contributions from their male-only ancestors 
(Jakobsen and Dürr, 2012).  Estimated MS-
means for proven bulls will deviate farther from 
zero, and the variance of estimated MS 
deviations about the means will be less, for 
groups of GPS bulls from countries with 
effective GPS programs and high intensities of 
GPS.  For populations with means and variances 
of estimated MS deviations being similar after 
2009 as they were before, the estimated effects 
of GPS are expected to be close to zero.  
Efficiency of GPS can be lower for small 
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populations, or if the availability or use of 
genotyping and genomic evaluation services 
has been limited in the local AI sire pre-
selection programs. 

Estimates of GPS effects are cumulative 
across generations.  For example, the evaluation 
of a GPS bull with a GPS sire will include a 
first-generation estimate of GPS effects in the 
sire’s EBV contribution to PA, plus a second-
generation estimate of GPS effects in the MS of 
the bull.  After many generations of GPS, as is 
the case for dairy cattle, the EBV of most recent 
AI bulls are based on PA that include many 
generations of accumulated GPS effects in the 
EBV distributions of male ancestors, plus the 
newest estimates for GPS-modified MS 
distributions. 
 
2.1 - International GPS effects 

Methods to estimate international GPS 
effects should account for changes in GPS 
intensities over time, which can vary 
significantly among the different combinations 
of trait by population included in MACE. 

An input EBV in MACE is from a country 
or regional population where sire daughter 
performance was recorded and evaluated.  The 
sire’s country of pre-selection (x) can differ 
from the sire’s EBV population of daughters 
(d).  Although a sire is assumed to be pre-
selected by one country, he can have current 
EBV and future daughters in any of the MACE 
populations.  Predictions of GPS effects for the 
sire are therefore required for genetic 
predictions of future daughter performance in 
all MACE populations. 

For the implementation of GPS-MACE, a 
proven bull’s country of pre-selection was 
assigned based on country of registration, and 
not the countries where national EBV are 
available, which is where GPS effects are 
expressed through daughters of the GPS bulls.  
The country of registration is mapped to a 
population evaluation scale (x) included in the 
GPS-MACE model, and a selected MS-
distribution is assumed for each group of GPS 
bulls born in the same birth cohort and 

preselected by the group of countries linked to 
a given population x.  In most cases there is one 
country per population, but DFS is an example 
of a population including three countries 
(Denmark, Finland, and Sweden). 

For a proven bull from a GPS group in 
population x, the GPS effect is estimated for his 
EBV as it would be expressed in population x 
(𝑠̂𝑠𝑥𝑥) and extended internationally through 
genetic regressions.  For example, the 
expression of GPS effects in any population d 
of future daughters (𝑠̂𝑠𝑥𝑥:𝑑𝑑) is: 
 

𝑠̂𝑠𝑥𝑥:𝑑𝑑 =
𝐺𝐺𝑥𝑥,𝑑𝑑

𝐺𝐺𝑥𝑥,𝑥𝑥
𝑠̂𝑠𝑥𝑥 

 
The genetic regressions used to predict 
expressions of GPS effects internationally are 
based on the genetic covariance matrix among 
MACE populations (𝐆𝐆𝐭𝐭) with the assumption 
that GPS effects follow the same pattern of 
international genetic expression as is currently 
assumed for unknown parent group (UPG) 
effects and for all other genetic partitions of 
animal EBV in the current MACE model. 
 
2.2 - Trends in GPS effects 

To avoid estimation problems with small 
genetic group classes, year is fitted as a genetic 
covariable rather than a genetic class effect, for 
smoothed estimates of trends in GPS effects 
over time.  Separate GPS trends are estimated 
for each trait and population. 

To allow non-linearity of GPS trends, an 
approach with 3-year knotted linear slopes is 
used, with the following assumptions for 
MACE input data from April 2022: 
 
• GPS intensity = 0 for all birth years prior to 

the start of GPS (1980-2008). 
• GPS intensity = X for all birth years in the 

most recent period (2014-2017). 
• GPS effects have non-zero slopes for 

intermediate periods only (2009-2011 and 
2012-2014). 
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• X = 0 in all years for smallest populations, 
where the GPS effects would be relatively 
small and unreliably estimated. 

 
 The GPS-MACE model accounts for 
different timings of GPS implementation, and 
different yearly changes in intensities of GPS 
for each combination of trait and population.  
Different types of trend that can be estimated 
under this model are demonstrated in Figure 1, 
with an example of yearly estimates for GPS 
effects in five countries from one of our 
previous studies. 
 
 

 
 
Figure 1. Examples of estimated trends in GPS 
effects from a previous GPS-MACE research trial. 
 
2.3 - GPS effects across generations 

The current MACE model for an observed 
deregressed EBV of a bull (Schaeffer et al., 
1996; Jakobsen and Dürr, 2012) is: 

𝑦𝑦 = 𝜇𝜇 + 𝐐𝐐𝟏𝟏𝐠𝐠+ A + e 

Defining and parenthesizing the between (PA) 
and within family (MS) contributions in A: 

𝑦𝑦 = (𝜇𝜇∗ +𝐐𝐐𝟏𝟏𝐠𝐠∗ + P∗) + (m∗) + e∗ 

A = P∗ + m∗ 
 PA = (𝜇𝜇∗ +𝐐𝐐𝟏𝟏𝐠𝐠∗ + P∗) 

MS = (m∗) 

The GPS-MACE model expands MS with new 
parameters (𝐐𝐐𝟐𝟐𝐬𝐬) for the effects of GPS: 

𝑦𝑦 = (𝜇𝜇 + 𝐐𝐐𝟏𝟏𝐠𝐠 + P) + (𝐐𝐐𝟐𝟐𝐬𝐬 + m) + e 

A = P + (𝐐𝐐𝟐𝟐𝐬𝐬 + m) 
 PA = (𝜇𝜇 + 𝐐𝐐𝟏𝟏𝐠𝐠+ P) 

MS = (𝐐𝐐𝟐𝟐𝐬𝐬 + m) 

The genetic group class effects for UPG, as 
expressed in the PA through 𝐐𝐐𝟏𝟏𝐠𝐠, account for 
selected base generations, while analogously 
the genetic group covariable effects, as 
expressed in the MS through 𝐐𝐐𝟐𝟐𝐬𝐬, account for 
selection effects in the most recent generations. 
 
2.4 - Selection-modified distributions 

Under current MACE, the vector of 
international, within-family genetic deviations 
(𝐌𝐌𝐌𝐌∗) for an individual (𝑎𝑎) with known parents 
has a multivariate normal distribution: 

𝐌𝐌𝐌𝐌𝒂𝒂∗  ~ 𝐍𝐍( 𝟎𝟎, 0.5 ∗ 𝐆𝐆𝐭𝐭 ) 

where 𝐆𝐆𝐭𝐭 is the genetic covariance matrix 
among trait expressions by population, and all 
𝐌𝐌𝐌𝐌𝒂𝒂∗   deviations are independent between 
different animals a and a’. 

Under GPS-MACE, 𝐌𝐌𝐌𝐌 = 𝐐𝐐𝟐𝟐𝐬𝐬 + 𝐦𝐦, and if 
treating s as fixed, then: 

𝐌𝐌𝐌𝐌𝒂𝒂 ~ 𝐍𝐍( 𝐐𝐐𝟐𝟐𝒂𝒂𝐬𝐬,𝐤𝐤𝒂𝒂 ∗ 0.5 ∗ 𝐆𝐆𝐭𝐭 ) 
𝐦𝐦𝒂𝒂 ~ 𝐍𝐍( 𝟎𝟎,𝐤𝐤𝒂𝒂 ∗ 0.5 ∗ 𝐆𝐆𝐭𝐭 ) 

where 𝐤𝐤𝒂𝒂 is a diagonal matrix of variance 
reduction factors corresponding with the effects 
of GPS on variance for the selection group of 
bull 𝑎𝑎.  Under this model, the 𝐦𝐦𝒂𝒂 are 
independent between animals a and a’.  The 
variance reduction factors can be approximated 
by considering 𝐐𝐐𝟐𝟐𝒂𝒂𝐬𝐬� as changes in MS-means 
caused by truncation selection (Tyrisevä et al, 
2018). 
 If treating s as random, then: 

𝐌𝐌𝐌𝐌𝒂𝒂  ~ 𝐍𝐍(𝟎𝟎, ( 𝐕𝐕(𝐐𝐐𝟐𝟐𝒂𝒂𝐬𝐬)   +  𝐤𝐤𝒂𝒂 ∗ 0.5 ∗ 𝐆𝐆𝐭𝐭 ) 
𝐦𝐦𝒂𝒂 ~ 𝐍𝐍( 𝟎𝟎,𝐤𝐤𝒂𝒂 ∗ 0.5 ∗ 𝐆𝐆𝐭𝐭 ) 

The 𝐦𝐦𝒂𝒂 are still independent between animals, 
but there are non-zero covariances between 
𝐌𝐌𝐌𝐌𝒂𝒂 and 𝐌𝐌𝐌𝐌𝒂𝒂′ whenever 𝐐𝐐𝟐𝟐𝟐𝟐𝐬𝐬� and 𝐐𝐐𝟐𝟐𝟐𝟐′𝐬𝐬� are 
correlated, for example between animals in the 
same selection cohort, or between selection 
groups with similar GPS effects.  The 
expectation of MS estimates is zero, but this 
does not force MS averages to equal zero.  All 
MS estimates are regressed to some degree 
towards zero, and with a corresponding non-
zero covariance imposed among the MS 
solutions of animals with similar GPS effects. 
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In genomic models, a covariance among 
selected cohorts is imposed in a similar way, 
when matrix A fitting covariances before 
selection is replaced by a genotype-based 
covariance matrix G, which has higher realized 
covariances after selection of only the similarly 
superior sibs within a family (VanRaden, 2008; 
Hayes et al, 2009).  Analogously, only the 
similarly superior bulls are represented within a 
GPS group.  The degree of regression towards 
zero is much smaller, and the non-zero 
covariance higher in GPS-MACE than in 
MACE with no s effects at all.  The degree of 
regression can be minimized by a small ridge 
factor, or equivalently assuming large V(s). 

While drafting the paper, we realized that 
when treating s as random instead of fixed, we 
did not add any fixed regressions across 
countries to the model.  In the present study, the 
random regressions for GPS effects in every 
country were thus regressed towards zero, 
instead of regressing towards an overall fixed 
regression line, or towards a fixed regression 

that could be some function of population size.  
Although we have not explored this alternative 
approach yet, it could be considered in future 
research as a potential improvement to the GPS-
MACE model. 

The implementation of GPS-MACE in the 
present study was simplified by assuming 𝐤𝐤𝒂𝒂 =
𝐈𝐈 for all bulls, as we continue to explore options 
for a practical application fitting heterogeneous 
genetic variances, with 𝐤𝐤𝒂𝒂 ≠ 𝐈𝐈 (Mäntysaari and 
Strandén, 2023).  The covariances among 
selection cohorts are already included in EBV 
predictions from the currently simplified model, 
because 𝐐𝐐𝟐𝟐𝒂𝒂𝐬𝐬� is part of the predicted EBV 
definition for each animal, as shown below. 
 
2.5 - The mixed model equations 

After QP transformation of the g effects for 
UPG, the mixed model equations for GPS-
MACE, with a ridge factor c>0 when treating s 
effects as random, or with fixed regressions in s 
if setting c=0 are: 

 

�
𝐗𝐗′𝐃𝐃𝐃𝐃 𝐗𝐗′𝐃𝐃𝐃𝐃 𝐗𝐗′𝐃𝐃𝐃𝐃𝐐𝐐𝟐𝟐
𝐙𝐙′𝐃𝐃𝐃𝐃 𝐙𝐙′𝐃𝐃𝐃𝐃 + 𝐖𝐖⊗𝐆𝐆𝒕𝒕−𝟏𝟏 𝐙𝐙′𝐃𝐃𝐃𝐃𝐐𝐐𝟐𝟐

𝐐𝐐𝟐𝟐
′𝐙𝐙′𝐃𝐃𝐃𝐃 𝐐𝐐𝟐𝟐

′𝐙𝐙𝐙𝐙𝐙𝐙 𝐐𝐐𝟐𝟐
′𝐙𝐙′𝐃𝐃𝐃𝐃𝐐𝐐𝟐𝟐 + 𝑐𝑐𝐈𝐈

� �
𝛍𝛍

𝐐𝐐𝟏𝟏𝐠𝐠 + 𝐚𝐚
𝐬𝐬

� = �
𝐗𝐗′𝐃𝐃𝐃𝐃
𝐙𝐙′𝐃𝐃𝐃𝐃

𝐐𝐐𝟐𝟐
′𝐙𝐙′𝐃𝐃𝐃𝐃

� 
 

 
 
 
 
 

 
 
 
 
Matrix D is a diagonal matrix of EDC divided 
by residual variances, W in the inverted matrix 
of additive relationships among sires and UPG 
(Westell et al, 1988), modified to treat groups as 
random effects (Sullivan and Schaeffer, 1994), 
Gt is the matrix of genetic covariances among 
countries, and X and Z are incidence matrices 
connecting deregressed national EBV in y to the 
countries and AI bulls respectively. 

The incidence matrix for s is 𝐙𝐙𝐙𝐙𝟐𝟐, and the 
use of ridge regression for s, with c>0 is 
optional.  Adding a ridge factor can reduce the 
risk of over-fitting current data and improve 
future predictions, especially for estimated GPS 
effects in smaller populations.  If a ridge factor 

is too large, however, the expressions of GPS 
effects in future daughters might be under-
predicted.  Ridge regression can increase the 
stability of estimated covariable effects in s as 
new data are added to the evaluation each year, 
and it also reduces the chance of extreme 
individual changes from the current MACE 
results.  The GPS-MACE model with a ridge 
factor c>0 is relatively closer to current MACE 
than it would be if treating s as fixed. 

The command instructions and input file 
descriptions to implement GPS-MACE using 
MiX99 software (Pitkänen et al, 2022) are 
provided in the appendix. 
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3 - Genetic predictions from GPS-MACE 

The vector of international estimated 
breeding values is defined as: 

𝐄𝐄𝐄𝐄𝐄𝐄 = 𝛍𝛍� +𝐐𝐐𝟏𝟏𝐠𝐠� + 𝐚𝐚� + 𝐐𝐐𝟐𝟐𝐬𝐬� 

The GPS portion of EBV for an individual 𝑎𝑎 can 
be written as: 

𝐬𝐬�𝒂𝒂 = 𝐐𝐐𝟐𝟐:𝒂𝒂𝐬𝐬� 

and partitioned as the sum of accumulated GPS 
effects on ancestor evaluations (𝐬𝐬�𝐏𝐏𝐏𝐏) plus the 
GPS effects on MS of the individual (𝐬𝐬�𝐌𝐌𝐌𝐌): 

𝐬𝐬�𝒂𝒂 = 𝐬𝐬�𝐏𝐏𝐏𝐏:𝒂𝒂 + 𝐬𝐬�𝐌𝐌𝐌𝐌:𝒂𝒂 = �𝐐𝐐𝟐𝟐,𝐏𝐏𝐏𝐏:𝒂𝒂 + 𝐐𝐐𝟐𝟐,𝐌𝐌𝐌𝐌:𝒂𝒂�𝐬𝐬� 

Each row in 𝐐𝐐𝟐𝟐,𝐏𝐏𝐏𝐏 is equal to the average of 
corresponding parental rows in 𝐐𝐐𝟐𝟐, which 
include the sums of PA and MS contributions to 
𝐐𝐐𝟐𝟐 of the sire and dam respectively: 

𝐐𝐐𝟐𝟐:𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝐐𝐐𝟐𝟐,𝐏𝐏𝐏𝐏:𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝐐𝐐𝟐𝟐,𝐌𝐌𝐌𝐌:𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 
𝐐𝐐𝟐𝟐:𝒅𝒅𝒅𝒅𝒅𝒅 = 𝐐𝐐𝟐𝟐,𝐏𝐏𝐏𝐏:𝒅𝒅𝒅𝒅𝒅𝒅 + 𝐐𝐐𝟐𝟐,𝐌𝐌𝐌𝐌:𝒅𝒅𝒅𝒅𝒅𝒅 

 
𝐐𝐐𝟐𝟐,𝐏𝐏𝐏𝐏:𝒂𝒂 = 0.5 ∗ [𝐐𝐐𝟐𝟐:𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝐐𝐐𝟐𝟐:𝒅𝒅𝒅𝒅𝒅𝒅] 

𝐬𝐬�𝐏𝐏𝐏𝐏:𝒂𝒂 = 0.5 ∗ [𝐬𝐬�𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝐬𝐬�𝒅𝒅𝒅𝒅𝒅𝒅] 

As with 𝐐𝐐𝟏𝟏 (Quaas, 1988) the matrix 𝐐𝐐𝟐𝟐 is 
generated chronologically, building the rows of 
parents before progeny.  For each animal there 
is a row in 𝐐𝐐𝟐𝟐 for each country trait (i.e. MACE 
population) included in the model. 

The definitions for rows of 𝐐𝐐𝟐𝟐,𝐌𝐌𝐌𝐌:𝒂𝒂 are based 
on the proven bull’s (individual 𝑎𝑎) year of birth 
(BYR) and pre-selecting population (x).  The 
only non-zero values are in columns for 
population trait x, and for bulls born since 2009 
who were preselected by a population with GPS 
effects being estimated.  The non-zero values 
for these bulls in the row for population d are 
defined as: 

Q2,MS:𝑎𝑎𝑎𝑎,𝑥𝑥𝑥𝑥 = 𝑊𝑊𝑘𝑘 ∗
𝐺𝐺𝑑𝑑,𝑥𝑥

𝐺𝐺𝑥𝑥,𝑥𝑥
 

where 𝑊𝑊𝑘𝑘 is the number of years within the kth 
intermediate 3-year interval that has a non-zero 
slope (2009-2011 or 2012-2014).  For April 
2022 data in the present study, 𝑊𝑊𝑘𝑘 were defined 
as follows, with values as in Table 1: 
 

𝑊𝑊1
𝑊𝑊2

� = �𝐵𝐵𝐵𝐵𝐵𝐵 − 2008,𝑚𝑚𝑚𝑚𝑚𝑚 = 0,𝑚𝑚𝑚𝑚𝑚𝑚 = 3
𝐵𝐵𝐵𝐵𝐵𝐵 − 2011,𝑚𝑚𝑚𝑚𝑚𝑚 = 0,𝑚𝑚𝑚𝑚𝑚𝑚 = 3 

 
 

Table 1. Number of year contributions from 
each knotted regression line in the estimated 
GPS effects of bulls born in different years. 

 Bull’s birth year - 2000 
 8 9 10 11 12 13 14 15 16 

W1 0 1 2 3 3 3 3 3 3 
W2 0 0 0 0 1 2 3 3 3 

 
 
Strategies to add intervals as new years of GPS 
bulls that are progeny proven were presented 
previously (Sullivan et al, 2022). 

While the columns for all populations other 
than x are zero in 𝐐𝐐𝟐𝟐,𝐌𝐌𝐌𝐌:𝒂𝒂, any column can be 
non-zero in 𝐐𝐐𝟐𝟐,𝐏𝐏𝐏𝐏:𝒂𝒂 because ancestors of bull 𝑎𝑎 
can be pre-selected by different countries, as is 
often the case due to the prevalence of 
international breeding of dairy cattle.  Matrix 
𝐐𝐐𝟐𝟐 captures details of the international GPS 
across historical generations, tracing back 
through each animal’s history of GPS in all 
international ancestors. 
 
Results and Discussion 
 
1 - Solving GPS-MACE equations 

Solving the equations took much longer with 
GPS-MACE than MACE.  Using protein yield 
of Holsteins as an example, the number of PCG 
iterations to reach a typically acceptable 
convergence criterion, Cr=E-7, to decide 
differences are negligible between left and right 
sides of the equations, was 58,855 iterations for 
a fixed-regressions GPS-MACE application, 
compared with only 1,366 iterations for MACE 
(Figure 2; Fixed GPS vs. no GPS).  In the 
current Interbull MACE service, iterations are 
extended further, increasing from 1,366 to 
5,456 iterations to reach a more stringent 
convergence criterion, Cr=E-15.  However, 
even after these added iterations, MACE is still 
solved with less than 10% as many iterations as 
were needed to reach Cr=E-7 for fixed-
regressions GPS-MACE.  A GPS-MACE 
model requiring more than 10 times as long to 
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run as the current MACE service of Interbull 
might be difficult to implement in practice.  

 
  

 
 
Figure 2. Iterations required to reach convergence of 
the GPS-MACE system of equations for protein 
yield, compared with Interbull MACE equations. 
 

 
In GPS-MACE, selection effects are 

estimated for both the oldest (through 𝐐𝐐𝟏𝟏𝐠𝐠�) and 
newest generations (through 𝐐𝐐𝟐𝟐𝐬𝐬�) of pedigreed 
individuals after many generations of breeding, 
and with different patterns of data recording and 
population sizes among the international 
countries included in the model.  International 
breeding has been used to upgrade different 
breeds and national populations at different 
times, to periodically change directions of 
selection, and to expand local gene pools and 
reduce inbreeding with the use of foreign out-
cross sires.  Under the simpler MACE model, 
selection effects were only being estimated at 
one end of the pedigree (the base generation) 
rather than at both ends. 

Additionally, the added partition for GPS 
effects within an animal’s EBV is partially 
confounded with PA.  This confounding can 
cause numerical instabilities and slow 
convergence when iterating on GPS-MACE 
equations.  Ridge regression, or equivalently 
treating the regressions on GPS effects as 
random, is guaranteed to break linear 
dependencies that might otherwise occur in 
practice, while also increasing the rate of 
convergence.  Similar benefits were shown 
previously for models that include UPG to 
account for selected base populations, if the 

UPG effects are treated as random instead of 
fixed (Sullivan and Schaeffer, 1994). 
 
 A sensitivity analysis was used to assess 
potential benefits of ridge regression for GPS 
effects in GPS-MACE, using ridge factors (c) 
equal to 1, 10, 100 or 1000.  Using ridge 
regression significantly improved the rates of 
convergence for GPS-MACE (Figure 2).  In all 
comparisons, applications with relatively larger 
ridge factors consistently required fewer 
iterations to converge.  Relative to the fixed 
regressions model (c=0), which required more 
than ten times as long, ridge regression with 
c=1000 required only twice as long as the 
current Interbull MACE service.  If ridge factors 
larger than 1000 could be used, then solving 
times for GPS-MACE would be reduced even 
further. 
 
2 - Estimates of GPS effects 

All results for GPS effects and EBV are on 
standardized scales, due to the use of 
standardized national EBV as input data.  The 
full set of national EBV used in GPS-MACE for 
a given trait and population, which included 
progeny-proven bulls born since 1980, were re-
scaled to the standard normal (~N(0,1)), and 
when necessary the scale was also reversed with 
a multiplication by -1, so that positive 
normalized EBV were desirable for all traits and 
populations.  Aggregate results were thus easily 
interpreted across traits, population scales of 
evaluation, and breeds, because of these 
standardizations. 

The estimated GPS effects were pooled 
across countries in five breed groups, among 
which important differences were expected in 
GPS intensities across and/or within traits: 
 
A. HOA: Holstein populations with shared 

genotypes of reference animals in the Inter-
Continental consortium: CAN, CHE, GBR, 
ITA, JPN, USA. 

B. HOB: Holstein populations with shared 
genotypes of reference animals in the 
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Eurogenomics consortium:  DEU, DFS, 
ESP, FRA, NLD, POL. 

C. HOC: Holstein populations not in HOA or 
HOB but included in MACE for any of the 
eight traits in the present study: AUS, BEL, 
CZE, EST, HRV, HUN, IRL, ISR, KOR, 
LTU, LVA, NZL, PRT, SVN, SVK, URY, 
ZAF.  

D. BSW: Brown Swiss populations in MACE 
for any of the eight traits in the present 
study: AUS, CAN, CHE, DEA, GBR, FRA, 
ITA, NLD, NZL, SVN, USA. 

E. JER: Jersey populations in MACE for any 
of the eight traits in the present study: AUS, 
CAN, CHE, DEU, DFS, GBR, IRL, ITA, 
NLD, NZL, USA, ZAF. 

 
All populations in HOA and HOB have well-

established GPS programs and large numbers of 
national EBV across all traits for GPS bulls.  
Data were thus sufficient to estimate GPS 
effects for all traits in these populations.  In 
contrast, the HOC, BSW and JER groups 
included many smaller populations, the smallest 
of which had fewer than 20 GPS bulls with a 
national EBV for one or more of the traits.  The 
GPS effects were assumed equal to zero if there 
were fewer than 20 national EBV in total for a 
given trait from GPS bulls selected in a 
population, which was the case for 33%, 40% 
and 38% of the trait-by-population 
combinations in these three breed groups.  The 
GPS effects were thus estimated for only 67%, 
60% and 62% of all population traits in HOC, 
BSW and JER respectively. 

For breed groups with well-established GPS 
programs and large international reference 
populations (HOA and HOB), the use of ridge 
regression had very little impact on the 
estimated effects of GPS.  While the largest 
notable impacts of using higher ridge factors 
were decreases in variability of GPS estimates 
among populations, the SD of estimates within 
HOA and HOB were nearly the same with fixed 
versus ridge regressions (c=0 versus c=1000).  

In contrast, SD of estimates decreased 
substantially with larger ridge factors for HOC, 
BSW and JER (Table 2).  With c=1000, the SD 
of estimates were still relatively smaller for 
HOA and HOB than the other groups, but this 
could reflect true differences in SD if GPS 
intensities have been relatively more 
homogeneous among the countries in HOA and 
HOB. 

 
 

Table 2. Standard deviations (SD) of estimated 
GPS effects for bulls born 2014-2017, across n 
country-traits within Breed Groupz. 

Ridge 
Factor 

Breed Group 
HOA 
n=45 

HOB 
n=47 

HOC 
n=55 

BSW 
n=43 

JER 
n=43 

c=0 0.09 0.11 0.23 0.19 0.22 
c=100 0.09 0.10 0.20 0.21 0.15 
c=1000 0.09 0.10 0.14 0.15 0.13 
zHOA, HOB, HOC = Holstein groups A, B, C; BSW 
= Brown Swiss; JER = Jersey. 

 
 

Observed patterns in the ranges of GPS 
estimates (Table 3) were consistent with the SD 
results in Table 2.  The minima and maxima for 
HOA and HOB were almost unaffected by 
using larger ridge factors, while all minimum 
estimates moved substantially closer to zero 
with larger ridge factors for the other three 
groups, all of which included smaller 
populations than the smallest ones in HOA and 
HOB.  The maximum estimates were 
substantially reduced for HOC and JER, but not 
for BSW.  The maxima for BSW were relatively 
more consistent with HOA and HOB, probably 
because of the Intergenomics service provided 
by Interbull, which facilitated an international 
exchange of all genotypes from participating 
BSW populations and a large international 
reference population for the GPS programs used 
in BSW.  
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Table 3. Minimum and Maximum GPS effects for 
bulls born 2014-2017, across n country-traits 
within Breed Groupz, for traits under strong 
selection (FAT, PRO, OCS, OUS, SCS) 

Ridge 
Factor 

Breed Group 
HOA 
n=30 

HOB 
n=30 

HOC 
n=45 

BSW 
n=30 

JER 
n=30 

 Minimum Estimates 
c=0 .09 -.05 -.74 -.32 -.36 

c=100 .07 -.05 -.66 -.29 -.33 
c=1000 .01 -.07 -.36 -.14 -.11 

 Maximum Estimates 
c=0 .40 .41 .56 .37 .94 

c=100 .39 .37 .43 .38 .49 
c=1000 .37 .36 .27 .39 .41 
zHOA, HOB, HOC = Holstein groups A, B, C; BSW 
= Brown Swiss; JER = Jersey. 

 
The maximum estimates of GPS effects 

within a population were relatively consistent 
across the five groups when using c=1000, 
while the minimum estimates were still largely 
negative for HOC and to a lesser extent BSW 
and JER.  The optimum ridge factor might be 
higher than c=1000, the GPS estimates might 
be unreliable for smallest population(s) with 
GPS effects being estimated, or the lowest 
estimates might simply be negative because we 
did not add an additional set of fixed regressions 
across countries when treating the within-
country regressions as random.  Very low 
minimum estimates could also be explained by 
larger 𝐬𝐬�𝐏𝐏𝐏𝐏 relative to 𝐬𝐬�𝐌𝐌𝐌𝐌, because sires of the 
local GPS bulls in small populations can be 
from larger populations with relatively more 
effective GPS programs (e.g. HOA and HOB). 

Based on the present results, c=1000 could 
be a reasonable starting point for practical 
implementations of GPS-MACE, while future 
studies involving variance estimation and/or 
EBV validations could be used to estimate 
optimal ridge factor(s) more precisely. 

Average estimates of current GPS effects are 
shown in table 4.  The highest and lowest 
averages across groups indicate strongest 
intensities of GPS have been for FAT and PRO, 
and lowest intensities for MSP and CC1.  
Averages for the other traits were variable 
among breed groups.  The patterns of percent 
positive estimates (Table 5) were like the 

patterns of averages, and estimates were mainly 
positive for production and type traits. 
 

Table 4. Average estimates of GPS effects for 
bulls born 2014-2017, across all countries within 
each Breed Groupz, using ridge regression 
c=1000. 

Trait 
Breed Group 

HOA HOB HOC BSW JER 
FAT .27 .20 .11 .21 .24 
PRO .19 .16 .10 .23 .24 
OCS .20 .14 -.02 .14 .20 
OUS .23 .21 .03 .12 .17 
SCS .21 .28 .05 .02 -.02 
INT .02 .18 .11 .04 -.06 
CC1 -.06 .12 .03 -.01 .00 
MSP -.06 -.05 .04 .11 .01 

zHOA, HOB, HOC = Holstein groups A, B, C; BSW 
= Brown Swiss; JER = Jersey. 

 
 

Table 5. Percent positive estimates of GPS effects 
for bulls born 2014-2017, across all countries 
within each Breed Groupz, using ridge regression 
c=1000. 

Trait 
Breed Group 

HOA HOB HOC BSW JER 
FAT 100 100 70 83 100 
PRO 100 100 90 83 100 
OCS 100 83 38 83 100 
OUS 100 83 57 83 100 
SCS 100 100 70 50 33 
INT 60 83 80 75 33 
CC1 50 80 50 50 75 
MSP 40 33 75 100 50 

zHOA, HOB, HOC = Holstein groups A, B, C; BSW 
= Brown Swiss; JER = Jersey. 

 
3 - Impacts of GPS effects in EBV 

The GPS-MACE model was designed to 
have minimal impacts on evaluations of OLD 
bulls born prior to 2009.  Across all traits and 
evaluated populations in all three breeds, 
correlations between GPS-MACE and MACE 
proofs of the OLD bulls were 1.000 (Table 6), 
confirming that GPS-MACE did not re-rank the 
OLD bulls.  The levels of re-ranking were 
highest among youngest “GPS” bulls, born 
2014-2017, although even for this group the 
degree of re-ranking was extremely small.  The 
minimum correlations within a trait and 
population were 0.994 for HOL and 0.990 for 
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BSW+JER.  Re-ranking was also minimal 
across years that included both OLD and GPS 
bulls, with minimum correlations of 0.999 for 
HOL and 0.998 for BSW+JER. 
 

Table 6. Minimum trait correlations between 
GPS-MACE (c=1000) versus MACE evaluations 
(EBV) of progeny-tested bulls, across all (n) traits 
and evaluated populations. 

  Evaluated Breedsz 
Type of 

Bull Borny 
HOL 

(n=176) 
BSW+JER 

(n=143) 
OLD 00-08 1.000 1.000 
GPS 09-17 0.997 0.995 
GPS 14-17 0.994 0.990 

OLD+GPS 00-17 0.999 0.998 
zHOL=Holstein, BSW = Brown Swiss; JER = Jersey.  
yBirth years – 2000. 

 
The correlations were essentially equal to 

1.0, so regressions of GPS-MACE on MACE 
therefore reflect relative SD of the proofs.  
Minimum regressions of GPS-MACE on 
MACE proofs were always closer to 1.0 than 
were the maximum regressions, so only the 
maxima are presented in Table 7.  For at least 
one trait on the evaluation scale of one 
population, the SD of international proofs for 
youngest GPS bulls (born 2014-2017) increased 
by approximately 2% for HOL and 5% for BSW 
and JER, based on these maximum regressions 
of GPS-MACE on MACE proofs.  While the 
bulls did not re-rank to any notable degree, 
predicted genetic differences were a bit larger 
among the youngest GPS bulls for some trait(s) 
with GPS-MACE.  This is indicative of larger 
estimated superiorities for the highest ranking 
newly proven bulls in MACE, and where many 
of the top young bulls would be from 
populations with most effective GPS programs.  
These changes could also increase estimates of 
genetic trends, as would be expected if GPS 
biases are reduced by adding estimates of GPS 
effects in the EBV of newest and best young 
bulls with GPS-MACE. 
 

Table 7. Maximum regression of GPS-MACE 
(c=1000) on MACE evaluations (EBV) for 
progeny-tested bulls, across all (n) traits and 
evaluated populations. 

  Evaluated Breedsz 
Type of 

Bull Borny 
HOL 

(n=176) 
BSW+JER 

(n=143) 
OLD 00-08 1.004 1.013 
GPS 09-17 1.011 1.037 
GPS 14-17 1.021 1.050 

OLD+GPS 00-17 1.010 1.032 
zHOL=Holstein, BSW = Brown Swiss; JER = Jersey.  
yBirth years – 2000. 

 
Conclusions 

Genomic preselection of AI sires alters the 
distributions of both true and estimated MS 
deviations.  The MACE model used by Interbull 
for international genetic evaluations of dairy 
sires was updated to account for genomic pre-
selection effects on the MS-means and MS-
variances of GPS bulls.  An implementation of 
GPS-MACE that so far has accounted for 
selection effects on the MS-means only was 
applied to three breeds and eight traits.  Future 
developments can additionally include 
adjustments for selection effects on the MS-
variances, as described in the present paper.  
Accounting for selection effects on the MS-
means created larger estimated differences 
among the international EBV of bulls born in 
most recent years, where estimated GPS effects 
have accumulated across generations and are 
expected to be the most variable among 
countries.   Estimated effects of GPS were 
largest for the main traits of selection, as 
expected.  The application of GPS-MACE is 
feasible at Interbull centre if ridge regression is 
used to accelerate rates of convergence, and 
with the added benefit of improving stability of 
the international genetic predictions. 
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Appendix – An example GPS-MACE application using MiX99 Software 
 
The MiX99 CLIM instructions below are for a 3-country GPS-MACE model using c=100: 
 
INTEGER  An  Cou 
REAL  Y  D     #   Y=drp D=edc*R-inv 
MISSING -9999.0 
DATAFILE  st-am.data 
PEDIGREE G am+p 1 
PARFILE   st-am.para  # V(reg)=G,  R=1 
TABLEFILE identity_matrix 
TABLEINDEX Cou 
# 2 regressions per country = 6 total 
REGMATRIX RANDOM yr_cou FIRST=2 LAST=7 
REGFILE  ZQ2_incidence 
REGPARFILE  s_ridge_100 
MODEL 
Y = Cou G(t1 t2 t3| An) ! WEIGHT=D 
 
Descriptions for the specified input files above are: 
 
st-am.data: 

{an} {Cou} {drp} {edc*R-inv}   (NOTE: 1 row per drp across all 3 Cou-populations) 
st-am.para: 
 {i} {j} {Gij}   (NOTE: one row for each of the three evaluated populations)  
 1 1 1.0   (NOTE: only 1 row for the scalar value of R because we fit here a single-trait model) 
 (NOTE: G covariances are among random regressions of genetic expression in the 3 populations) 
 (NOTE: Population expressions of EBV weighted by population edc*R-inv have R=1 (scalar)) 
identity_matrix:  (NOTE: for 3 populations in this example, this file links Cou input to covariate=1) 
 1 0 0 
 0 1 0 
 0 0 1 
ZQ2_incidence: 
 (NOTE: 2 estimated regressions per 3 populations = 6 columns) 
 (NOTE: 1 paired row for each observation row in st-am.data) 
 {an} # # # # # # 
 {an} # # # # # # 
 … 
s_ridge_100 
 0.01   (NOTE: this is the scalar value 1/c, where c is the ridge factor for GPS regressions) 
 
A single-trait random-regression (ST-RR) model with regressions using covariate value=1 on the Cou 

specified in st-am.data is equivalent to Schaeffer’s multi-trait (MT) MACE model, if matrix G 
among Cou regressions in ST_RR is the same as G among traits in MT. 

An important advantage with ST-RRAM is that regressions for GPS effects can be fit by country of 
selection only (order of s = n), while in MT-MACE the order of s = n2.  

 


