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Abstract 

Single-step genomic best linear unbiased prediction (ssGBLUP) has become a popular tool for genetic 

evaluations in dairy cattle populations. The use of the metafounder (MF) concept allows better 

consideration of relationships within and between founder populations and ensures correct matching of 

pedigree and genomic relationships. This study investigates the use of the MF concept in a simulated 

dairy cattle population where the base population consists of two related and inbred founder populations. 

The objectives are to compare genetic evaluations with and without MF and to investigate different 

methods of estimating MF parameters (𝛤).Results show that genetic evaluations using MF are less 

biased and less inflated compared to evaluations using unknown parent groups or not accounting for the 

different founder populations. However, testing different methods to estimate Γ revealed a tendency to 

overestimate the relationships within and between the founder populations, leading to an overestimation 

of pedigree relationships compared to the genomic relationships. In summary, the MF concept in 

ssGBLUP is superior in this simulated scenario with two founder populations, but care must be taken 

when estimating 𝛤 to ensure consistency between pedigree and genomic relationships. In general, these 

findings highlight the importance of considering relationships within and between founder populations 

in single-step genetic evaluations. 
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Introduction 

Single-step genomic best linear unbiased 

prediction (ssGBLUP) uses an integrated 

relationship matrix (H), which combines the 

pedigree based relationship matrix (A) and the 

genomic relationship matrix (G). For this 

purpose, both matrices are supposed to refer to 

the same base population (Christensen, 2012). 

Without dedicated measures, this is usually not 

the case in cattle populations. In practice, there 

are several methods to match G to A 

(Christensen, 2012; VanRaden, 2008; Vitezica 

et al., 2011). Legarra et al. (2015) published the 

concept of metafounders (MF), which follows 

the idea of adapting A to G. The basic ideas are 

to use allele frequencies equal to 0.5 for all 

SNPs in the calculation of G and to assign 

unknown parents in the pedigree to pseudo-

individuals (metafounder, MF). 

Thompson (1979) and Quaas (1988) 

introduced the concept of unknown parent 

groups (UPG), which account for genetic 

differences within subgroups in the base 

populations. Since then, UPG, also known as 

genetic groups or phantom parents, are widely 

used in animal breeding, because they allow 

incorporating animals with missing parents and 

diverse genetic background in the genetic 

evaluation. UPG may therefore have means 

different from zero, but are assumed to be non-

inbred and unrelated, just as the base 

population. MF may be seen as an extension to 

this concept by introducing relationships within 

and across UPG (Legarra et al., 2015). 

For the German-Austrian-Czech Fleckvieh 

population, the first genomic evaluation using 

the ssGBLUP approach was published in April 

2021 (Himmelbauer et al., 2021). To account 

for unknown parents, 15 UPG are presently 
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used for most of the fitness traits. MF is the 

current gold standard for ssGBLUP 

implementations as shown e.g. by Meyer et al. 

(2018) and will therefore likely be the next 

evolution step in the national genomic 

evaluation system. For reasons discussed 

above, the aim of this study is to test different 

methods for gamma estimation and to compare 

the difference between different genetic 

evaluations with and without MF for a very 

simple population structure with two base 

populations and without any unknown 

pedigrees. 

Materials and Methods 

Simulating metafounders 

The basic approach for simulating the 

population is the same as that used and 

described in detail in Himmelbauer et al. 

(2023). The main difference, however, is that 

for this study not only one but two related and 

inbred base populations (MF) are simulated. To 

achieve this, the founder population is split after 

2 500 generations of evolution. Both 

subpopulations are then selected for additional 

15 generations based on the true breeding value 

(TBV) for trait 1, with subpopulation A selected 

for high and subpopulation B selected for low 

values of trait 1. The two subpopulations are 

then merged again, and a second trait (trait 2) is 

created with a heritability of 0.3 and a genetic 

correlation to trait 1 between 0.3 and 0.5. This 

is followed by 30 years of selection by pedigree 

BLUP (PBLUP) and 8 years of selection by 

ssGBLUP (ignoring the two separated base 

populations) based on trait 2 as described in 

Himmelbauer et al. (2023) with small 

adaptions: To ensure that at the end of the 

selection process phenotypes and genotypes of 

both purebred populations (A and B) and the 

crossbred population (AB) are available, 

animals are selected separately by 

subpopulation. Mating is controlled such that 

females from subpopulations A, B, and AB are 

mated with males from purebred populations A 

and B in a way that each possible combination 

of male and female subpopulations occurs with 

the same frequency in each simulated year. The 

schematic overview of the simulation approach 

is shown in Figure 1. 

 

Dataset 

The data set from the last year of the 

simulation serves as input for all further test 

runs. Basically, all females with offspring have 

a phenotype in the simulation. In routine 

datasets, phenotypes are usually not available 

back to the pedigree base, therefore 90% of the 

phenotypes from animals of the first 15 

generations were randomly deleted. The final 

dataset consists of about 154 500 phenotypes, 

204 900 genotypes and in total of about 

1 105 500 animals in the pedigree. 

Estimating Gamma Matrix 

The true Gamma matrix (𝜞) was calculated 

using true allele frequencies in the base 

populations (𝒑𝑨 and 𝒑𝑩) in the following 

formula derived in Garcia-Baccino et al. (2017) 

𝜞 = 𝟖 ∙ 𝒄𝒐𝒗(𝒑𝑨, 𝒑𝑩).  

Additionally, 𝜞 was estimated using four 

different methods. Two methods are based on 

estimated base allele frequencies and equation 

(1). Base allele frequencies were estimated 

using the software Bpop (Strandén & 

Figure 1. Schematic overview of simulation. 
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Mäntysaari, 2020b), which makes use of a 

generalized least square (GLS) method. For the 

first method (BFQ_pure), only genotypes of 

purebred animals of the two subpopulations 

were used to estimate 𝜞. For the second method 

(BFQ_all), all genotypes of the final dataset, 

including all crossbred animals, were used. The 

third method (MM_pure) tested for estimating 

𝜞 corresponds to the method described in 

Legarra et al. (2015) as "Method of moments 

based on summary statistics for multiple pure 

populations” and again uses only genotypes 

from the purebred populations. The last method 

(MM_cross) is equivalent to the "Method of 

moments based on summary statistics for 

populations with crosses” and uses crossbred 

genotypes as described in Legarra et al. (2015). 

 

Genetic evaluations 

To evaluate the effect of inclusion of MF, 

several different genetic evaluations were tested 

with the same dataset. There are no unknown 

parents in the pedigree. Only the parents of the 

pedigree base are unknown and replaced with 

the true base populations. An exception is the 

evaluation without UPG, where the parents of 

the pedigree base are all set to zero. 

1) PBLUP with two UPG (PED): 

A simple pedigree BLUP, where the UPG 

were treated as random, was applied on the 

dataset. The evaluation was done using the 

commercial software package MiX99 (MiX99 

Development Team, 2019). 

2) ssGBLUP without UPG (no_UPG): 

Breeding values were estimated based on a 

ssGBLUP with no UPG in the pedigree. All 

animals in the pedigree were traced back to one 

single pedigree base population. The 

preparation of the genomic relationship matrix 

(G) for ssGBLUP was done with the program 

HGINV (Strandén & Mäntysaari, 2020a) based 

on VanRaden’s method 1 (VanRaden, 2008) 

with true base allele frequencies from the 

founder population and the approach for proven 

and young (Misztal et al., 2015). Details on the 

computation of the G-Matrix are the same as in 

Himmelbauer et al. (2023). 

3) ssGBLUP with two UPG (UPG_qp): 

This method is the same as no_UPG, 

described above, with the difference that here 

the true base populations were used as parents 

in the pedigree base. The two base populations 

were modeled as UPG and Quaas and Pollak 

(QP) transformed UPG were included in inverse 

G. 

4) ssGBLUP with two MF and true 𝜞 

(MF_true): 

The fourth evaluation is a ssGBLUP where 

the two base populations were modeled as MF. 

In this case the true 𝜞 was used to define the 

relationships between the MF. 

5) ssGBLUP with two MF and estimated 𝜞 

(MF_est): 

This evaluation is equivalent to MF_true, 

but here an estimated 𝜞 was used. The used 𝜞 

was estimated using strategy BFQ_all, 

described above. 

6) ssGBLUP with two MF, true 𝜞 and scaled 

variances (MF_sc): 

This evaluation is the same as MF_true, but in 

this case, scaled variance components as 

proposed by Legarra et al. (2015) were used. 

The additive genetic variance was scaled using 

the following equation (Legarra et al., 2015): 

𝝈𝒓𝒆𝒍𝒂𝒕𝒆𝒅
𝟐 ≈

𝝈𝒖𝒏𝒓𝒆𝒍𝒂𝒕𝒆𝒅
𝟐

𝟏 +  
𝒅𝒊𝒂𝒈(𝜞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝟐 − 𝜞̅

 
 

Analyzing results 

All comparisons are based on 10 repetitions 

of the simulation described above. To evaluate 

the performance of the different methods to 

estimate 𝛤, the diagonal and off-diagonal values 

of the estimated 𝛤 are compared to the 

corresponding values of the true 𝛤. 

The comparison of the different evaluations 

is done using three validation measures based 

on the youngest animals born in the last year of 

the simulation. Firstly, the correlation between 

estimated breeding values (EBVs) and true 

breeding values (TBVs) is calculated. 

Secondly, the bias is calculated using the 

following formula 

𝑏 = 𝐸𝐵𝑉̅̅ ̅̅ ̅̅ − 𝑇𝐵𝑉̅̅ ̅̅ ̅̅ . 
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Third, the regression coefficient of the 

following regression is used as a measurement 

of the dispersion: 

𝑇𝐵𝑉 = 𝑏0 + 𝑏1 ∙ 𝐸𝐵𝑉 + 𝑒. 

Additionally, the estimates for the group 

estimators of the UPG and the MF are compared 

to evaluate the differences between the five 

evaluation methods. Because the level of the 

base populations varies across replicates, the 

estimated difference between the two base 

populations is compared with the true 

difference rather than the absolute values. 

Results & Discussion 

Gamma-matrix 

The diagonal of 𝜞 is a measure for the 

inbreeding in the metafounder populations. The 

true mean diagonal value in this study was 

0.631, with values ranging between 0.622 and 

0.645. There are also no systematic differences 

between the two MF within a replicate because 

both MF populations are the same size and have 

the same history of evolution. 

Basically, all tested methods overestimate 

the inbreeding of MF, but the two methods 

based only on genotypes of purebred animals 

show a significantly higher overestimation 

(Figure 2, top). 

The off-diagonal of 𝛤 represents the 

relationship between the two MF. In this study, 

the true value is between 0.566 and 0.585 with 

an arithmetic mean over 10 repetitions of 0.575. 

Both methods based on base allele frequencies 

give a very good estimate of the true value, 

whereas the other two methods show a clear 

overestimation (Figure 2, bottom). 

In combination, this means that the method 

BFQ_all is the best at estimating the true 𝛤 in 

this study where two MF are simulated. This is 

in line with the results for one MF shown in 

Garcia-Baccino et al. (2017). An interesting 

conclusion from the comparison between 

BFQ_pure and BFQ_all is that genotypes from 

crossbred animals are very important in the 

estimation of base allele frequencies in this 

situation. 

Results for UPG/MF 

The mean true difference in the genetic level 

between the two base populations over all 

repetitions is 0.834 genetic standard deviations, 

but with a quite high variation between 0.604 

and 1.051 genetic standard deviations. All 

metafounder evaluations slightly underestimate 

the difference between the base populations by 

about 0.025 genetic standard deviations, but 

also with a relatively high error variance 

Figure 2. Comparison between true and estimated 𝛤 for diagonal value and off-diagonal value separately. The 

error bars in the plot show the range from minimum to maximum and the “X” show the means over 10 repetitions. 

The dashed black lines indicate the true values. 
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between -0.16 and +0.18 (Figure 3). On 

average, the estimates from PED and UPG_qp 

are less biased, and the error variance for 

UPG_qp is also significantly lower than for the 

other estimates. This result is somehow 

surprising that a model with UPG can estimate 

the level difference of the base populations 

better than the MF models, one even with the 

true Γ matrix. 

Correlation to true breeding value 

The correlation of estimated breeding values 

(EBV) to true breeding values (TBV) for the 

youngest animals is more or less the same for 

all different evaluations (Figure 4, top). Only 

for breeding values from PED the correlation is 

substantially lower, as to be expected. 

Interestingly, there are hardly any differences in 

the correlation between no_UPG, UPG_qp and 

MF_true. There are already other studies on the 

use of MF in simulated and routine datasets and 

many of them report only small differences 

between evaluations with and without MF in 

terms of correlations or R2 (Garcia-Baccino et 

al., 2017; Kudinov et al., 2022; Meyer, 2021). 

But unlike our findings, most studies report at 

least a slight improvement in correlation when 

using MF. This discrepancy may arise because 

our dataset uses MF exclusively at the pedigree 

base, without UPG or MF further along the 

pedigree. When MF are used in younger 

animals, the impact on correlation compared to 

UPG or not accounting for unknown parents in 

the final generation maybe becomes more 

pronounced than observed in our current study. 

Bias 

Regarding bias, the breeding values from 

PED show a significant downward bias of 0.627 

genetic standard deviations, whereas the EBV 

from no_UPG and UPG_qp are on average 

slightly biased upwards by 0.08 and 0.04 

genetic standard deviations, respectively 

(Figure 4, middle). The strong bias of EBV 

from PBLUP can be explained by the bias due 

to genomic preselection and was also observed 

in previous studies (Mäntysaari et al., 2018; 

Patry & Ducrocq, 2011). The EBV from 

MF_true and MF_est are mostly unbiased. Less 

biased results for evaluations with MF were also 

found in other publications (e.g. Garcia-

Baccino et al., 2017). It is interesting to note 

that the breeding values from the MF model 

with scaled variance components are also 

slightly biased upward by about 0.04 genetic 

standard deviations.  

Figure 3. Estimated minus true difference between the genetic levels of the two base populations for different 

genetic evaluations. Results are given in genetic standard deviations. The error bars in the plot show the range 

from minimum to maximum and the capital colored “X” show the arithmetic means over 10 repetitions. The small 

“x” indicate the results for each repetition. 
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Dispersion 

Another effect of genomic preselection is the 

clear overdispersion of EBV from PBLUP, 

resulting in a regression coefficient of 0.82. 

Similar results have also been reported in 

several publications (Mäntysaari et al., 2018; 

Patry & Ducrocq, 2009, 2011). EBV from 

no_UPG and UPG_qp and also MF_sc show an 

overdispersion with a regression coefficient of 

around 0.95. There is no difference in the 

dispersion between EBV from MF_true and 

MF_est. Both evaluations lead to EBV with a 

regression coefficient of around 1.01, meaning 

that there is neither over-, nor a notable 

underdispersion. Other studies have also shown 

that the use of MF has a positive effect on 

dispersion and leads to less inflated breeding 

values (Garcia-Baccino et al., 2017; Kudinov et 

al., 2022; Macedo et al., 2021; Meyer, 2021). 

Further simulations and analyses (results not 

shown) have shown that the differences 

between the estimates depend strongly on the 

difference in genetic levels between the two 

base populations. In simulations where the level 

differences between the two base populations 

are smaller, the positive effects of the 

evaluations with MF on dispersion are not so 

clear. In that case UPG_qp or even no_UPG 

give comparable or even better results with 

respect to dispersion than models with MF. One 

explanation could be that in situations with 

minimal or no differences in the genetic level of 

the base groups, MF simulates a difference that 

is not present at the level of causative loci. 

Effects of estimated Gamma-Matrix 

As there are hardly any differences in the 

results for MF, correlation, bias and dispersion 

between MF_true and MF_est, it can be 

concluded that the small differences between 

true and estimated Γ have no notable effects on 

the validation statistics of the evaluation in this 

simulated dataset. However, in the present 

study there are only two MF, and these only 

used at the pedigree base without any younger 

unknown parents. In more complex data sets 

and especially in routine data sets with multiple 

and also younger MF, the differences between 

evaluations with estimated and true 𝛤 are likely 

to be larger. 

Effects of scaling variance components 

Applying the formula published in Legarra 

et al. (2015) on the true 𝛤 and scaling the true 

variance components, results in a higher h2. On 

average 

𝝈𝒓𝒆𝒍𝒂𝒕𝒆𝒅
𝟐 ≈

𝟎. 𝟑

𝟎. 𝟕𝟏𝟑
= 𝟎. 𝟒𝟐𝟏 

 

resulting in ℎ2 =
0.421

0.421+0.7
= 0.376 instead of 

0.3. Using the scaled variance components in 

Figure 4. Results for correlation (top), bias (middle) 

and dispersion (bottom) for the youngest animals for 

different genetic evaluations. Bias (estimated minus 

true) is given in genetic standard deviations. The 

error bars in the plots show the range from minimum 

to maximum and the capital colored “X” show the 

arithmetic means over 10 repetitions. 
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the ssGBLUP there are no remarkable 

differences between MF_true and MF_sc on the 

estimation of MF and the correlation in the 

validation group (Figure 3 and Figure 4, top). 

But compared to MF_true, scaled variance 

components lead to more bias and 

overdispersion (Figure 4, middle and bottom). 

These results are unexpected because it is 

derived in Legarra et al. (2015) that MF 

relatedness requires variance components to be 

adjusted. But there are already other authors 

reporting no positive or even negative effects of 

scaling variance components (Kudinov et al., 

2022). Overall, the validation results (especially 

bias and dispersion) of the estimates with scaled 

variance components tend to show similar 

results to those found in other studies where the 

effect of an incorrect h2 (in this case too high h2) 

was investigated (Himmelbauer et al., 2023). 

This could be interpreted as suggesting that 

scaling the variance components in this case 

may lead to a too high h2. 

Conclusion 

In summary, this study could show that 

already in a very simple situation with two base 

populations and otherwise complete pedigree, 

ssGBLUP with MF have significant positive 

effects on bias and dispersion in the youngest 

animal group compared to UPG. Regarding the 

estimation of the 𝛤, the method based on base 

allele frequencies proved to be the best method, 

with genotypes of crossbred animals playing an 

important role in the estimation of base allele 

frequencies. It is also interesting to note that 

scaling the variance components in this study 

did not improve the validation results, but 

worsened them. 

But of course, it should be noted that this 

study uses very strong simplifications and 

rather optimal conditions compared to real 

applications. Therefore, further investigations 

with more MF and unknown pedigrees are 

necessary to be able to make statements that are 

more applicable to routine data. 
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