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Abstract 

Genomic selection is driven by genotyping arrays designed for uniform coverage of the genome 

because most quantitative trait loci (QTLs) underlying the heritability of the trait are unknown. 

Laboratories have improved the arrays since 2014 with custom content by adding selected QTLs 

discovered from whole-genome sequencing (WGS) and high-effect markers from higher-density 

arrays. Breed differences, missing data rates, and error rates were investigated for  eight QTL gene 

tests currently imputed for all genotyped animals of 5 breeds plus crossbreds. Gene content for each 

gene test was predicted for non-genotyped relatives using mixed model methods like those used in 

single-step genomic evaluations, allowing potential direct selection across all animals. For the 8 QTL 

studied, Mendel error rates were low except for polled in Jerseys and DGAT1 in most breeds. Allele 

effects for DGAT1 were smaller than two nearby flanking single nucleotide polymorphism (SNPs) 

because DGAT1 was genotype quality was poor on several arrays. For yield traits, 79K predictions 

including selected markers and QTLs had 1-2% higher reliability than 45K or 35K predictions 

excluding those SNPs. 
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Introduction 

Genotyping laboratories began adding QTL 

gene tests in 2014 following the US Supreme 

Court decision that natural genetic variants 

should not be patented. Accuracy of imputing 

QTL genotypes for other animals can be 

affected by which arrays include the QTLs. 

Each year, new QTLs may be discovered and 

included. The SNP list used in US evaluations 

was updated frequently to include selected 

markers and QTLs from more breeds and 

higher density chips or from sequence (Al-

Khudhair et al., 2021; Olson et al., 2012; 

VanRaden et al., 2009, 2017; Wiggans et al., 

2016), with gains in reliability across traits 

expected to total about 3% (Table 1). 

Some QTLs have effects larger than 

markers on traits we select or should select for. 

Goals of the project were to examine the most 

important QTLs currently used, summarize 

quality and breed differences of raw and 

imputed genotypes, estimate gene content for 

non-genotyped animals, and estimate gains in 

reliability of prediction from including or 

excluding the selected markers and gene tests. 

Materials and Methods 

Genotypes were examined from December 

2022 official evaluations of the Council on 

Dairy Cattle Breeding (CDCB) for 5,669,157 

Holstein, 663,366 Jersey, 65,172 Brown Swiss, 

15,110 Ayrshire, and 7,620 Guernsey to 

summarize allele frequencies by breed (Table 

2), Mendelian conflicts (Table 3) for eight 

important QTLs, and missing rates before and 

after imputation with DGAT1 as an example 

(Table 4). Gene content was estimated for all 

non-genotyped relatives by predicting their 

genotypes from relatives using Gengler (2007) 

method. To potentially include such QTLs in a 

selection index, non-genotyped candidates for 

selection also need estimates of their unknown 

QTLs. 

 For the QTLs studied (Table 5), some have 

economic merit not yet included in national 

selection indexes such as 1) polled mutations 

near 1:2578598 (chromosome: position on 

ARS-UCD1 map) that suppress horn growth, 

improve animal welfare, and reduce farm 

labor, 2) β-casein allele (a2) at 6:84451299 in a 

milk protein gene that may improve 
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digestibility, and 3) two -casein alleles near 

6:84451299 that affect cheese yield. The three 

casein QTLs are in a 200kb gene duplication 

region. Other QTLs mainly affect traits already 

in selection such as 4) diacylglycerol O-

acyltransferase 1 (DGAT1) at 14:611019 

affecting fatty acid metabolism, percentages, 

and yields of fat and protein, 5) Bovine growth 

hormone receptor (BGHR) at 20:31888449 

affecting protein percentage, 6) β-lactoglobulin 

(BLG) at 11:103259232 with large effects on 

yield especially in Brown Swiss, and 7) ATP 

binding cassette subfamily G member 2  

(ABCG2) at 6:36599640 with the largest effect 

for milk, fat %, protein %, and net merit in 

Holsteins, but the favorable allele is now 

nearly fixed at 2.5%, while fixed in other 

breeds (Table 2). Many other QTLs have 

recessive lethal effects and carrier status is 

reported, but those were not part of this study. 

Genomic predictions using three SNP 

densities from 2019 yield trait data for 6,899 

young Holstein bulls now proven allowed 

estimating the value of including selected 

markers and QTLs. The current 79K official 

list was compared to the 35K subset of only 

markers from the original 50K array and two 

45K chips constructed by augmenting the 35K 

chip with independent sets of ¼ of the high 

density (HD) SNPs, respectively.  

Results & Discussion 

A true QTL is expected to have a better 

genetic signal (effect size or genetic SD) 

compared to nearby markers on the chip and 

that was true for most QTLs. For Holsteins, the 

ABCG2 gene test had the best signal and the 

top ranked locus for milk, fat %, protein % and 

net merit. The BGHR gene test had the best 

signal and the second ranked locus for protein 

%. But the DGAT1 gene test had a smaller 

effect than two nearby markers, and so 

attention was focused on DGAT1. 

A locus from the 50K chip (ARS-BFGL-

NGS-4939) on chromosome 14 at 609,870 bp 

had the largest genetic standard deviation (SD) 

genome-wide for the five  Holstein yield traits: 

milk, fat, protein, fat % and protein %. That 

locus is 1,149 bp away from DGAT1, and 

another locus from the high-density chip 

(BovineHD1400000216) also had larger 

effects than DGAT1. Poor imputation quality 

was ruled out by comparing SNP regressions 

using only cows with direct calls for DGAT1 

and the 50K SNP. Genotypes from nine of the 

52 chips and 1,377,604 Holsteins had both 

loci, 46,051 (6%) had discordant calls (gene 

test vs. marker), of which 6,830 had 

phenotypes. Six GeneSeek chips accounted for 

most of the data and had varying discordant 

rates (Table 6). The GeneSeek Genomic 

Profiler (GGP) 9K had the most genotyped 

animals (452,687), highest discordant rate 

(8.27%), and 92% (6281) of the phenotyped 

animals. GGP 9K regression effect sizes were 

greater and p-values smaller for the 50K SNP 

(Table 7).  Genotype quality of GGP 9K was 

then assessed using SNP heritability (Gengler 

2007) for 25,000 animals with discordant calls 

on that chip. The 50K SNP had heritability 

0.98 and DGAT1 only 0.16, indicating poor 

genotype quality as the likely source. 

Discordant calls for DGAT1 on other chips 

also had low heritability although sample size 

was much smaller. 

Because some valuable gene tests are sold 

by laboratories rather than delivered with array 

genotypes, freely imputed QTLs could benefit 

breeders and progress. Decreasing costs of 

whole genome sequence data will increase 

power of QTL discovery, and more QTL 

genotypes should increase imputation 

accuracy, prediction accuracy, and economic 

gain. Regressions averaged 1.07 and were 

nearly equal across the 3 densities. Reliabilities 

of yield traits for 79K averaged 1.2% higher 

than 45K and 2.0% higher than 35K, worth 

potentially > $10 million every year nationally. 

Eventually, more QTLs should be included to 

further improve predictions. 
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Conclusions 

 

Gene tests were already imputed for all 

genotyped animals of all five breeds. 

Mendelian error rates were low for QTLs 

except for Polled in Jerseys and DGAT1 in 

most breeds. Imputed DGAT1 tests were 

statistically less significant for all yield traits 

compared to two nearby chip SNPs (one HD 

and one 50K), direct DGAT1 gene tests also 

had smaller effects than the best markers, and 

SNP heritability indicated that DGAT1 

genotyping quality was the cause of later 

imputation errors, though the GGP 7K and 

linkage disequilibrium (LD) V4 had low 

discordance rates. Further investigation of 

problematic chips is warranted. Gene content 

was imputed for all non-genotyped animals by 

extracting QTLs from the imputed genotypes 

and using those as data to predict related 

animals. Accumulated gains in reliability for 

yield from adding selected markers and QTLs 

were 1-2%, a little less than previous studies 

indicated. Most gains were from larger 

reference populations. 
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Table 1. History of US SNP list revisions and reported gains in reliability of Holstein predictions 

Year Reference Breeds Added information Markers (1000s) HOL Reliability 

    

 

  Added Total Gain (%) Total 

<2008   All Parent average 

 

0 

 

27 

2009 VanRaden HO Chip genotypes (50K) 38 38 23 50 

2012 Olson 3 More breeds (JE, BS) 5 43 0 50 

2013 Wiggans HO Add HD markers (GHD) 18 61 0.5 67 

2016 Wiggans HO Add HD markers (GH2) 16 77 1.5 68 

2019 VanRaden HO Add sequence SNPs 2 79 1.2 69 

2020 Al-Khudhair 5 Add HD, other breeds +5, -5 79 0 69 

 

Table 2. Final allele frequencies for the eight QTLs including gene content for all animals of each breed 

Breed Polled ABCG2 β-casein -casein1 -casein2 β-Lact DGAT1 BGHR 

RDC 0.6 99.9 52.0 84.8 65.3 33.2 8.6 22.1 

BSW 3.5 100.0 22.2 30.1 100.0 33.0 6.8 11.4 

GUE 1.1 99.7 7.2 65.1 99.7 16.0 60.6 17.9 

JER 2.2 99.9 27.6 9.2 99.4 54.2 52.1 26.1 

HOL 1.0 97.4 39.1 72.5 89.8 51.6 30.1 19.7 

 

 

Table 3. Mendelian error rates by breed for imputed genotypes of eight QTLs 

Breed Polled ABCG2 β-casein κ-casein1 κ-casein2 β-Lact DGAT1 BGHR 

RDC 0.01 0 0.17 0.00 0.01 0.05 0.80 0.11 

BSW 0.18 0 0.10 0.12 0.00 0.12 0.51 0.03 

GUE 0.00 0 0.00 0.04 0.00 0.14 0.00 0.07 

JER 0.50 0 0.17 0.13 0.00 0.03 0.09 0.08 

HOL 0.05 0 0.08 0.01 <0.01 0.02 0.67 0.10 

 

 

Table 4. DGAT1 imputed allele and genotype frequencies and genotypes missing in input 

  Frequency (%) 

Breed Tests (N) Allele Imputed genotype codes Genotypes  

    A AA AB AB A? B? Missing Missing 

RDC 15,110 8.6 88.11 8.84 0.07 2.85 0.06 0.07 71.6 

BSW 65,172 6.8 78.14 9.27 0.45 10.38 0.86 0.90 91.0 

GUE 7,620 60.6 14.00 43.24 33.23 3.49 5.66 0.38 89.0 

JER 663,366 52.1 21.34 49.43 27.63 0.74 0.85 0.01 74.2 

HOL 5,669,157 30.1 46.10 42.70 9.60 1.12 0.48 0.00 85.7 
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Table 5. Locations and effects of eight QTLs examined 

Gene test Chr:Location Gene function Effects in cows or in humans 

Polled 1:2578598 Grow horns Animal welfare, farm labor 

ABCG2 6:36599640 Membrane transport Yield and NM$ (biggest effect) 

β-casein (a2) 6:84451299 Milk protein More digestible? (JE protein%) 

K-casein (1) 6:85656772 Milk protein Increased cheese yield 

K-casein (2) 6:85656792 Milk protein Increased cheese yield 

β-Lactoglobulin 11:103259232 Milk fat Human allergies (BS yield & %) 

DGAT1 14:611019 Fat and protein % Fatty acid metabolism, obesity 

BGHR 20:31888449 Growth hormone Protein% (2nd biggest effect) 

Table 6. Descriptive statistics for six GeneSeek chips tested for DGAT1 calling 

Chip info Animal info 

Name Markers Genotyped Discordant (N) Discordant (%) 

GGP 7K 7083 34480 239 0.69 

GGP 9K 8984 452687 37417 8.27 

GGP LD V4 30113 112135 327 0.29 

GGP 65K 65320 95327 5578 5.85 

GGP 100K 94121 30606 1676 5.48 

GGP 150K 139914 36406 813 2.23 

Table 7. Regression results for GGP 9K chip for DGAT1 vs. 

nearby 50K SNP using 6,281 genotyped animals 

Marker P-value Abs (marker effect) 

50K DGAT1 50K DGAT1 

Milk 8.9E-45 2.6E-02 70.932 11.887 

Fat 1.4E-19 3.1E-02 2.062 0.546 

Protein 4.9E-13 9.8E-01 0.967 0.004 

Fat % 2.2E-94 3.8E-04 0.016 0.003 

Protein % 4.1E-42 1.2E-04 0.003 0.001 
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