

INTERBULL BULLETIN NO. 59. 26-27 August 2023, Lyon, France

Software project ’miraculix’:

Efficient computations with large genomic datasets

M. Schlather1*, A. Freudenberg1, G. Moerkotte2, T. Pook3 and J. Vandenplas3
1
Institute for Mathematics, University of Mannheim, B6, 26, D-68159 Mannheim, Germany

2
Institute for Computer Sciences, University of Mannheim, B6, 26, D-68159 Mannheim, Germany

3
Animal Breeding and Genomics, Wageningen UR, P.O. Box 338, 6700 AH, The Netherlands

martin.schlather@uni-mannheim.de

Abstract

We present mathematical approaches for CPU accelerations to calculate matrix multiplications between

a Single Nucleotide Polymorphism (SNP) matrix and another SNP matrix or a real-valued matrix. These

accelerations are important in crucial time-relevant calculations of single-step evaluations and other

methods in genetics. The presented algorithms are much faster than previous algorithms. The C-code is

released as part of the software project ’miraculix’, which has been integrated into existing software

such as MoBPS and MiXBLUP. We also discuss precision problems and missing SNP genotypes.

Key words: CPU, fast calculation, matrix multiplication, SIMD, SSE

Introduction

Many free and commercial software packages

offer a broad range of methods in quantitative

genetics, such as PLINK (Chang et al., 2015) and

GCTA (Yang et al., 2011) to name a few. Others

deal only with specific aspects, e.g., MiXBLUP

(Vandenplas et al., 2022) with breeding value

estimation or MoBPS (Pook, 2020) with breeding

program simulation. In many of these

applications, the most time-consuming steps are

related to the Single Nucleotide Polymorphism

SNP-matrix 𝑍 ∈ {0,1,2}𝑛×𝑠, which is multiplied

to its transposed or a real-valued matrix. Here, 𝑛

is the number of individuals and 𝑠 the number of

SNPs per individual. Many packages uncompress

the 2-bit-packed SNP-matrix in some way before

further calculations. Here, some approaches for

CPUs are presented that avoid this unpacking

partially or fully.

We will deal with matrix products of the form

𝑍⊤𝑍 and 𝑍𝑍⊤,

which is the so-called unweighted genomic

relationship matrix (GRM), up to a factor

(Fragomeni et al., 2017). Afterwards, we will deal

with products of the form

𝑍⊤𝑉

where 𝑉 ∈ 𝑅𝑛×𝑝. As matrix products boil down

mathematically to a collection of scalar products,

we consider here scalar products, only. We first

assume that missing values are absent. Afterwards,

SNP matrices with missing values are considered

together with certain precision considerations and

centring of SNP matrices, since all three problems

have similar mathematical foundations. We refer

to Freudenberg et al. (2023a, 2023b) for

benchmarks, including GPU solutions, and to

Schlather (2020) for related and former methods.

Materials and Methods

For simplicity and clarity, we will primarily refer

to commands of the Intel SSE instruction set

family (128 bits). We comment on AVX2 and

AVX512 explicitly when extensions of SSE are

not obvious or when SSE is not enough for the

given instructions. Note that most SSE commands

can be easily transferred to the NEON instruction

set through the header file sse2neon.h, for

instance, in contrast to AVX commands.

Notations

In the subsequent pseudo-codes, &, |, and >>

denote bitwise and, bitwise or, and shift to the

15

mailto:martin.schlather@uni-mannheim.de
mailto:martin.schlather@uni-mannheim.de

INTERBULL BULLETIN NO. 59. 26-27 August 2023, Lyon, France

right, respectively. The signs ‘+’ and ‘-’ denote

addition and subtraction in the decimal system.

They can be interpreted as parallel operations on

𝑘-bit pieces if it is guaranteed that no 𝑘-bit

overflow or underflow appears. We will use this

fact several times, for 𝑘 = 2,4,6,8 bits.

In case a register is filled by a repeated

sequence s of bits we write (s)*. For instance,

(01)* means that zeros and ones are alternated.

The variable ‘sum’ refers to some register that

accumulates summands; in case partial sums must

be calculated first, sum is further added up in a

variable called `total’.

Variables in the code pieces refer to Single

Instruction Multiple Data (SIMD) registers, if not

indicated differently; 𝑎 and 𝑏 indicate SNP values

with a certain compressed coding. Finally,

indexing assumes little endian.

Mini Lookup Tables

The SSE command _mm_shuffle_epi8 offers a

lookup table with 16 entries of 1 Byte. AVX

implementations realize only more parallel

lookups, while the size of the lookup table does

not change. The lower 4 bits of each byte in the

SIMD register are used to realize 16 lookups at

once at a cheap prize of at most 1 clock cycle.

Such mini lookup tables have a broad field of

applications. For instance, they can be used for

data transformation, adding-up neighboured 2-bit

values, and to implement population counts (i.e.,

the number of bits in a register that equal 1) on

systems without genuine popcnt command (Mula

et al., 2016). We define

shuffle(x) :=

_mm_shuffle_epi8(x & (00001111)*, table) +

_mm_shuffle_epi8((x>>4) & (00001111)*, table)

where the values of the table depend on the context

and can always be obtained by simple

calculations. For instance, the popcnt table is

{0,1,1,2, 1,2,2,3, 1,2,2,3, 2,3,3,4}. Since ‘sum’

may not exceed the value 255, regular clearance of

‘sum’ is necessary. In case of popcnt this must

happen after 31 iterations, the latest.

Large Lookup Tables

A lookup table with more than 16 entries can still

be accessed in a reasonable time if the table fits

well into the L1 cache. Hence, lookup tables for

AVX registers should be addressed by at most 8-

bit, and ALU registers by at most 14 bits.

Strassen algorithm

An important algorithm for calculating a matrix

product between large matrices is the Strassen

algorithm (Strassen, 1969). For a quadratic matrix

𝑍 ∈ 𝑅𝑛×𝑛 the standard costs for the product 𝑍𝑍⊤

are of order 𝑛3, whereas the costs of the Strassen

algorithm are of order 𝑛2.807. Indeed, in a

standard set-up of a double-precision matrix 𝑍, the

Strassen algorithm is faster than the standard

algorithm if 𝑛 is larger than about 103. Numerical

experiments suggest that the Strassen algorithm

will be beaten in a SNP-SNP matrix multiplication

by the best algorithms presented below up to 𝑛 ≈

106. Note that the Strassen algorithm performs

best in case of quadratic matrices. Otherwise, the

smallest edge length is decisive for its

performance. Hence the Strassen algorithm will

never be an option for calculating 𝑍⊤𝑉 in a single

step framework, where 𝑉 is a vector or a small

matrix. A further disadvantage of the Strassen

algorithm is that its numerical errors are larger

than those of the approaches presented here. Since

the fast multiplication of matrices is still an active

area of research, the limit 𝑛 ≈ 106 may change in

future.

SNP-SNP scalar products by integer product

An immediate way of calculating the scalar

product from a compressed 2-bit representation is

to extract the first two bits of each of the two

vectors 𝑎 and 𝑏, and to continue with integer

arithmetic. Then, the next two bits are extracted

using shifting, and so on. Clearly, this procedure

can be vectorized. Of advantage here is the SSE

command _mm_madd_epi16, which multiplies

and adds two consecutive 16-bit integers so that

only 7 shifts are necessary. This method is based

on the 2-bit standard binary coding of {0,1,2}; in

case of PLINK 1 binary coding, a preceding

transformation is necessary to the standard 2-bit

binary coding.

16

INTERBULL BULLETIN NO. 59. 26-27 August 2023, Lyon, France

The speed can be improved by the following

consideration. Let 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ {0,1,2} be 4

SNP numbers. The two products 𝑎1𝑏1 and 𝑎2𝑏2

can be calculated in a single multiplication

through

(𝑎1 + 2𝑐𝑎2)(𝑏1 + 2𝑐𝑏2)=

 𝑎1𝑏1 + 2𝑐(𝑎2𝑏1 + 𝑎1𝑏2) + 22𝑐𝑎2𝑏2

provided the result is identifiable, i.e., the three

summands on the right-hand side occupy different

bits in the binary representation of the above

value. This is the case when 𝑐 > 3. Hence,

convenient choices for 𝑐 are 𝑐 = 4,6 or 8. For

instance, choosing 𝑐 = 8 reduces the number of

calls of _mm_madd_epi16 to 4 and the number of

shifts to 3 by the following code:

 for (i=0; i<8; i+=2)

sum += _mm_madd_epi16((a >> i) &

 (00000011)*, (b >> i) & (00000011)*)

Clearance of the variable ‘sum’ is necessary after

7 iterations,

 total += ((char *) sum)[0] + ((char *) sum)[2]

The analogue AVX512 command is

_mm512_dpbusd_epi32, which sums up 4

products of adjacent 8-bit integers into a 32-bit

integer. Hence, 𝑐 = 4 and 𝑐 = 8 are not possible

and 𝑐 = 6 leads to 3 calls of

_mm512_dpbusd_epi32.

SNP-SNP scalar products by lookup tables

The following algorithm relies on data with

PLINK 1 binary format, where the coding 00𝑝 =

0𝑑, 10𝑝 = 1𝑑 and 11𝑝 = 2𝑑 is used. Here, the

index 𝑝 and 𝑑 denote PLINK 1 binary coding and

decimal coding, respectively,

 c:= a xor b

d:= ~(c >> 1) & c & (01)*

 sum += shuffle((a & b) - d)

Note that 𝑑 = 01𝑏, if the decimal result is 2, and

𝑑 = 00𝑏 otherwise.

SNP-SNP scalar product for chromosome data

If data are available per chromosome, we have two

matrices 𝑍11, 𝑍12 ∈ {0,1}𝑛×𝑠 where the value 1

indicates a deviation from the reference allele and

𝑍11 + 𝑍12 equals the SNP matrix 𝑍. Then, the

non-centred relationship matrix is given by

(𝑍11 + 𝑍12)(𝑍11
⊤ + 𝑍12

⊤)=

 𝑍11𝑍11
⊤ + 𝑍11𝑍12 + 𝑍12𝑍11

⊤ + 𝑍12𝑍12
⊤

Note that all scalar products on the right-hand side

are between binary data, so that the multiplication

step can be realized by the bitwise & and the

adding-up by popcnt. Obviously, this algorithm

can be used also for genomic data after a

preprocessing step, where the genome data are

artificially split into data per chromosome.

SNP-SNP scalar product based on the Hamming

Distance

An interesting algorithm has been introduced in

PLINK (Purcell et al., 2007; Chang et al., 2015)

and has been based on the idea that a value can be

represented by the number of bits that equal 1 in a

4-bit representation. The values of the vectors 𝑎

and 𝑏 must be coded asymmetrically by two

mappings 𝑓 and 𝑔, say, as a coding by a single

mapping is not possible. Then, the bitwise &-

operator is applied before popcnt is applied. Table

1 gives a possible realisation.

Table 1. Values for the Hamming distance method.

𝑓(⋅) ∧ 𝑔(⋅) 𝑔(0)=0000𝑏 𝑔(1)= 0011𝑏 𝑔(2)=1111𝑏

𝑓(0)=0000𝑏 000𝑏 0000𝑏 0000𝑏

𝑓(1)= 0110𝑏 0000𝑏 0010𝑏 0110𝑏

𝑓(2)=1111𝑏 0000𝑏 0011𝑏 1111𝑏

Overview over SNP-SNP algorithms

Tables 2-6 give an overview over some properties

of the divers approaches.

Table 2. Amount of additional cache/memory.

Method Cache/memory needs

Integer product Space for partial sums

Mini lookup table Space for partial sums

Per chromosome No extra needs for AVX512

Hamming distance Each SNP needs 8 bits

instead of 2

17

INTERBULL BULLETIN NO. 59. 26-27 August 2023, Lyon, France

Table 3. Rough speed of the algorithm; the speed

depends on the hardware and the specific coding.

Method Speed

Integer product Highly hardware dependent;

fast on AVX512 & GPU

Mini lookup table Intermediate

Per chromosome High on AVX512

Hamming distance High on AVX512

Table 4. Generality of the algorithm with respect to the

hardware. Note that AVX512 has a lot more commands

available and that the available set of commands differs

between CPU and GPU.

Method Hardware generality

Integer product Any; currently, hardware is

being developed in favour of

this algorithm

Mini lookup table All SIMD variants

Per chromosome Well adapted to GPU &

AVX512; modifications work

for all SIMD variants

Hamming distance All SIMD variants

Table 5. Number of registers needed for the

calculations.

Method Register need

Integer product Several

Mini lookup table Many

Per chromosome Few

Hamming distance Few

Table 6. Generality of the algorithm with respect to the

coding of a SNP. If the algorithm is not general, much

more memory is needed as a preceding re-coding is

necessary.

Method SNP coding generality

Integer product Standard binary coding needed;

re-coding on the fly possible

Mini lookup table Principle suits any 2-bit coding;

adaptions necessary

Per chromosome Inherent coding; ideal for

information per chromosome

Hamming distance Inherent coding

SNP-double scalar products

In contrast to the bunch of algorithms for SNP-

SNP scalar products, the spectrum of possible

approaches to perform SNP-double scalar

products is narrower and the algorithms simpler.

SNP-double scalar products can be performed

by preceding conversion to double, essentially in

the same way as for the integer product, except

that the obtained, intermediate integer value is

transformed into a double-precision value before

being multiplied.

Since a SNP can take only the three values 0,

1 and 2, the implementation by addition is

another, ensnaring approach. There are at least

two variants of this idea. First, GPUs and AVX512

allow a conditional addition by indirect or direct

masking, e.g., _mm512_mask_add_pd in

AVX512, without loss of speed in comparison to a

simple add command. Second, the if-condition is

a moderately expensive command provided it does

not lead to a far jump. Hence, the multiplication

can be implemented by two nested if-conditions.

The last approach given here is more intriguing

and mathematically more complex. It is called

5codes (Freudenberg et al., 2023b). For

convenience, we repeat the algorithm here. Let

𝑌 = 𝑍⊤𝑉 and start with the well-known fact, that

for fixed, real-valued values 𝑉𝑗 ∈ 𝑅, the product

𝑍𝑖,𝑗
⊤ 𝑉𝑗 takes only 3 different values for arbitrary

𝑍𝑖,𝑗
⊤ ∈ {0,1,2}. Hence, a partial scalar product

𝑍𝑖,𝑗
⊤ 𝑉𝑗 + ⋯ + 𝑍𝑖,𝑗+𝑘−1

⊤ 𝑉𝑗+𝑘−1 can take at most

3𝑘 different values. So, by creating a lookup table

𝐻𝑗,𝑘, we can replace

 for (j=0; j<nrow(Z); j+=k)

 Y[i] += Z[j,i]*V[j]+…+Z[j+k-1,i]*V[j+k-1]

by

for (j=0; j<nrow(Z); j+=k)

 Y[i] += Hj,k(Z[j,i], … Z[j + k - 1,i]) .

Since 35 = 243, we can use 𝑘 = 5 SNP values

to index 𝐻 by a single byte. Hence, a lookup table

of doubles has less than 2000 Bytes. Now, 𝑚

tables may fit into the L1 cache, so that the final

pseudo-code reads

 for (j=0; j<nrow(Z); j += m * k)

 Y[i] += Hj,k(Z[j,i], …, Z[j + k - 1,i]) + … +

 Hj+(m-1)k,k(Z[j + (m-1) k, i], …, Z[j + m k-1, I])

18

INTERBULL BULLETIN NO. 59. 26-27 August 2023, Lyon, France

Overview over SNP-double algorithms

Tables 7-11 give a comparative overview of the

properties of the different approaches.

Table 7. Amount of additional cache/memory.

Method Cache/mem need

Conversion to double Space for converted values

Conditional adding (mask) None

Conditional adding (if) None

5-codes Lookup table in L1

Table 8. Rough speed of the algorithm; the speed

depends on the hardware and the specific coding.

Method Speed

Conversion to double Intermediate

Conditional adding (mask) Very high

Conditional adding (if) Very dependent on the

implementation

5-code High

Table 9. Generality of the algorithm with respect to the

hardware. Note that AVX512 has a lot more commands

available and that the available set of commands differs

between CPU and GPU.

Method Hardware generality

Conversion to double Any

Conditional adding (mask) AVX512 & GPU

Conditional adding (if) Any

5-codes Any

Table 10. Number of registers needed for the

calculation.

Method Register need

Conversion to double Few extra registers

Conditional adding (mask) Few extra registers

Conditional adding (if) Extra ALU registers

5-codes Extra ALU registers

Table 11. Generality of the algorithm with respect to

the coding of a SNP. If the algorithm is not general,

much more memory is needed as a preceding re-coding

is necessary.

Method SNP coding generality

Conversion to double General; adaptions necessary

Cond. adding (mask) Adaptions necessary

Conditional adding (if) General; adaptions necessary

5-codes Inherent coding

Centring, missing values and precision

The above sections have considered the scalar

product for the non-centred GRM, only. There, it

has also been assumed that no missing values are

present. In this section, we extend the above

results to centred GRM and allow for missing

values. We assume, however, that the portion of

missing values is small.

A typical situation in genetics is that the

phenotype 𝑉 is non-negative. Hence, all products

in 𝑍⊤𝑉 are non-negative, so that the calculation of

the scalar product cannot profit from

cancellations. A simple measure for an increased

precision is to centre 𝑉 and/or 𝑍 before

calculation. Of course, further action to increase

precision can be taken, e.g., using higher precision

formats such as long double.

Below, we choose an approach that includes

considerations for calculating both GRM and LD,

in a rather general set-up.

Centred GRM

Schlather (2020) has shown that centred and

normalized GRM (VanRaden, 2008; Wals and

Lynch, 2018) can be calculated without loss of

performance. Indeed, first the non-centred GRM

can be calculated as above. Afterwards, the result

can be corrected at low costs. To this end, let 𝐼𝑘 be

the vector of length 𝑘 whose components are all

equal to 1. The centred and normalized GRM 𝐺 is

defined as

𝐺 = (𝑍 − 𝑄) (𝑍 − 𝑄)⊤ 𝜎2⁄

where

𝑄 = 2𝐼𝑛𝑝𝑠
⊤

𝜎2 = 2 ∑ 𝑝𝑠,𝑖
𝑠
𝑖=1 (1 − 𝑝𝑠,𝑖)

and the 𝑝𝑠,𝑖 are the allele frequencies. Then,

𝜎2𝐺 = 𝑍𝑍⊤ − 𝐼𝑛(2𝑍𝑝𝑠)⊤ −

 (2𝑍𝑝𝑠)𝐼𝑛
⊤+4𝐼𝑛(𝑝𝑠

𝑇𝑝𝑠)𝐼𝑛
⊤

.

Obviously, the matrix 𝜎2𝐺 can be calculated from

𝑍𝑍⊤ at low computational costs of order 𝑛[𝑠 +

𝑛]. As the calculation of 𝜎2 has costs of order 𝑠,

the total computational costs for retroactive

centring are some magnitudes smaller than the

costs for calculating the cross-product 𝑍𝑍⊤.

If there are no missing values and 𝑝𝑠 equals the

empirical allele frequency 𝑛−1𝑍⊤ 𝐼𝑛 2⁄ , the value

2𝑛2𝜎2 and the matrix 𝑛2𝜎2𝐺 are integer-valued

and hence can be calculated exactly, so that the

numerical errors in 𝐺 can be reduced to a

minimum. The costs for calculating 2𝑛2𝜎2 and

19

INTERBULL BULLETIN NO. 59. 26-27 August 2023, Lyon, France

𝑛2𝜎2𝐺 from 𝑍𝑍⊤ are also of order 𝑛[𝑠 + 𝑛], see

Schlather (2020) for details. Note that the

components of 𝑍𝑍⊤ are unsigned 32-bit integers

in standard applications, whereas 2𝑛2𝜎2 and

𝑛2𝜎2𝐺 need a 64-bit integer representation.

Allele frequencies in presence of missing values

Let 𝑁 ∈ 𝑅𝑠×𝑠 and 𝑆 ∈ 𝑅𝑛×𝑛 be the diagonal

matrices whose diagonal elements equal to 𝑛

(respectively 𝑠) minus the number of missing

values in the respective row (column) of 𝑍⊤.

Then, the vector of empirical allele frequencies

might be defined as

𝑓𝑠: =
1

2
𝑁−1𝑍⊤𝐼𝑛

Let

𝑔𝑛: =
1

2
𝑆−1𝑍𝐼𝑠

be the analogue mean taken in the direction of the

SNPs, which appears in LD calculations.

Numerical centring

While the centring of GRM should always be

performed retroactively, a preceding centring of 𝑍

and/or 𝑉 in 𝑍⊤𝑉𝑛 or 𝑍𝑉𝑠 increases the precision of

the result. A retroactive correction of this

numerical centring is of low cost. Let

𝐵 = 𝑍 − 2𝑐𝐼𝑛𝑝𝑠
⊤,

where 𝑝𝑠 ∈ 𝑅𝑠 is any arbitrary vector. It is close

to 𝑓𝑠 in standard practical applications. For an

advantageous centring of 𝑉𝑛, we aim to minimize

∥ 𝐵(𝑉𝑛 − 𝜇𝑛𝑒𝑛) ∥= min
𝜇𝑛

!, 𝑉𝑛 ∈ 𝑅𝑛

for some fixed vectors 𝑒𝑛 ∈ 𝑅𝑛, which may

depend on 𝑍. The minimization problem has the

solution

𝜇𝑛 =
𝑒𝑛

⊤𝐵⊤𝐵

𝑒𝑛
⊤𝐵⊤𝐵𝑒𝑛

𝑉𝑛,

where

𝑒𝑛
⊤𝐵⊤𝐵=

𝑒𝑛
⊤𝑍𝑍⊤ − 2𝑚𝑛𝑐𝑞𝑛

⊤ [[𝑐 −
𝑒𝑛

⊤𝑍𝐼𝑠

𝑚𝑛
] 𝐼𝑛×𝑛 −

𝑆

𝑠
]

with 𝐼𝑛×𝑛 the identity matrix and 𝑚𝑛 = 2𝑠𝑒𝑛
⊤𝑞𝑛.

If there are only a few missing values, i.e. 𝑆 𝑠⁄ ≈

𝐼𝑛×𝑛, we have

𝑒𝑛
⊤𝐵⊤𝐵 ≈ 𝑒𝑛

⊤𝑍𝑍⊤ − 2𝑚𝑛𝑐(𝑐 − 2)𝑔𝑛
⊤.

If we further choose 𝑒𝑛 = 𝐼𝑛, then

𝐼𝑛
⊤𝐵⊤𝐵 ≈ 2𝑛𝑓𝑠

⊤𝑍⊤ + 2𝑚𝑛𝑐(𝑐 − 2)𝑔𝑛
⊤

and

𝐼𝑛
⊤𝐵⊤𝐵𝐼𝑛 ≈ 𝐼𝑛

⊤𝑍𝑍⊤𝐼𝑛 + 𝑐(𝑐 − 2)
𝑚2

𝑠

where 𝑚 = 𝐼𝑛
⊤𝑍𝐼𝑠. Analogous formulae hold for

an advantageous centring of 𝑉𝑠.

Genetic centring

In genetics, the centred matrices

𝑍 − 2𝐼𝑛𝑝𝑠
⊤ and 𝑍⊤ − 2𝑝𝑠𝐼𝑛

⊤, 𝑧 ∈ {0,1}.

are of interest, where 𝑝𝑠 is the or any given allele

frequency. Here, we combine these centred

matrices with the numerical centring above in a

rather general way. To this end, let 𝑧 ∈ {0,1}

denote whether genetically motivated centring is

of interest, i.e., we consider

𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤ or 𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛

⊤, 𝑧 ∈ {0,1}.

Let 𝑐, 𝜈 ∈ {0,1} denote whether numerical

centring of 𝑍 and 𝑉, respectively should be

performed. Then we get for arbitrary 𝜇𝑛, 𝜇𝑠 ∈ 𝑅,

𝑝𝑠 ∈ 𝑅𝑠, and 𝑞𝑛 ∈ 𝑅𝑛, that

(𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤)𝑉𝑛 =

(𝑍𝑇 − 2𝑐𝐼𝑠𝑞𝑛
⊤)(𝑉𝑛 − 𝜈𝐼𝑛𝜇𝑛)

− 2𝑧(𝐼𝑛
⊤𝑉𝑛)𝑝𝑠+2𝑐(𝑞𝑛

⊤𝑉𝑛)𝐼𝑠+𝜈𝜇𝑛𝑍⊤𝐼𝑛

− 𝑐𝜈𝜇𝑛(𝑞𝑛
⊤𝐼𝑛)𝐼𝑠

and

(𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤)𝑉𝑠 =

(𝑍 − 2𝑐𝐼𝑛𝑝𝑠
⊤)(𝑉𝑠 − 𝜈𝐼𝑠𝜇𝑠)+𝜈𝜇𝑠𝑍𝐼𝑠+

2(𝑐 − 𝑧)(𝑝𝑠
⊤𝑉𝑠)𝐼𝑛 − 𝑐𝜈𝜇𝑠(𝑝𝑠

⊤𝐼𝑠)𝐼𝑛

so that the first term on each right side is critical

concerning computational costs, and the

remaining summands can be considered as

correction terms. Note that 𝑍⊤𝐼𝑛 needs to be

calculated only once in for every genotype matrix

20

INTERBULL BULLETIN NO. 59. 26-27 August 2023, Lyon, France

𝑍. More generally, let 𝜁 ∈ {0,1} indicate the

centring in SNP direction. Then formulae for

(𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤ − 2𝜁𝐼𝑠𝑞𝑛

⊤)𝑉𝑛

and

(𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤ − 2𝜁𝑞𝑛𝐼𝑠

⊤)𝑉𝑠

can easily be derived from the above equations.

Note that all the above formulae hold independent

of the values of 𝑝𝑠 and 𝑞𝑛. We have only assumed

that the numerical centring of the matrices 𝑍 and

𝑍⊤ uses the same vectors.

Missing values

Assume we aim to calculate

𝑥 = (𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤ − 2𝜁𝐼𝑠𝑞𝑛

⊤)𝑉𝑛

or

𝑦 = (𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤ − 2𝜁𝑞𝑛𝐼𝑠

⊤)𝑉𝑠

for arbitrary vectors 𝑝𝑠 ∈ 𝑅𝑠 and 𝑞𝑛 ∈ 𝑅𝑛 with a

missing value in the position (𝑗𝑘, 𝑖𝑘) of the matrix

𝑍 for 𝑘 = 1, … , ℓ. We define 𝑍𝑗𝑘,𝑖𝑘
: = 0 for all

𝑘 and let 𝐼 be the set of coordinates of all ℓ

positions. Then, we have for 𝑧, 𝑐, 𝜈 ∈ {0,1} and

arbitrary 𝜇𝑛, 𝜇𝑠 ∈ 𝑅, 𝑝𝑠 ∈ 𝑅𝑠, and 𝑞𝑛 ∈ 𝑅𝑛, that

𝑥𝛼 = ∑ (𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤

𝛽,(𝛼,𝛽)∉𝐼

− 2𝜁𝐼𝑠𝑞𝑛
⊤)𝛼𝛽 (𝑉𝑛)𝛽

 = ((𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤ − 2𝜁𝐼𝑠𝑞𝑛

⊤)𝑉𝑛)
𝛼

+

 2 ∑ (

𝛽,(𝛼,𝛽)∈𝐼

𝑧(𝑝𝑠)𝛼 + 𝜁(𝑞𝑛)𝛽)(𝑉𝑛)𝛽

𝑦𝛼 = ((𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤ − 2𝜁𝑞𝑛𝐼𝑠

⊤)𝑉𝑠)
𝛼

+

 2 ∑ (

𝛽,(𝛽,𝛼)∈𝐼

𝜁(𝑞𝑛)𝛼 + 𝑧(𝑝𝑠)𝛽)(𝑉𝑠)𝛽.

This shows that matrix multiplications can be

corrected for missing values retroactively even in

very general set-ups. The corrections terms, i.e.,

the second summands in the above two equations,

cause total computational costs proportional to the

number of missing values in 𝑍. The

proportionality constant is large, however,

because of cache misses, the outage of SIMD

commands and the outage of tiling, at least in

simple implementations.

Implementation of the numerical centring

While the centring of 𝑉𝑛 and 𝑉𝑠 is simple, the

centring of 𝑍 and 𝑍⊤ comes with extra

computational costs for the conditional adding

algorithms. Both the conversion to doubles and the

5-code algorithm do not lose speed and the

implementation of the numerical centring is

simple.

Conclusion

Algorithms for compressed SNP data can differ

largely from simple approaches, such as

decompression. Fast algorithms are hardware

dependent and so change over time. Centring and

missing values do not need to be considered in fast

algorithms provided the number of missing values

is small. Some increase in precision is possible

without loss of speed, but with additional

programming effort and use of special coding,

e.g., 5-codes.

References

Chang, C.C., Chow, C.C., Tellier, L.C.A.M.,

Vattikuti, S., Purcell, S.M. and Lee, J.J. 2015.

Second-generation PLINK: rising to the

challenge of larger and richer datasets. Gigasci.

4. https://doi.org/10.1186/s13742-015-0047-8.

Fragomeni, B.O., Lourenco, D.A.L., Masuda, A.,

Legarra, Y. and Misztal, I. 2017. Incorporation

of causative quantitative trait nucleotides in

single-step GPLUB. Genet. Sel. Evol. 49, 59.

https://doi.org/10.1186/s12711-017-0335-0.

Freudenberg, A., Schlather, M., Vandenplas, J.,

Pook, T. and Evans, R. 2023a. Accelerating

single-step evaluations through GPU

offloading. Interbull Bulletin 59, 23-32

Freudenberg, A., Vandenplas, J., Schlather, M.,

Pook, T., Evans, R. and ten Napel, J. 2023b.

Accelerated matrix-vector multiplications for

21

https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s12711-017-0335-0

INTERBULL BULLETIN NO. 59. 26-27 August 2023, Lyon, France

matrices involving genotype co-variates with

applications in genomic prediction. Front.

Genet. 14, 1220408. https://doi.org/

10.3389/fgene.2023.1220408.

Mula, W., Kurz, N. and Lemire, D. 2018. Faster

population counts using AVX2 instructions.

Comput. J., 6, 111-120. https://doi.org/

10.1093/comjnl/bxx046.

Pook. T. 2020. MoBPS: Modular Breeding

Program Simulator. R package version 1.4.15.

https://github.com/tpook92/mobps.

Purcell, S., Neale, B., Todd-Brown, K., Thomas,

L., Ferreira, M.A.R., Bender, D., Maller, J.,

Sklar, P., de Bakker, P.I.W., Daly, M.J. and

Sham, P.C. 2007. A toolset for whole-genome

association and population-based linkage

analysis. Am. J. Hum. Genet. 81, 559–575.

https://doi.org/10.1086/519795.

Schlather, M. 2020. Efficient calculation of the

genomic relationship matrix. BioRxiv,

https://doi.org/10.1101/2020.01.12.903146.

Strassen, V. 1969. Gaussian elimination is not

optimal. Num. Math. 13, 354–356.

https://doi.org/10.1007/BF02165411.

Vandenplas, J. Veerkamp, R.F., Calus, M.P.L.,

Lidauer, M.H., Strandén, I., Taskinen, M.,

Schrauf, M.F.S.G., and ten Napel. J. 2022.

MiXBLUP 3.0 – software for large genomic

evaluations in animal breeding programs. In

Proceedings of 12th World Congress on

Genetics Applied to Livestock Production

(WCGALP). Wageningen Academic

Publishers, Wageningen, pp. 1498–1501.

https://doi.org/10.3920/978-90-8686-940-

4_358.

VanRaden, P.M. 2008. Efficient methods to

compute genomic predictions. J. Dairy Sci. 91,

4414–4423. https://doi.org/10.3168/jds.2007-

0980.

Walsh, B. and Lynch, M., 2018. Evolution and

Selection of Quantitative Traits. Oxford

University Press, Oxford. https://doi.org/

10.1093/oso/9780198830870.001.0001.

Yang, J., Lee, S.H., Goddard, M.E. and Visscher,

P.M. 2011. GCTA: A tool for genome-wide

complex trait analysis. Am. J. Hum. Genet. 88,

76–82.

https://doi.org/10.1016/j.ajhg.2010.11.011.

22

https://doi.org/%2010.3389/fgene.2023.1220408
https://doi.org/%2010.3389/fgene.2023.1220408
https://doi.org/%2010.1093/comjnl/bxx046
https://doi.org/%2010.1093/comjnl/bxx046
https://github.com/tpook92/mobps
https://doi.org/10.1086/519795
https://doi.org/10.1101/2020.01.12.903146
https://doi.org/10.1007/BF02165411
https://doi.org/10.3920/978-90-8686-940-4_358
https://doi.org/10.3920/978-90-8686-940-4_358
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3168/jds.2007-0980
https://doi.org/%2010.1093/oso/9780198830870.001.0001
https://doi.org/%2010.1093/oso/9780198830870.001.0001
https://doi.org/10.1016/j.ajhg.2010.11.011

