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Abstract 

Genetic correlations (rg) between countries are required for international evaluations. The estimation of 

those rg is challenging or even unfeasible using only pedigree and phenotypes when poor connectedness 

between countries is structural in the data due to a limited number of bulls having recorded 

(grand-)offspring across countries. Genomic information could be used to estimate rg between countries 

by capturing connectedness that is not traced by pedigree recordings. Indeed, populations that appear as 

(completely) disconnected through pedigree can, theoretically, be connected through genomic data. 

Thus, our study aimed to investigate if estimates of rg between countries based on genomic information 

are more accurate compared to estimates based on pedigree data, considering different levels of genetic 

connectedness. A maternally affected trait mimicking weaning weight was simulated for two beef cattle 

populations of the same breed. Different levels of connectedness between populations were simulated 

by exchanging different proportions of top sires in the last five generations: 0% (completely 

disconnected), 2.5% (lowly connected), 5% (medium), and 20% (high). Genomic data in the form of 

individual SNP genotypes at medium density were stored in the last three generations and used only for 

the estimation process. rg between populations were estimated using three different relationship 

matrices: i) a pedigree-based relationship matrix (A) including all phenotyped animals; ii) a genomic 

relationship matrix (G) including phenotyped and genotyped animals only from the last three 

generations; and iii) a combined pedigree and genomic relationship matrix (H) including all phenotyped 

and genotyped animals. With disconnected and lowly connected populations, estimates of direct and 

maternal rg were, on average, close to the simulated values when using genomic data through G or H. 

With lowly connected populations, estimates of direct rg were close to the simulated values when using 

A, but estimates of maternal rg showed large variation. With more connected populations, estimates 

obtained with A, G, and H matrices were overall similar. For all scenarios, when using genomic data in 

the estimation process, estimates of rg had smaller standard errors. Our results show that genomic data 

can help the estimation of rg between countries and especially reduce their standard errors for 

populations that appear as completely disconnected or lowly connected through pedigree information, 

such as in beef and (small) dairy cattle populations. 

Key words: genetic correlations between countries, international evaluations, genomic data, GREML, 
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Introduction 

International genetic evaluations allow 

breeders to appropriately compare the genetic 

merits of domestic and foreign animals. 

Animals’ estimated breeding values (EBVs) 

obtained from different national evaluations are 

not directly comparable due to differences in 

scales and genetic bases, trait and model 

definitions, and environmental differences 

between countries (Philipsson, 1987; Zwald et 

al., 2003; Jakobsen et al., 2009; Nilforooshan 

and Jorjani, 2022). International evaluations, 

such as those performed by Interbeef (2006) for 
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beef cattle and Interbull (1983) for dairy cattle, 

combine data between countries into a single 

evaluation that takes into account such 

differences and computes animals’ international 

EBVs. Through these international EBVs, 

foreign animals (mainly sires) can be compared 

with domestic ones, helping breeders to make 

their selection decisions. To account for 

differences between countries, international 

evaluations use multi-trait models that treat the 

same trait recorded in different countries as 

different correlated traits (Schaeffer, 1994; 

Phocas et al., 2005). A genetic correlation (rg) 

between countries below unity accounts for 

differences in trait and model definitions, scale 

and genetic bases, and for genotype-by-

environment interactions (Falconer and 

Mackay, 1996; Mark, 2004; Nilforooshan and 

Jorjani, 2022). Moreover, the rg between 

countries effectively models how much the 

information from one country contributes to the 

animals’ international EBV in another country 

(Weigel et al., 2001). Thus, rg between 

countries are crucial for international 

evaluations and directly impact the 

international EBVs. 

Genetic connections are needed to estimate 

rg between countries used in international 

evaluations. These genetic connections are 

usually provided by sires having recorded 

offspring in two or more countries, also called 

“common bulls” (CB). Moreover, for 

maternally affected traits, which are common in 

beef cattle, genetic connections established 

through common maternal grand-sires (CMGS) 

having recorded (grand-)offspring in two or 

more countries are needed to estimate maternal 

rg between countries (Jorjani et al., 2005; 

Pabiou et al., 2014; Bonifazi et al., 2020). 

However, in beef cattle and small dairy cattle 

populations, there is often a low level of genetic 

connectedness, mostly due to the low usage of 

artificial insemination in the former (Berry et 

al., 2016) or the low past exchange of bulls’ 

genetic material between countries in the latter 

(e.g., Jorjani, 2000; Mark et al., 2005a). The low 

genetic connectedness in beef and (small) dairy 

cattle populations makes the estimation of rg 

between countries challenging with current 

pedigree-based methods. Such challenges 

results in long computational times, uncertainty 

around the estimated rg (i.e., large standard 

errors), and even in inestimable rg in the 

extreme case of two completely disconnected 

populations (Jorjani et al., 2005; Mark et al., 

2005a; Venot et al., 2009; Pabiou et al., 2014). 

Individual genomic information in the form 

of single-nucleotide-polymorphisms (SNP) 

markers is increasingly becoming available at 

the national level for beef and (small) dairy 

cattle breeds (e.g., Van Eenennaam et al., 2014; 

Lourenco et al., 2015; Berry et al., 2016; Venot 

et al., 2016; Johnston et al., 2018; Bonifazi et 

al., 2022a; Adekale et al., 2023; Council on 

Dairy Cattle Breeding, 2023). In beef cattle, 

Bonifazi et al. (2022a) showed the feasibility 

and advantages of pooling national phenotypes 

and genotypes into an international single-step 

evaluation. In such settings, genomic data could 

also be used to estimate rg between countries 

and possibly aid the estimation process, 

especially for lowly connected populations. In 

theory, populations that may appear as 

completely disconnected according to the 

pedigree can be connected through genomic 

information (Wientjes et al., 2015; Wientjes et 

al., 2018). Therefore, our study aimed to 

investigate if genomic data help to estimate rg 

between countries more accurately than 

pedigree data, considering different levels of 

genetic connectedness between populations. 

 

Materials and Methods 

 

Two beef cattle populations (POP1 and 

POP2) originating from the same breed were 

simulated, mimicking data from two different 

countries (Figure 1). Each population had data 

on a maternally affected trait simulating 

weaning weight as a representative trait in beef 

cattle international evaluations. Genetic 

parameters were simulated following those 

observed by Bonifazi et al. (2020) in real data. 

The trait heritability was 0.30 and 0.15 for 
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direct and maternal genetic effects, 

respectively, and the within-population direct-

maternal rg was -0.2. The rg between 

populations was 0.8 and 0.7 for direct and 

maternal genetic effects, respectively, and the 

between-population direct-maternal rg was 0. 

About 2,000 QTLs were simulated to be 

randomly distributed across 30 chromosomes of 

1 Morgan length each, and marker effects were 

sampled from a Gaussian distribution. Each 

population was independently selected for 20 

generations (G; Figure 1). Selection was first at 

random (from G0 to G9), followed by selection 

on the total EBV, defined as the sum of direct 

and maternal EBVs with equal weights. 

Pedigree and phenotypic information were 

assumed to be recorded from G7 and G10, 

respectively. Genomic information in the form 

of individual genotypes at medium density 

(~50,000 SNPs) were assumed to be recorded 

for animals from G18 to G20 but not used for 

selection, similar to what has been observed in 

real data in Bonifazi et al. (2022a).  

To simulate different levels of connectedness 

between the two populations, top sires from 

each population were exchanged throughout the 

last five generations (G16 to G20), called 

hereafter common bulls (CB). Four scenarios 

were simulated based on the exchanged 

proportions of top sires being: 0% (scenario 

‘disconnected’), 2.5% (‘low’), 5% (‘medium’), 

and 20% (‘high’), corresponding to exchanging 

0, 1, 2, and 8 sires, respectively, out of the 40 

selected in each population and generation 

(Table 1). Each scenario was replicated 10 

times. Following observations from Bonifazi et 

al. (2020), preferential treatment was simulated 

such that daughters of CB were used as dams in 

the next generation, ensuring the presence of 

common maternal grand-sires (CMGS) and, 

therefore, genetic connections to estimate 

maternal rg between populations. The names of 

the scenarios are based on the level of genetic 

similarity (GS) coefficient for CB (Rekaya et 

al., 1999; Rekaya et al., 2003; Bonifazi et al., 

2020) and follow the definition used in Bonifazi 

et al. (2020): low (GS < 0.05), medium (GS 

between 0.05 and 0.10) and high (GS > 0.10). 

The GS coefficients for CB and CMGS in each 

scenario are in Table 1. 

rg between populations were estimated using 

a bi-variate model in which each population’s 

trait is modelled as a different correlated trait 

with uncorrelated residuals. In each of the four 

simulated scenarios, rg between populations 

were estimated using three different sources of 

information and relationship matrices: 

 A: using phenotypes from G10 to G20, 

with a pedigree relationship matrix. 

 H: using phenotypes from G10 to G20 

and genotypes from G18 to G20, with a 

combined pedigree and genomic 

relationship matrix following Legarra et 

al. (2009).  

 G: using phenotypes and genotypes from 

G18 to G20, with a genomic relationship 

matrix following VanRaden (2008) 

method 1. 

The relationship matrices were built 

considering all 14 generations of pedigree 

information available (G7 to G20). Due to the 

presence of maternal genetic effects, one extra 

generation of pedigree information (i.e., G9 for 

A and H, and G17 for G, respectively) was 

included in the relationship matrix used for the 

estimation of rg between populations to link the 

maternal genetic effect of the dam with the 

phenotype of the offspring in the first 

generation (i.e., G10 for A and H, and G18 for 

G, respectively). Therefore, the G matrix was 

effectively built as an H relationship matrix 

(Legarra et al., 2009). 

The simulation was performed using the R-

package MoBPS  (Pook et al., 2020). The 

relationship matrices were built using calc_grm 

(Calus and Vandenplas, 2016). mtg2 (Lee and 

van der Werf, 2016) was used to estimate EBV 

and rg between populations, employing a CORE 

GREML approach (Zhou et al., 2020) to 

account for maternal effects and using a 

convergence criterion of 1.0 ∙ 10-4. Starting 

values were provided for within-population 

(co)variances, while between-population 

(co)variances starting values were set to 0, 

mimicking the procedure used in international 

evaluations (Bonifazi et al., 2021).
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Figure 1. Schematic overview of the two simulated populations (POP1 and POP2), data collected, and selection 

method. n: number of individuals, G: generation, ♂: sires, ♀: dams. Horizontal arrows indicate the exchange of 

top sires between populations. 
 

 

 

Table 1. Simulated scenarios and connectedness levels between populations 1, 2. 

 

Scenario 
n. of 

CB 

n. off. 

from CB 
GSCB 

3 
Average 

n. CMGS 

Average n. 

grand-off. 

from CMGS 

Average 

GSCMGS 
3 

Disconnected 0 0 0 0 0 0 

Low 10 1,500 0.02 8 2,322 0.04 

Medium 20 3,000 0.05 16 4,544 0.07 

High 80 12,000 0.18 63 15,364 0.23 

 
1 Connectedness is computed from G10 to G20; results are averages of 10 replicates. 
2 n: number, CB: common bulls, GS: genetic similarity, CMGS: common maternal grand-sires. 
3 GS for CB (and CMGS) between two populations is defined as the proportion of recorded offspring (grand-

offspring) born from CB (CMGS) over the total number of recorded offspring (grand-offspring) in the two 

populations. 
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Results & Discussion 

 

Figure 2 shows the estimated rg between 

populations using different relationship 

matrices. As expected, in the disconnected 

scenario, using conventional sources of 

information (i.e., pedigree and phenotypes) 

through the A matrix did not allow to estimate 

rg: estimates did not move from the provided 

starting values. However, using genomic data 

through G or H matrices resulted in estimated 

direct and maternal rg close to the simulated 

underlying true values. With lowly connected 

populations, using the A matrix resulted in 

estimated direct rg close to the simulated values, 

while there was a large variation for the 

estimated maternal rg (Figure 2). For medium 

and highly connected populations, there were 

no large benefits of using genomic data 

compared to using conventional sources of 

information: overall, estimated rg using A, G, 

and H were similar for medium and high 

scenarios. 

With increased connectedness between 

populations, the SE of direct and maternal rg 

were smaller, regardless of the relationship 

matrix used (Figure 3). Furthermore, larger SE 

were observed for maternal rg than for direct rg. 

These results follow the findings of previous 

studies using real data where low levels of 

connectedness between populations were 

associated with large SE of the estimated rg 

(e.g., Venot et al., 2009; Bonifazi et al., 2020). 

In all scenarios, the SE for direct and maternal 

rg were smaller and showed less variation across 

replicates when using genomic information 

through G or H compared to A. Overall, using 

the H matrix resulted in the smallest SE of 

estimated rg, while using the G matrix resulted 

in SE between those obtained with A and H. 

Thus, estimates of rg between populations 

became more accurate, i.e., had smaller SE, 

when genomic information was included in the 

estimation process. 

Computational requirements can partly be 

explained by mtg2 using dense relationship 

matrices for the estimation process instead of 

their inverses. As such, the estimation using A 

and H matrices showed similar computational 

resources (Table 2). The estimation using the G 

matrix required 12.5% of the memory of A and 

H matrices but required 2.43 times more 

computational time. Such computational 

requirements are likely due to the G matrix 

including only the last 4 generations of animals 

with 3 generations of phenotypes and 

genotypes, which, although resulted in a smaller 

matrix size, also led to an increased time to 

convergence (Table 2). 

Overall, the more accurate estimation of rg 

between populations with increasing numbers 

of CB and CMGS, agrees with Mark et al. 

(2005a). This relationship highlights the 

importance of establishing genetic links across 

countries by exchanging frozen semen to 

accurately estimate rg between populations, 

especially when only conventional data is 

available. However, creating such genetic links 

is time-consuming since sires need recorded 

offspring in both populations. 

The results of this study indicate that 

genomic data can be helpful to estimate rg more 

accurately for disconnected and lowly 

connected populations and to reduce the 

associated SE compared to only using pedigree 

and phenotypic data. This was especially the 

case for maternal rg between populations, which 

are reportedly challenging to estimate with low 

connectedness levels (Pabiou et al., 2014; 

Bonifazi et al., 2020; Bonifazi et al., 2021). In 

international evaluations, GS is usually reported 

to estimate connectedness between countries. 

The GS levels of the simulated scenarios are 

close to the values reported in beef and dairy 

cattle international evaluations. In particular, 

low to medium levels of connectedness are 

common in beef cattle. In Limousin, GS 

between countries was equal to 0.04 in Phocas 

et al. (2005) and ranged between 0.02 and 0.15 

in Bonifazi et al. (2023; 2022b; 2020). Venot et 

al. (2009) reported values of GS between 

countries as low as 0.01 for both Limousin and 

Charolais. Therefore, using genomic data could 
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Figure 2. Boxplots of direct (top row) and maternal (bottom row) estimated rg between populations across four 

connectedness scenarios (panels). A, G, and H indicate the different sources of information and relationship 

matrices used in the estimation process. Horizontal dotted lines indicate the simulated values of 0.8 for direct rg 

and 0.7 for maternal rg. Boxplots report estimated values of 10 replicates. One estimated maternal rg in scenario 

“low” using A was out of parameter space (rg >1). 

 

 

Figure 3. Boxplots of direct (left-side) and maternal (right-side) standard errors (SE) of estimated rg between 

populations across four connectedness scenarios (panels). A, G, and H indicate the different sources of information 

and relationship matrices used in the estimation process. 
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help the estimation of rg between beef cattle 

populations with a low exchange of bulls and 

low levels of GS and could reduce the 

uncertainty of the estimated rg, i.e., the 

associated SE (Figure 2 and Figure 3). Similar 

to beef cattle, including genomic data in the 

estimation process could be beneficial for small 

and weakly linked dairy cattle populations such 

as Ayrshire, Guernsey, and Jersey (Jorjani, 

1999; Jorjani, 2000; Mark et al., 2005b). On the 

other hand, for large dairy cattle international 

evaluations in which connectedness levels 

between populations are high, such as those of 

Holstein-Friesian (2000), it is unlikely that 

including genomic data would improve the 

estimation of rg between countries (Figure 2). 

Genomic information is increasingly 

becoming available at the national level for beef 

and small dairy cattle populations. Therefore, 

the proposed approach could be applied to 

estimate rg between countries in (small-breed) 

international beef and dairy cattle evaluations. 

The G matrix used 3 generations of data and 

gave estimated rg between populations similar 

to those obtained with A and H matrices, in 

which 10 generations of data were used. These 

results suggest that three complete generations 

of phenotypes and genotypes could be sufficient 

to estimate rg between countries. However, in 

real data, additional challenges may be expected 

due to an unbalanced number of genotyped and 

phenotyped animals, missing records and 

incomplete pedigrees, and, depending on the 

population, a low number of offspring per dam. 

Finally, the genomic REML estimation 

approach used (Lee and van der Werf, 2016; 

Zhou et al., 2020) assumes that raw genomic 

data is available at the international level to 

calculate the relationship matrices. When 

sharing data is not possible due to privacy or 

political constraints, an approach based on 

summary statistics such as LDSC (linkage 

disequilibrium score regression analysis; Bulik-

Sullivan et al., 2015; van Rheenen et al., 2019) 

could be investigated, albeit it is expected to 

  

 

Table 2. Computational requirements. 

 A G H 

Animals in matrix 

(number) 

66,000 24,000 66,000 

Elapsed time (hours) 3.1 7.3 2.9 

RAM peak usage 

(GBytes) 

106 13 102 

Averages across scenarios and replicates. 

 

require a larger amount of data and to be less 

accurate (Ni et al., 2018; van Rheenen et al., 

2019). 

 

Conclusions 

 

Our simulation results showed that genomic 

data may help to obtain more accurate estimates 

of rg between countries and especially reduce 

their associated standard errors compared to 

current methods using only pedigree and 

phenotypes. Larger advantages were observed 

for estimates of maternal rg and for populations 

that appear completely disconnected or lowly 

connected through pedigree information, such 

as in beef and (small) dairy cattle populations. 

 

Acknowledgments 

 

The authors thank Dr Hong Lee (University 

of New England) for the help with mtg2 and the 

implementation of maternal effects, Dr Martin 

Schlather (Universität of Mannheim) for the 

help in using miraculix with MoBPS, and Dr 

Pascal Duenk and Noraly van Hemert 

(Wageningen University & Research) for their 

early inputs on the simulation. 

The project leading to these results has 

received funding from the Interbeef Working 

Group, the International Committee for Animal 

Recording – ICAR (Rome, Italy), the 

International Bull Evaluation Service (Uppsala, 

Sweden) and the Irish Cattle Breeding 

Federation (ICBF, Link Road, Ballincollig, Co. 

Cork, Ireland). 

 

 

7



INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 

 

 

References 

 

Adekale, D., H. Alkhoder, Z. Liu, D. Segelke, 

and J. Tetens. 2023. Single-step SNPBLUP 

evaluation in six German beef cattle breeds. 

J. Anim. Breed. Genet. 00:1–12. 

https://doi.org/10.1111/jbg.12774. 

Berry, D. P., J. F. Garcia, and D. J. Garrick. 

2016. Development and implementation of 

genomic predictions in beef cattle. Anim. 

Front. 6:32–38. 

https://doi.org/10.2527/af.2016-0005. 

Bonifazi, R., J. Vandenplas, J. ten Napel, K. 

Matilainen, R. F. Veerkamp, and M. P. L. 

Calus. 2020. Impact of sub-setting the data 

of the main Limousin beef cattle population 

on the estimates of across-country genetic 

correlations. Genet. Sel. Evol. 52:32. 

https://doi.org/10.1186/s12711-020-00551-

9. 

Bonifazi, R., J. Vandenplas, J. ten Napel, R. F. 

Veerkamp, and M. P. L. Calus. 2021. The 

impact of direct-maternal genetic 

correlations on international beef cattle 

evaluations for Limousin weaning weight. J. 

Anim. Sci. 99:1–14. 

https://doi.org/10.1093/jas/skab222. 

Bonifazi, R., M. P. L. Calus, J. ten Napel, R. F. 

Veerkamp, A. Michenet, S. Savoia, A. 

Cromie, and J. Vandenplas. 2022a. 

International single-step SNPBLUP beef 

cattle evaluations for Limousin weaning 

weight. Genet. Sel. Evol. 54:57. 

https://doi.org/10.1186/s12711-022-00748-

0. 

Bonifazi, R. 2022b. International genetic and 

genomic evaluations of beef cattle. 

Wageningen University, Wageningen. 

Available from: 

https://research.wur.nl/en/publications/d250

8949-afa5-4e86-b7c9-cf3e30faf69b 

Bonifazi, R., M. P. L. Calus, J. ten Napel, R. F. 

Veerkamp, S. Biffani, M. Cassandro, S. 

Savoia, and J. Vandenplas. 2023. Integration 

of beef cattle international pedigree and 

genomic estimated breeding values into 

national evaluations, with an application to 

the Italian Limousin population. Genet. Sel. 

Evol. 55:1–18. 

https://doi.org/10.1186/s12711-023-00813-

2. 

Bulik-Sullivan, B., H. K. Finucane, V. Anttila, 

A. Gusev, F. R. Day, P.-R. Loh, L. Duncan, 

J. R. B. Perry, N. Patterson, E. B. Robinson, 

M. J. Daly, A. L. Price, and B. M. Neale. 

2015. An atlas of genetic correlations across 

human diseases and traits. Nat. Genet. 

47:1236–1241. 

https://doi.org/10.1038/ng.3406. 

Calus, M. P. L., and J. Vandenplas. 2016. 

Calc_grm—a program to compute pedigree, 

genomic, and combined relationship 

matrices. Wagening. ABGC Wagening. UR 

Livest. Res. 

Council on Dairy Cattle Breeding. 2023. 

Genotype counts by Chip Type, Breed Code, 

and Sex Code. Available from: 

https://queries.uscdcb.com/Genotype/cur_fr

eq.html. Accessed October 2, 2023. 

Falconer, D. S., and T. F. C. Mackay. 1996. 

Introduction to Quantitative Genetics. 

Harlow Pearson Education Limited. 

Interbeef. 2006. Interbeef Working Group, 

ICAR. Available from: 

https://www.icar.org/index.php/technical-

bodies/working-groups/interbeef-working-

group/. 

Interbull. 1983. International Bull Evaluation 

Service. Available from: 

https://interbull.org/index.  

Jakobsen, J. H., J. W. Dürr, H. Jorjani, F. 

Forabosco, A. Loberg, and J. Philipsson. 

2009. Genotype by environment interactions 

in international genetic evaluations of dairy 

bulls. Proc Assoc Advmt Anim Breed Genet. 

18:133–142. 

Johnston, D. J., M. H. Ferdosi, N. K. Connors, 

V. Boerner, J. Cook, C. J. Girard, A. A. 

Swan, and B. Tier. 2018. Implementation of 

single-step genomic BREEDPLAN 

evaluations in Australian beef cattle. In: 

World Congress on Genetics Applied to 

Livestock Production. Vol. 11. Auckland, 

New Zealand. p. 269. 

8

https://doi.org/10.2527/af.2016-0005
https://doi.org/10.1186/s12711-020-00551-9
https://doi.org/10.1186/s12711-020-00551-9
https://doi.org/10.1093/jas/skab222
https://doi.org/10.1186/s12711-022-00748-0
https://doi.org/10.1186/s12711-022-00748-0
https://research.wur.nl/en/publications/d2508949-afa5-4e86-b7c9-cf3e30faf69b
https://research.wur.nl/en/publications/d2508949-afa5-4e86-b7c9-cf3e30faf69b
https://doi.org/10.1186/s12711-023-00813-2
https://doi.org/10.1186/s12711-023-00813-2
https://doi.org/10.1038/ng.3406
https://queries.uscdcb.com/Genotype/cur_freq.html
https://queries.uscdcb.com/Genotype/cur_freq.html
https://www.icar.org/index.php/technical-bodies/working-groups/interbeef-working-group/
https://www.icar.org/index.php/technical-bodies/working-groups/interbeef-working-group/
https://www.icar.org/index.php/technical-bodies/working-groups/interbeef-working-group/
https://interbull.org/index


INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 

 

 

Jorjani, H. 1999. Connectedness in Dairy Cattle 

Populations. Interbull Bull. 22:1–4. 

Jorjani, H. 2000. Well-Connected, Informative 

Sub-Sets of Data. Interbull Bull. 25:22–25. 

Jorjani, H., U. Emanuelson, and W. F. Fikse. 

2005. Data subsetting strategies for 

estimation of across-country genetic 

correlations. J. Dairy Sci. 88:1214–1224. 

https://doi.org/10.3168/jds.S0022-

0302(05)72788-0. 

Lee, S. H., and J. H. J. van der Werf. 2016. 

MTG2: an efficient algorithm for 

multivariate linear mixed model analysis 

based on genomic information: Table 1. 

Bioinformatics. 32:1420–1422. 

https://doi.org/10.1093/bioinformatics/btw0

12. 

Legarra, A., I. Aguilar, and I. Misztal. 2009. A 

relationship matrix including full pedigree 

and genomic information. J. Dairy Sci. 

92:4656–4663. 

https://doi.org/10.3168/jds.2009-2061. 

Lourenco, D. A. L., S. Tsuruta, B. O. 

Fragomeni, Y. Masuda, I. Aguilar, A. 

Legarra, J. K. Bertrand, T. S. Amen, L. 

Wang, D. W. Moser, and I. Misztal. 2015. 

Genetic evaluation using single-step 

genomic best linear unbiased predictor in 

American Angus. J. Anim. Sci. 93:2653–

2662. https://doi.org/10.2527/jas.2014-

8836. 

Mark, T. 2004. Applied Genetic Evaluations for 

Production and Functional Traits in Dairy 

Cattle. J. Dairy Sci. 87:2641–2652. 

https://doi.org/10.3168/jds.S0022-

0302(04)73390-1. 

Mark, T., P. Madsen, J. Jensen, and W. F. Fikse. 

2005a. Short Communication: Difficulties in 

estimating across-country genetic 

correlations for weakly linked bull 

populations. J. Dairy Sci. 88:3303–3305. 

https://doi.org/10.3168/jds.S0022-

0302(05)73013-7. 

Mark, T., P. Madsen, J. Jensen, and W. F. Fikse. 

2005b. Prior (Co)Variances Can Improve 

Multiple-Trait Across-Country Evaluations 

of Weakly Linked Bull Populations. J. Dairy 

Sci. 88:3290–3302. 

  https://doi.org/10.3168/JDS.S0022-

0302(05)73012-5. 

Ni, G., G. Moser, N. R. Wray, S. H. Lee, S. 

Ripke, B. M. Neale, A. Corvin, J. T. R. 

Walters, K.-H. Farh, P. A. Holmans, P. Lee, 

B. Bulik-Sullivan, et al. 2018. Estimation of 

Genetic Correlation via Linkage 

Disequilibrium Score Regression and 

Genomic Restricted Maximum Likelihood. 

Am. J. Hum. Genet. 102:1185–1194. 

https://doi.org/10.1016/j.ajhg.2018.03.021. 

Nilforooshan, M. A., and H. Jorjani. 2022. 

Invited review: A quarter of a century—

International genetic evaluation of dairy 

sires using MACE methodology. J. Dairy 

Sci. 105:3–21. 

https://doi.org/10.3168/jds.2021-20927. 

Pabiou, T., M. Nilforooshan, D. Laloë, E. 

Hjerpe, and E. Venot. 2014. Across-country 

genetic parameters in beef cattle for 

Interbeef weaning weight genetic 

evaluation. In: 10th World Congress of 

Genetics Applied to Livestock Production. 

Vancouver, Canada. 

Philipsson, J. 1987. Standards and Procedures 

for International Genetic Evaluations of 

Dairy Cattle. J. Dairy Sci. 70:418–424. 

https://doi.org/10.3168/jds.S0022-

0302(87)80026-7. 

Phocas, F., K. Donoghue, and H. U. Graser. 

2005. Investigation of three strategies for an 

international genetic evaluation of beef 

cattle weaning weight. Genet. Sel. Evol. 

37:361–380. 

https://doi.org/10.1051/gse:2005006. 

Pook, T., M. Schlather, and H. Simianer. 2020. 

MoBPS - Modular Breeding Program 

Simulator. G3 GenesGenomesGenetics. 

10:1915–1918. 

https://doi.org/10.1534/g3.120.401193. 

Rekaya, R., K. A. Weigel, and D. Gianola. 

1999. Bayesian estimation of a structural 

model for genetic covariances for milk yield 

in five regions of the USA. In: 50th annual 

meeting of the european association for 

9

https://doi.org/10.3168/jds.S0022-0302(05)72788-0
https://doi.org/10.3168/jds.S0022-0302(05)72788-0
https://doi.org/10.1093/bioinformatics/btw012
https://doi.org/10.1093/bioinformatics/btw012
https://doi.org/10.3168/jds.2009-2061
https://doi.org/10.2527/jas.2014-8836
https://doi.org/10.2527/jas.2014-8836
https://doi.org/10.3168/jds.S0022-0302(04)73390-1
https://doi.org/10.3168/jds.S0022-0302(04)73390-1
https://doi.org/10.3168/jds.S0022-0302(05)73013-7
https://doi.org/10.3168/jds.S0022-0302(05)73013-7
https://doi.org/10.3168/JDS.S0022-0302(05)73012-5
https://doi.org/10.3168/JDS.S0022-0302(05)73012-5
https://doi.org/10.1016/j.ajhg.2018.03.021
https://doi.org/10.3168/jds.2021-20927
https://doi.org/10.3168/jds.S0022-0302(87)80026-7
https://doi.org/10.3168/jds.S0022-0302(87)80026-7
https://doi.org/10.1051/gse:2005006
https://doi.org/10.1534/g3.120.401193


INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 

 

 

animal production (EAAP). Zürich, 

Switzerland. 

Rekaya, R., K. A. Weigel, and D. Gianola. 

2003. Bayesian Estimation of Parameters of 

a Structural Model for Genetic Covariances 

Between Milk Yield in Five Regions of the 

United States. J. Dairy Sci. 86:1837–1844. 

https://doi.org/10.3168/jds.S0022-

0302(03)73770-9. 

van Rheenen, W., W. J. Peyrot, A. J. Schork, S. 

H. Lee, and N. R. Wray. 2019. Genetic 

correlations of polygenic disease traits: from 

theory to practice. Nat. Rev. Genet. 20:567–

581. https://doi.org/10.1038/s41576-019-

0137-z. 

Schaeffer, L. R. 1994. Multiple-Country 

Comparison of Dairy Sires. J. Dairy Sci. 

77:2671–2678. 

https://doi.org/10.3168/jds.S0022-

0302(94)77209-X. 

Van Eenennaam, A. L., K. A. Weigel, A. E. 

Young, M. A. Cleveland, and J. C. M. 

Dekkers. 2014. Applied Animal Genomics: 

Results from the Field. Annu. Rev. Anim. 

Biosci. 2:105–139. 

https://doi.org/10.1146/annurev-animal-

022513-114119. 

VanRaden, P. M. 2008. Efficient methods to 

compute genomic predictions. J. Dairy Sci. 

91:4414–4423. 

https://doi.org/10.3168/jds.2007-0980. 

Venot, E., M. N. Fouilloux, F. Forabosco, A. 

Fogh, T. Pabiou, K. Moore, J.-A. Eriksson, 

G. Renand, and D. Laloë. 2009. Beef 

without borders: genetic parameters for 

Charolais and Limousine Interbeef genetic 

evaluation of weaning weights. Interbull 

Bull. 40:55–60. 

Venot, E., A. Barbat, D. Boichard, P. Croiseau, 

V. Ducrocq, R. Lefebvre, F. Phocas, M.-P. 

Sanchez, T. Tribout, A. Vinet, M. N. 

Fouilloux, A. Govignon-Gion, A, et al. 

2016. French genomic experience: genomics 

for all ruminant species. In: ICAR - Interbull 

Meeting. Puerto Varas, Chile. Available 

from: https://hal.inrae.fr/hal-02743221. 

Weigel, K. A., R. Rekaya, N. R. Zwald, and W. 

F. Fikse. 2001. International Genetic 

Evaluation of Dairy Sires Using a Multiple-

Trait Model with Individual Animal 

Performance Records. J. Dairy Sci. 

84:2789–2795. 

https://doi.org/10.3168/jds.S0022-

0302(01)74734-0. 

Wientjes, Y. C. J., M. P. L. Calus, P. Duenk, 

and P. Bijma. 2018. Required properties for 

markers used to calculate unbiased estimates 

of the genetic correlation between 

populations. Genet. Sel. Evol. 50:65. 

https://doi.org/10.1186/s12711-018-0434-6. 

Wientjes, Y. C. J., R. F. Veerkamp, P. Bijma, 

H. Bovenhuis, C. Schrooten, and M. P. L. 

Calus. 2015. Empirical and deterministic 

accuracies of across-population genomic 

prediction. Genet. Sel. Evol. 47:5. 

https://doi.org/10.1186/s12711-014-0086-0. 

Zhou, X., H. K. Im, and S. H. Lee. 2020. CORE 

GREML for estimating covariance between 

random effects in linear mixed models for 

complex trait analyses. Nat. Commun. 

11:4208. https://doi.org/10.1038/s41467-

020-18085-5. 

Zwald, N. R., K. A. Weigel, W. F. Fikse, and R. 

Rekaya. 2003. Identification of Factors That 

Cause Genotype by Environment Interaction 

Between Herds of Holstein Cattle in 

Seventeen Countries. J. Dairy Sci. 86:1009–

1018. https://doi.org/10.3168/jds.S0022-

0302(03)73684-4. 

10

https://doi.org/10.3168/jds.S0022-0302(03)73770-9
https://doi.org/10.3168/jds.S0022-0302(03)73770-9
https://doi.org/10.1038/s41576-019-0137-z
https://doi.org/10.1038/s41576-019-0137-z
https://doi.org/10.3168/jds.S0022-0302(94)77209-X
https://doi.org/10.3168/jds.S0022-0302(94)77209-X
https://doi.org/10.1146/annurev-animal-022513-114119
https://doi.org/10.1146/annurev-animal-022513-114119
https://doi.org/10.3168/jds.2007-0980
https://hal.inrae.fr/hal-02743221
https://doi.org/10.3168/jds.S0022-0302(01)74734-0
https://doi.org/10.3168/jds.S0022-0302(01)74734-0
https://doi.org/10.1186/s12711-018-0434-6
https://doi.org/10.1186/s12711-014-0086-0
https://doi.org/10.1038/s41467-020-18085-5
https://doi.org/10.1038/s41467-020-18085-5
https://doi.org/10.3168/jds.S0022-0302(03)73684-4
https://doi.org/10.3168/jds.S0022-0302(03)73684-4



