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Abstract 

Phenotyping costs in dairy cattle breeding exhibit significant variability across traits. While milk 

production is recorded routinely at only low costs, traits such as feed efficiency and methane 

emissions pose challenges due to their expensive measurement requirements. This study leveraged the 

real-size digital twin of the Geno breeding program for the Norwegian Red dairy cattle breed to 

simulate genetic progress following ten years of selective breeding, particularly targeting traits 

demanding costly phenotyping. Multiple scenarios were simulated, varying in the number of 

phenotypes recorded, economic weight, and genetic correlation between the trait and total merit index. 

Our results highlight the importance of genetic correlation in achieving progress for traits with 

expensive phenotypes recorded at a limited scale. Increasing economic weight and the number of 

phenotypes increased genetic progress. Thus, there is an indirect indication that traits with low 

phenotyping costs and high correlation to expensive phenotypes should be prioritized when selecting 

for genetic improvement of a trait with expensive phenotypes. However, precise phenotypes are 

required for accurately estimating genetic correlations between traits with expensive phenotypes and 

traits with cheap phenotyping. 
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Introduction 

Since the introduction of genomic selection in 

the Norwegian Red Dairy Cattle (NR) 

breeding program in 2016, single step genomic 

prediction approach was used (Nordbø et al., 

2019). This method integrates pedigree and 

genotype information into a single relationship 

matrix, allowing the inclusion of all the 

individuals with phenotype and genotype 

information in the reference (Christensen and 

Lund, 2010). Consequently, the reference 

population comprises progeny tested bulls and 

phenotyped cows, enhancing the accuracy of 

predicted breeding values (Legarra et al., 

2014). 

As of 2024, the reference population of the 

NR breeding program includes approximately 

100 000 animals for production traits and 

47 000 animals for conformation traits. While 

phenotype data for production traits are 

collected routinely at low costs, the recording 

of type traits has a long history and incurs 

intermediate cost. However, recording for 

enteric methane emission and feed efficiency 

began only recently, resulting in smaller 

reference populations for these traits 

(Heringstad and Bakke, 2023). Due to high 

cost recording these traits, it will take 

significantly more time to establish a reference 

population sufficient for predicting highly 

accurate genomic breeding values. 

This study aims to demonstrate the 

potential of genomic selection in the NR 

breeding program for traits with expensive 

phenotyping by utilizing the digital twin of 

Geno’s breeding program (Ehsani et al., 2022). 

We analysed the effect of the reference 

population size, different economic weights, 
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and the correlation between the selection index 

and the expensive trait. 

Materials and Methods 

A real-size breeding program was simulated 

beginning with fifty years of historical 

breeding (from 1971 to 2020), followed by ten 

years of alternative future breeding scenarios. 

The future scenarios differed in the number of 

phenotypes collected annually (1000, 2000, or 

3000), the economic weight of an expensive 

trait in the future selection index (0.2 or 0.5), 

and the genetic correlation between the index 

trait and the expensive trait. 

During the historical breeding period, 

animals were selected based on the predicted 

breeding values for the index trait. For 

simplicity, this trait was represented milk yield 

(h2=0.192), one of the most important traits in 

the history of NR breeding program. In the 

future breeding scenarios, animals were 

selected based on the future selection index, 

which combined the breeding values of the 

index trait and the expensive trait according to 

the specified economic weights. The 

heritability of the expensive trait was set at 0.3, 

reflecting the estimated heritability of enteric 

methane emission and dry matter intake in NR 

(Heringstad and Bakke, 2023). 

For the first 45 years of historical breeding, 

breeding values were predicted using only 

pedigree data. From 2016 onward, pedigree 

information was combined with genotype 

information into a single step genomic 

evaluation approach. Genomic breeding values 

were calculated using the singular value 

decomposition method (Ødegård et al., 2018). 

In this method, chromosome specific principal 

components explained 98% of genetic variance 

among the 20 000 core individuals. This core 

group included genotypes from all progeny 

proven bulls while the rest were genotypes 

from the cows with available phenotype data. 

The estimated breeding values (rEBV) from 

the final year of future breeding were 

standardised (EBV) so that: EVB = m + k * 

(rEBV - mEBV) / sEBV, where m = 100, k = 

12, mEBV is the mean breeding value of 

females born between 2023 and 2028, and 

sEBV is the standard deviation of the bulls 

breeding values born between April 2011 and 

March 2016. Each scenario was run in ten 

replicates, and the mean genetic progress was 

Figure 1. Fifty years of historical breeding program of Norwegian Red Dairy Cattle breed followed by ten 

years of future breeding as integrated in digital twin of Geno breeding program 
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calculated across the ten replicates for each 

year of selection. The different scenarios were 

compared based on the achieved genetic 

progress after then years of future breeding. 

Results & Discussion 

We present the achieved genetic progress in 

the final year of future breeding separately for 

the index trait and the expensive trait in each 

simulated scenario, as shown in Table 1. We 

will begin by analysing the effect of increasing 

the number of phenotypes. Next, we will 

examine the impact of assigning a higher 

economic weight to the expensive trait. 

Following this, we will explore the effect of 

varying the correlation between the index trait 

and the expensive trait. Lastly, we will 

compare the changes when two or three 

parameters are simultaneously adjusted 

Table 1. Genetic progress (∆G) in ten years of 

future breeding for index trait (IT) and expensive 

trait (ET) with different number of phenotypes (N) 

for ET, different economic weights (EW) for ET 

and IT in the future selection index and different 

genetic correlations between IT and ET (rg) 

N for 

ET 

EW for 

ET* 

rg ∆G for 

IT 

∆G for 

ET 

1000 0.2 0 64.1 2.7 

2000 0.2 0 63.9 3.7 

3000 0.2 0 63.4 6.2 

1000 0.5 0 58.7 11.6 

2000 0.5 0 57.2 15.1 

3000 0.5 0 56.0 17.0 

1000 0.2 0.3 64.4 20.9 

1000 0.2 0.6 64.2 38.6 

1000 0.5 0.3 61.9 26.4 

1000 0.5 0.6 63.3 40.7 

2000 0.2 0.3 64.5 21.9 

2000 0.2 0.6 64.4 39.5 

2000 0.5 0.3 60.8 28.8 

2000 0.5 0.6 62.6 42.6 

3000 0.2 0.3 64.3 22.1 

3000 0.2 0.6 64.4 39.9 

3000 0.5 0.3 59.8 30.3 

3000 0.5 0.6 62.1 43.4 

*EW for IT is: 1 – EW for ET

Effect of increasing phenotype numbers 

Collecting a higher number of phenotypes for 

the expensive trait slightly decreased the 

genetic gain for the index trait while increasing 

the gain for the expensive trait. When 1000 

phenotypes were collected each year during 

the future breeding period, with the economic 

weight for the expensive trait set at 0.2 and no 

correlation between the traits, the genetic 

progress achieved was 64.1 for the index trait 

and 2.7 for the expensive trait. As the number 

of phenotypes increased to 2000 per year, the 

genetic progress for the index trait dropped 

slightly to 63.9, while the gain for the 

expensive trait rose to 3.7. With 3000 

phenotypes per year, the genetic progress 

further declined to 63.4 for the index trait, but 

it increased to 6.2 for the expensive trait. This 

indicates that doubling the number of 

phenotypes for the expensive trait does not 

result in a proportional increase in its genetic 

progress. 

Impact of economic weight 

An increase in the economic weight of the 

expensive trait in the future selection index 

reduced the genetic gain of the index trait but 

enhanced the gain for the expensive trait. 

Specifically, when the economic weight of the 

expensive trait was raised from 0.2 to 0.5 in 

the future selection index, the genetic progress 

over ten years of future breeding fell from 64.1 

to 58.7 for the index trait, while it rose 

significantly from 2.7 to 11.6 for the expensive 

trait. This indicates that increasing the 

economic weight by two and a half times leads 

to more than a fourfold increase in the genetic 

progress of the expensive trait, while the 

genetic progress for the index trait decreases 

by only 8.4%. 

Effect of genetic correlation 

A higher positive genetic correlation between 

the index trait and the expensive trait had no 

significant effect on the genetic improvement 

of the index trait, but it strongly enhanced the 

genetic progress of the expensive trait. When 

the genetic correlation between the two traits 

increased from 0 to 0.3 and then to 0.6, the 

genetic progress of the index trait remained 
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relatively stable, at 64.1, 64.4, and 64.2. In 

contrast, the genetic progress for the expensive 

trait saw substantial increases: from 2.7 with 

no correlation to 20.9 at a correlation of 0.3, 

and further rising to 38.6 when the correlation 

was 0.6. 

Combined parameter adjustments 

Increasing the number of phenotypes for the 

expensive trait, raising its economic weight, 

and having a higher genetic correlation 

between the index and expensive traits 

positively impacted the realized genetic gain of 

the expensive trait. The highest genetic gain of 

43.4 for the expensive trait occurred in the 

scenario where 3000 phenotypes were 

collected, the economic weight was 0.5, and 

the genetic correlation with the index trait was 

0.6. This gain is more than sixteen times 

greater than the baseline scenario, where only 

1000 phenotypes were collected per year, the 

economic weight was 0.2, and there was no 

genetic correlation between the traits. 

Among the three parameters analysed, the 

genetic correlation between the index trait and 

the expensive trait had the greatest impact on 

the genetic gain of the expensive trait. 

Therefore, identifying a phenotype with lower 

recording costs but a strong genetic correlation 

to the expensive trait could be a viable strategy 

for future trait improvement. Since building a 

reference population for the expensive trait 

requires many years, continuing to collect 

precise phenotypes is crucial. This allows for 

the accurate estimation of genetic correlations 

between traits with costly phenotyping and 

those with cheaper phenotyping. Thus, even on 

a smaller scale, ongoing phenotyping for the 

expensive traits is justified. 

Conclusions 

Our findings underscore the critical role of 

genetic correlation in enhancing genetic 

progress for traits with expensive phenotypes, 

especially when phenotyping is limited. 

Increasing the economic weight assigned to 

these traits in the selection index, along with 

the number of phenotypes collected, 

significantly boosts genetic gains. This 

suggests that traits with lower phenotyping 

costs but strong genetic correlations to 

expensive traits should be prioritized in 

breeding programs to achieve indirect genetic 

improvements in costly traits. 

Moreover, the study highlights the 

necessity of obtaining precise phenotypes to 

accurately estimate genetic correlations 

between expensive and inexpensive traits. This 

precision is essential for developing cost-

effective strategies in future breeding efforts 

aimed at enhancing traits with prohibitive 

phenotyping costs. 
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