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Abstract 

 

The multi-step method for genomic prediction has worked remarkably well for US dairy cattle, but 

intense genomic selection makes recent genetic trends difficult to estimate in pedigree-only based BLUP 

evaluations. Thus, the introduction of routine single-step GBLUP (ssGBLUP) is under study. The large 

size of US dairy cattle data precludes naïve approaches for genomic prediction. Here we present the 

technical choices and needs of an all-breed (6 breeds and all existing crosses), ssGBLUP applied to 

different sets of traits within trait groups such as fertility, livability and health data. For each trait group, 

first, we prune pedigree to animals with records and their ancestors, reducing the size of pedigree and 

improving memory use and convergence. The model includes only genotypes of animals in this pruned 

pedigree, and we predict the other animals later either using Parent Average (if not genotyped) or sum 

of SNP effects (if genotyped). The set of markers is the usual CDCB set with 78,964 markers and 

included autosomes and sex chromosomes. The method for ssGBLUP was G-matrix with Algorithm for 

Proven and Young (APY) with metafounders (MF). APY largely reduces computational needs whereas 

MF provides smooth solutions for unknown origins and automatic compatibility of pedigree and 

genomic relationships within and across breeds. The gamma matrix was constructed based on base allele 

frequencies across breeds and increases of inbreeding within breeds.  Core animals were chosen within 

breed, in a heuristic but complete and repeatable manner: genotyped sires with more than a certain 

number of daughters in records, and a deterministic subset of genotyped cows with records. This resulted 

in ~45K animals in the core and ~2M non-core animals for fertility evaluations. Still memory needs are 

large as G_APY inverse, stored in double precision, takes ~720 Gb. Thus, we used memory mapping 

(mmap) to assign memory to disk space. For the case of fertility (4 traits), computation of G-1_APY 

took 28h and 100 Gb of RAM using mmap. Solving MME took 22h, 120 Gb of RAM and 476 rounds 

of PCG. Genomic reliabilities took 120 Gb of RAM and 8h per trait. Backsolving for SNP solutions 

took negligible time and memory. Owing to the developments reported here, computations for ssGBLUP 

in this very large database can be done with reasonable time and memory. 
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Introduction 

  

Genomic predictions in dairy cattle started with 

quite simple multi-step methods consisting in 

traditional pedigree-based evaluations followed 

by genomic predictions based on de-regressed 

proofs of the reference population – those 

animals with genotypes and some sort of 

information from traditional BLUP. However, 

multi-step methods do not use all available 

information and, probably more important, 

traditional evaluations produce biased genetic 

trends. Single-step methods (either in SNP-

BLUP or GBLUP flavors) can instead use all 
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information to estimate unbiased trends and 

improve reliability.  

Therefore, national dairy cattle evaluations 

are gradually shifting to single-step methods. 

Single-step methods are complex for two 

reasons. First, the elementary values handled 

are orders of magnitude larger than pedigree-

based evaluations. For instance, a genetic 

evaluation with 1 million animals in pedigree 

uses a pedigree list of 3 million points. The 

same animals in a pure genomic evaluation 

would use 50 billion points: 50K (SNPs) times 

1 million (cows). The second reason for the 

complexity is the easy algebra but complex 

operations in the single-step methods.  

The US genetic evaluation system at Council 

on Dairy Cattle Breeding (CDCB) is very large, 

including roughly 60 million animals with 

records, 100 million animals in pedigree, more 

than 8 million animals genotyped and 50 traits 

grouped in different models. CDCB, AGIL 

(USDA) and University of Georgia are testing 

single-step methods using the blupf90 suite of 

programs. This led us to define technical 

options to avoid the use of very large resources 

(time, memory, disk space) or extensive 

reprogramming. We present these technical 

options here as they might be of interest for 

other practitioners.  

 

Materials and Methods 

 

Pruning pedigree and markers 

The CDCB evaluates several trait groups (yield, 

somatic cell score, livability, productive life, 

fertility, gestation length, health, residual feed 

intake (RFI), heifer livability, calving ease and 

type traits) including a total of 50 traits – see 

https://uscdcb.com/individual-traits/ . Residual 

feed intake is a Holstein-only evaluation; type 

traits are separate purebred evaluations; the rest 

are all-breed evaluations. The number of 

animals with phenotypes varies enormously 

from ~8K for residual feed intake to 40M for 

yield traits. There are at this moment (June 

2024) 9 million genotyped animals, all imputed 

to 79K SNPs. However not all this information 

is needed for the genomic evaluation itself. The 

CDCB receives pedigrees and genotypes for 

animals that are not directly related to the 

evaluations – because they are foreign animals 

or because they belong to herds that do not 

contribute information. They are related to 

records through pedigree, genotypes, or both. 

Consider pedigree first. The set of animals in 

records for yield (the trait with largest database) 

and its ancestors constitute 60M animals. The 

set of animals in records for residual feed intake 

(the trait with smallest database) and its 

ancestors constitute roughly 60K animals. 

Although in theory one could include all 100M 

animals in the Mixed Model Equations (MME) 

for all traits, this is clearly an overkill. 

Preliminary analyses using the blupf90 family 

showed that solving of the Mixed Model 

Equations with all 100M animals in pedigree 

needed stricter convergence criteria (as some 

animals are very distantly related to 

phenotypes) than the trimmed 60M pedigree. 

Therefore we trim the pedigree, solve the MME, 

and then predict the trimmed animals by 

pedigree relationships (Henderson, 1977). This 

is done via Parent Average from oldest to 

youngest in the trimmed animals. 

Then consider genotypes. One way of 

understanding single-step is that it improves 

pedigree relationships of non-genotyped 

animals via related genotyped animals. Thus, 

and contrary to pedigree BLUP, a young animal 

with no phenotype and no progeny with 

phenotype may contribute to improve the 

elements in H for its non-genotyped parent(s). 

However, it is commonly accepted that this 

improvement is very small. Thus, we decided to 

retain genotypes of animals directly related to 

phenotypes: animals with records and 

ancestors, reducing the number of genotypes 

from 9M to 2M for traits such as yield.  

In other words, first we built a pedigree 

consisting of animals in records and all 

ancestors; then, we extracted the genotypes of 

animals included in this subset pedigree. The 

GEBVs of the remaining animals can be 
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predicted based on SNP effects and pedigree 

predictions (e.g., Vandenplas et al., 2023). 

 

Metafounders 

To model missing parentship and different 

breeds levels we fit metafounders defined by 

breed, year of birth, and selection path. 

Metafounders give smoother estimates (Legarra 

and VanRaden, 2023) and compatibility with 

genomic relationships (Legarra et al., 2015). 

Within trait group, we defined a joining strategy 

that first compacts the definitions “forward” 

until first phenotypes appear (e.g. for health 

traits) and then “backwards” to achieve a 

minimum “pseudo-count of records in progeny” 

per level of metafounders. These results in 

varying numbers of metafounders levels per 

trait group, up to approximately 300 at most. 

The relationship matrix across metafounders 

was obtained using base allele frequencies 

estimated from old genotypes in the database, 

plus a strategy using increase of inbreeding for 

more recent ones (Legarra et al., 2024). A 

“heatmap” of metafounders relationships is in 

Figure 1. 

 

Using the algorithm for Proven and Young 

For these tests we decided to use the Algorithm 

for Proven and Young, so called APY, which 

uses a sparse representation, 𝐆𝐴𝑃𝑌
−1 , of the 

conditional covariances across individuals 

(Misztal et al., 2014; Misztal, 2016). It can also 

be seen as an approximate sparse inverse of the 

genomic relationship matrix. The APY 

algorithm has several advantages: it is fast and 

memory wise, easy to program. However, it 

requires the definition of a set of “core” animals 

representing the whole population. This was 

done using some ideas from Cesarani et al. 

(2022) and some new ones. We also wanted (1) 

to have both bulls and cows and (2) to avoid 

randomness, because it makes troubleshooting 

genetic evaluations more complex. The choice 

of core was done by breed as follows.  

 
Figure 1. Gamma relationship for metafounders, 

sorted by breed and pedigree path 

 

The genotypes that we used for large trait 

groups as fertility or yield consist in a very large 

number of Holsteins (almost 2M), a medium 

number of Jerseys (300K), a small number of 

crossbred animals (called “XX”) (50K) and 

smaller number (<10K) for each of Ayrshire, 

Brown Swiss and Guernsey. At this stage it is 

unclear if XX genotypes will be included in the 

possible “routine” single-step, but we did that to 

test the most complex case. Very old genotyped 

animals (<1990) were not chosen as core as they 

are not truly representative of their respective 

periods. For AY and GU, all animals were 

included as core. For BS and XX 5K animals 

were needed as core, and 15K for JE and HO. 

These numbers have been found in previous 

studies – see Cesarani et al. (2022). 

Then, within population: first, we first chose 

all genotyped sires with >100 daughters (Jersey, 

XX) or >500 (Holstein) with records. This left 

some spots to fill, that were filled with cows 

with records using a deterministic function 

module(anim_key,n) where anim_key is the 

unique integer used at CDCB for identification 

and n is a number to fill in the empty spots in 

the core. Table 1 gives an overview of the final 

numbers.  
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Table 1: number of animals and core genotypes for 

tests on livability 
Breed Genotypes Core 

needed 
Sires 

flagged 
Cows 

flagged 

Ayrshire 1,608 (all) 311 1175 
Brown 
Swiss 

9,560 5K 611 4313 

Guernsey 3,561 (all) 219 3258 
Holstein 1,669,795 15K 6890 8113 
Jersey 300,976 15K 3186 11883 
Crosses 56,528 5K 141 4616 

 

Memory mapping 

Even with APY, 𝐆𝐴𝑃𝑌
−1   stored in double 

precision requires ~700 GB for 45K animals in 

core and 2M animals in non-core. This is still 

less than the matrix of genotypes in double 

precision for the ~2M animals and 79K 

genotypes. This matrix is first formed by cross-

products of blocks with program preGSf90, 

blended (5% or 10%) with a residual polygenic 

relationship matrix 𝐀(Γ)22 based in pedigree, 

then inverted. Allele frequencies are fixed to 0.5 

as assumed by theory of metafounders. Then 

𝐆𝐴𝑃𝑌
−1  is used by program blup90iod3 (solving 

the MME) and accGS2f90 (accuracies as in 

Bermann et al., 2022a).  

The iterative method by Preconditioned 

Conjugate Gradients in blup90iod3 essentially 

consist in multiplications of the MME times a 

vector of solutions. This has a low cost for the 

pedigree + pedigree relationships part, which in 

addition can be easily solved by iteration on 

data algorithms. However, the contributions of 

𝐆𝐴𝑃𝑌
−1  to the MME is more expensive if handled 

in memory. To alleviate memory needs, we 

used the programming technique called 

memory mapping (mmap) 

(https://en.wikipedia.org/wiki/Mmap) which 

allows mapping memory to disk space. Using 

this technique, RAM is reduced to 120Gb 

instead of 700Gb. 

 

Backsolving for SNP solutions 

The SNP effects estimates are needed for 

Indirect Predictions of animals not included 

explicitly in the MME, and also for new animals 

arriving to the database in between full runs. 

The SNP effect estimates can be obtained 

backsolving from GEBVs of core animals 

obtained in the full run (Bermann, 2022b). This 

has low computation cost as the core animals 

are a reduced number and 𝐆𝑐𝑜𝑟𝑒,𝑐𝑜𝑟𝑒
−1  is already 

available as part of 𝐆𝐴𝑃𝑌
−1 . 

 

Rough timings and memory 

Here we give some crude numbers. We have 

made different tests across different servers, 

trait groups and options. The examples are for 

fertility traits: four traits, low heritability, with 

records dating back to 1960 – see Legarra and 

VanRaden (2023) for a more complete 

description. 

There are roughly 100M lactation records 

belonging to 40M animals, with different 

patterns of missing values and different models 

across traits. The pedigree including animals in 

records and ancestors contains 60M animals. Of 

these, 2M animals are genotyped and their 

genotypes included in the prediction, and of 

these, 45K constitute the core, in a manner 

similar to Table 1.  

We used 16 threads. Preparing 𝐆𝐴𝑃𝑌
−1  with 

preGSf90 took 16h and 720Gb of RAM or 28h 

and 120 Gb of RAM using mmap. For all the 

next operations we used mmap. Solving MME 

by blup90iod3 took 22h, 120 Gb of RAM and 

476 rounds of PCG. Genomic reliabilities using 

an approximation to the inverse of the MME 

(Bermann et al., 2002a) took 120 Gb of RAM 

and 8h per trait. Backsolving for SNP solutions 

took negligible time and memory. These 

numbers are very similar to Cesarani et al., 

2022. 

 

Conclusions 

 

Testing single-step forces to make explicit the 

choices and steps of the genetic evaluation 

systems and pipelines. The choices that we 

present here adapt easily to the diverse variety 

of information, traits and population at CDCB, 

while they should guarantee a fair, unbiased 

evaluation on time without using extensive 

computing resources.  
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Correct handling of missing pedigree and 

different breeds, e.g., using metafounder, is 

important for unbiased results. Choices of core 

and trimming pedigree are essential to save 

memory and computing time.  
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