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Abstract 

The concepts considering for unknown parents are crucial in improving genetic evaluations in animal 

breeding by accounting for genetic differences within base populations. This study builds on a previous 

simulation study for the German-Austrian-Czech Fleckvieh population, presenting results that compare 

metafounders (MF) and unknown parent groups (UPG) for single-step genomic best linear unbiased 

prediction, and includes detailed analyses for scaling variance components when using MF. The results 

show that in both settings with complete and incomplete pedigree, evaluations using MF show the best 

bias and dispersion results, with minimal impact from incomplete pedigree information. In contrast, 

evaluations without UPG or MF and evaluations where UPG were incorporated via Quaas-Pollak-

transformation in the pedigree-based and genomic relationship matrix (UPG_fullQP) exhibit substantial 

overestimation and overdispersion, emphasizing the importance of accurate relationship modeling in 

genetic evaluations. This study found that estimating variance components using MF and scaling 

variance components lead to the same heritability. However, using adapted variance components results 

in moderate overestimation and slight overdispersion of GEBV. The validation method based on the 

linear regression method could not detect the significant overestimation and overdispersion in 

UPG_fullQP. This means that commonly used validation methods tend to underestimate the advantages 

of MF in populations with numerous unknown pedigrees, highlighting challenges in model optimization 

for handling unknown parents. 
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Introduction 

Thompson (1979) and Quaas (1988) published 

the concept of unknown parent groups (UPG) to 

account for genetic differences within 

subgroups of base populations, incorporating 

animals with missing parents and diverse 

genetic backgrounds into genetic evaluations. 

UPGs can have non-zero means but are 

assumed to be non-inbred and unrelated, similar 

to the base population. For single-step genomic 

best linear unbiased prediction (ssGBLUP) 

Legarra et al. (2015) extended this concept and 

introduced metafounder (MF), which can model 

relationships within and across subpopulations. 

ssGBLUP uses an integrated relationship 

matrix (H), combining the pedigree-based (A) 

and genomic (G) relationship matrices. Ideally, 

both matrices should refer to the same base 

population (Christensen, 2012), though this is 

often not the case in cattle populations without 

adjustments. Methods to align G with A include 

those by VanRaden (2008), Vitezica et al. 

(2011), and Christensen (2012). MF is 

addressing this alignment by adapting A to 

match G. 

In the German-Austrian-Czech Fleckvieh 

population, the first ssGBLUP genomic 

evaluation was published in April 2021 

(Himmelbauer et al., 2021), using 15 UPGs for 

most fitness traits. MF is considered the gold 
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standard for ssGBLUP implementations (Meyer 

et al., 2018). Therefore, it is likely to be one of 

the next development steps in the national 

genomic evaluation system. 

A small preliminary study for the case 

without unknown parents has already been 

published in Himmelbauer et al. (2023a). The 

detailed results based on a simulated cattle 

population based on two base populations, 

several scenarios and different pedigree settings 

were published in Himmelbauer et al. (2024). 

The results presented in this paper are in part a 

small selection from Himmelbauer et al. (2024) 

supplemented by more detailed analyses for 

scaling the variance components. 

Materials and Methods 

Simulating metafounders 

The fundamental methodology employed for 

simulating the population is analogous to that 

described in Himmelbauer et al. (2024). The 

procedure begins by dividing the founder 

population into two subpopulations, with each 

subsequently selected independently. The 

populations are then reunited, forming the basis 

of the pedigree. From this point onwards, the 

pedigree is recorded, while the heritability (h2) 

for the trait under selection is set to 0.3. 

Subsequently, a period of 30 years was 

simulated with selection based on PBLUP, 

followed by an 8-year period of selection based 

on ssGBLUP. Figure 1 provides a schematic 

representation of the simulation process. 

Dataset 

The entire simulation documented all pedigree 

information, phenotypes, genotypes, and TBV 

for all animals across all years. This data was 

used to create the study's dataset, described in 

detail by Himmelbauer et al. (2024) as "low 

pedigree completeness." In the simulation, all 

females with offspring had phenotypes. To 

mimic routine datasets, 90% of the phenotypes 

from the first 15 generations were randomly 

deleted. Additionally, 75% of males and 30% of 

females born in the last eight years were 

randomly genotyped. The final dataset includes 

approximately 154,500 phenotypes, 143,400 

genotypes, and a total of around 1,105,500 

animals in the pedigree. 

Figure 1. Schematic overview of the simulation 

process. 

A reduced dataset was created for validation, 

using the same animals and genotypes but 

excluding the phenotypes from the last three 

years. Specifically, the phenotypes of all 

females born in years 32, 33, and 34 were 

excluded, resulting in 133,500 phenotypes in 

the reduced dataset. 

For most analyses, some animals are 

assumed to have unknown sires and/or dams. 

The proportions of missing parents are 7.5% for 

sires and 10% for dams and are consistent 

across all birth years. Animals with unknown 

parents are randomly selected, but the potential 

for genomic parentage verification was 

considered, such that parents that can be 

identified with certainty (genotyped sires and 

dams of genotyped animals) or with a high 

probability (e.g., genotyped dam's sires of 

genotyped animals) are not deleted. This 

approach reflects practical scenarios and 

prevents double counting in genetic evaluations 

(Pimentel et al., 2022). 
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Pedigree settings 

Two pedigree settings were tested, resulting in 

different classifications of unknown parents as 

UPG or MF. 

 

Full pedigree 

This setting uses the complete pedigree with no 

missing parents, except for animals born in year 

0, forming the pedigree base. Base animals are 

assigned to their true subpopulations (purebred 

A or B), forming two UPG or MF. 

 

True missing pedigree 

This setting simulates unknown parents 

according to the previously described 

procedure. UPG or MF classification is based 

on subpopulation (purebred A, B, or crossbred 

AB), sex (missing sire or dam), and year of birth 

(grouped in five-year intervals). Since the full 

pedigree is known, true subpopulation and year 

of birth for missing parents are used. 

 

Genetic evaluations 

In order to test different methods of accounting 

for unknown parents, a series of genetic 

evaluations were conducted for the two 

pedigree settings. To calculate the estimated 

linear regression validation statistics (LR) 

(Legarra and Reverter, 2018), all evaluations 

were also computed for the truncated datasets. 

Except for the evaluation with scaled variances, 

we used the simulated genetic variance 

(𝜎𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑
2 = 0.3) and for all evaluations, true 

base allele frequencies were used to construct 

the genomic relationship matrix. 

All evaluations were conducted using 

MiX99 (MiX99 Development Team, 2019). 

The G matrix for ssGBLUP was prepared as in 

Himmelbauer et al. (2023b) using the HGINV 

program (Strandén and Mäntysaari, 2020), 

based on VanRaden's method 1 (VanRaden, 

2008) and the approach for Proven and Young 

(Misztal et al., 2014a). For evaluations using the 

MF approach, base allele frequencies were set 

to 0.5, as outlined by Legarra et al. (2015). 

 

1) ssGBLUP without UPG (no_UPG): 

An ssGBLUP was used to estimate GEBV 

without UPGs. All unknown parents were set to 

0, assigning them to a single base population. 

 

2) ssGBLUP with UPG in A (UPG_alteredQP): 

This ssGBLUP used UPGs in the pedigree, 

modeled as random. UPGs were included in the 

inverse pedigree relationship matrix (𝐴−1) and 

the inverse pedigree relationship matrix for 

genotyped animals (𝐴22
−1), but not in the inverse 

genomic relationship matrix (𝐺−1). This 

approach follows Masuda et al. (2018, 2022) 

and Strandén et al. (2022). 

 

3) ssGBLUP with UPG in H (UPG_fullQP): 

This method also used UPG and QP 

transformation was applied to 𝐴−1, 𝐴22
−1 and 

𝐺−1 as described in (Misztal et al., 2013). 

 

4) ssGBLUP with MF and true Γ (MF_true): 

In this ssGBLUP, unknown parents were 

represented by MF, with relationships defined 

by the true Γ. The variance-covariance matrix 

for breeding values was 

𝑣𝑎𝑟(𝑢) = 𝐻Γ ∙ 𝜎𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑
2 , 

where 𝜎𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑
2  is 0.3 and 𝐻Γ is the combined 

relationship matrix as described in Legarra et al. 

(2015). 

 

5) ssGBLUP with MF, true Γ and scaled 

variances (MF_sc): 

This evaluation is similar to MF_true, but with 

scaled variance components according to 

Legarra et al. (2015). The additive genetic 

variance was scaled using: 

𝜎𝑟𝑒𝑙𝑎𝑡𝑒𝑑
2 ≈

𝜎𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑
2

1 + 
𝑑𝑖𝑎𝑔(𝜞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

2 − �̅�

 

(Legarra et al., 2015). The variance-covariance 

matrix for breeding values was then  

𝑣𝑎𝑟(𝑢) = 𝐻Γ ∙ 𝜎𝑟𝑒𝑙𝑎𝑡𝑒𝑑
2 . 

 

Estimation of variance components 

The variance components were estimated using 

AIREML (Misztal et al., 2014b). The data used 
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correspond to those used for the "full pedigree" 

pedigree setting, i.e., a complete pedigree with 

two base populations and all phenotypes that 

were also used for all test runs analyzed. 

Genotypes were not used in the variance 

component estimation. 

Two different approaches were tested. On 

the one hand, the variance components were 

estimated in the case that the relationships 

between the two base populations (Γ) were not 

taken into account, and on the other hand with 

consideration of (Γ) in the creation of A. In 

addition, the results from the first approach 

were scaled using the scaling method of Legarra 

et al. (2015) and compared with those results 

from the second approach. 

 

Analyzing results 

All comparisons are based on 10 repetitions of 

the previously described simulation. 

 

True validation statistics: 

Two measures, bias and dispersion, are used to 

compare the different evaluations. These are 

calculated using the youngest animals with 

genotypes born in the last year of the 

simulation, totaling 14,672 animals. 

Bias, the mean difference between (G)EBV and 

TBV, is calculated as  

𝑏 = 𝐸𝐵𝑉̅̅ ̅̅ ̅̅ − 𝑇𝐵𝑉̅̅ ̅̅ ̅̅  

Positive bias values indicate overestimation. 

Given that the genetic standard deviation for the 

trait is 1, the bias can be interpreted as genetic 

standard deviations. 

Dispersion is measured by the regression 

coefficient 𝑏1 from the regression: 

𝑇𝐵𝑉 = 𝑏0 + 𝑏1 ∙ 𝐸𝐵𝑉 + 𝑒 

where 𝑏0 is the intercept, 𝑏1 the regression 

coefficient and 𝑒 the residuals. 

 

Estimated validation statistics using linear 

regression (LR) method: 

To obtain validation statistics, (G)EBV for 

certain validation animals based on a full 

dataset are compared with those from a reduced 

dataset. Two validation groups were defined: a 

male group (around 530 genotyped bulls born 

between years 30-32) and a female group 

(around 12,400 genotyped females born 

between years 32-34). Bulls in the male group 

have no daughters with records in the reduced 

dataset but at least 20 daughters in the full 

dataset. Cows in the female group have no 

phenotypes in the reduced dataset but have 

records in the full dataset. 

Based on Himmelbauer et al. (2023b), the 

LR method accurately estimates bias, 

dispersion, and validation reliability (Legarra 

and Reverter, 2018; Macedo et al., 2020). Bias, 

the mean difference of GEBV between reduced 

and full datasets, is calculated as: 

𝑏 = 𝐺𝐸𝐵𝑉𝑟
̅̅ ̅̅ ̅̅ ̅̅ − 𝐺𝐸𝐵𝑉𝑓

̅̅ ̅̅ ̅̅ ̅̅ ̅ 

A bias of 0 indicates unbiased (G)EBV. 

Positive values indicate overestimation, and 

negative values indicate underestimation. 

Dispersion is calculated as: 

𝑏1 =
cov(𝐺𝐸𝐵𝑉𝑓 , 𝐺𝐸𝐵𝑉𝑟)

var(𝐺𝐸𝐵𝑉𝑟)
. 

If 𝑏1 = 1, there is no over- or 

underdispersion, 𝑏1 < 1 indicates 

overdispersion, and 𝑏1 > 1 indicates 

underdispersion. 

Reliability is calculated as: 

𝑟2 =
cov(𝐺𝐸𝐵𝑉𝑓 , 𝐺𝐸𝐵𝑉𝑟)

𝜎𝑔
2 , 

where 𝜎𝑔
2 is the true genetic variance in the 

validation group. 

These statistics were calculated for both 

male and female animals across all pedigree 

settings, and genetic evaluations, and are based 

on 10 replicates. 

 

Results & Discussion 

 

Bias and dispersion 

Figure 2 presents bias and dispersion results for 

the two pedigree settings and different 

evaluations. Regarding bias in the full pedigree 

setting, no_UPG, UPG_alteredQP, and 

UPG_fullQP show a slight overestimation of 

around 0.04 genetic standard deviations, with 

UPG_fullQP slightly higher at 0.07. MF with 
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true Γ underestimates by approximately 0.02 

genetic standard deviations, while scaled 

variance components overestimate by 0.03 

genetic standard deviations. In the true missing 

pedigree setting, no_UPG and UPG_fullQP 

exhibit substantial overestimation of 0.24 and 

0.40 genetic standard deviations, respectively. 

MF evaluations show slight underestimation, 

with minimal impact from incomplete pedigree 

information. 

Similar trends apply to dispersion (Figure 2, 

second row). In the full pedigree setting 

evaluations no_UPG, UPG_alteredQP, and 

UPG_fullQP show similar results regarding 

dispersion of around 0.96. MF_true and MF_est 

perform best with a regression coefficient of 

1.00. However, scaling variance components 

with MF slightly worsens dispersion. In the true 

missing pedigree setting UPG_alteredQP 

maintains a similar dispersion level of 0.96, 

while no_UPG decreases to 0.93 due to 

incomplete pedigree data. UPG_fullQP shows 

the most significant impact, decreasing 

dispersion coefficients from 0.96 (full pedigree) 

to 0.74 (true missing pedigree). MF evaluations 

show consistent dispersion values, with 

MF_true at 1.00 and MF_sc at 0.97 for the true 

missing pedigree setting. 

The evaluation using MF and true Γ shows 

the best bias and dispersion results in both 

pedigree settings, aligning with Bradford et al. 

(2019). Clear differences are observed in 

evaluations with and without UPG. The upward 

bias in no_UPG, along with overdispersion, 

arises because relationships in A, which only 

considers known relationships, do not match 

those in G, where all genomic relationships are 

fully considered. 

UPG_fullQP exhibits significant bias and 

overdispersion due to double-counting when 

UPG is considered in G, despite G's complete 

genomic relationships. Similar issues have been 

identified in other studies (Bradford et al., 2019; 

Masuda et al., 2021; Meyer, 2021). 

UPG_alteredQP yields results similar to those 

with a complete pedigree because G accurately 

accounts for relationships and is unaffected by 

incomplete pedigrees.  

All results presented here are also part of the 

study published by Himmelbauer et al. (2024). 

Beside a more detailed discussion of the 

presented results, in Himmelbauer et al. (2024) 

a comparison of these results with the results of 

a second scenario with less unknown parents, 

two additional pedigree settings and two 

additional genetic evaluations are presented. 

 

 
Figure 2. Comparison of true validation statistics 

(bias, dispersion) for 2 pedigree settings and 5 

evaluation methods. The error bars in the plot show 

the range from minimum to maximum and the “x” 

show the means over 10 repetitions. 

 

Scaling or estimating variance components 

This study demonstrated that scaled variance 

components, compared to non-scaled ones, tend 

to result in a moderate overestimation rather 

than slight underestimation of GEBV. In terms 

of dispersion, scaled variance components have 

a negative effect, causing slight overdispersion. 

Similar effects were observed in a scenario with 

a complete pedigree and only two MF 

(Himmelbauer et al., 2023a). The effects of 

scaled variance components in this study are 

comparable, but to a lesser extent, with those 

reported by Himmelbauer et al. (2023b) in a 
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scenario with excessively too high heritability. 

This suggests that scaling may lead to a slightly 

too high heritability estimate. 

Variance component estimation was 

performed to analyze this aspect in detail. Using 

A (pedigree relatedness without considering 

metafounder) it was possible to accurately 

estimate the simulated heritability (h²) (Table 1 

without MF/Γ). However, using AΓ (pedigree 

relationship matrix considering MF 

relationships) resulted in an average h² of 

0.3887, significantly higher than the simulated 

h². Yet, this h² corresponds closely to the scaled 

value calculated using the formula from Legarra 

et al. (2015), shown in Table 1 (scaled) as 

0.3854. These analyses confirm that the scaling 

method of Legarra et al. (2015) works well and 

yields nearly identical results as estimating 

variance components with MF relationships. 

However, why the scaled h² provides slightly 

poorer validation results compared to unscaled 

h² remains unresolved. 

Additional analyses in Himmelbauer et al., 

(2024) indicated that scaled variance 

components appear to influence the GEBV of 

the animals themselves but not the estimation of 

the MF effects. 

 

Table 1: Results of variance component estimation 

with and without using MF and scaling variances. 

without MF/Γ 

 
genetic 

variance 

residual 

variance 
h2 

mean 1.0663 2.3891 0.3088 

min 0.9625 2.1878 0.2708 

max 1.1142 2.6268 0.3224 

with MF/Γ 

 
genetic 

variance 

residual 

variance 
h2 

mean 1.5212 2.3941 0.3887 

min 1.3761 2.1918 0.3435 

max 1.5941 2.6303 0.4045 

scaled 

 
genetic 

variance 

residual 

variance 
h2 

mean 1.4970 2.3891 0.3854 

min 1.3565 2.1878 0.3405 

max 1.5644 2.6268 0.4006 

 

Estimated validation statistics using LR 

method 

Figure 3 displays the results of validation using 

the LR method for both pedigree settings and all 

genetic evaluations. Reliability shows minor 

variations among genetic evaluations, with 

those using MF performing slightly less 

effectively compared to other ssGBLUP 

evaluations. Notably, the validation does 

neither detect the full extent of the significant 

overestimation of no_UPG and UPG_fullQP, 

nor the extent of the pronounced overdispersion 

of UPG_fullQP in settings with incomplete 

pedigree. Validation statistics reveal no 

substantial differences between full and missing 

pedigree settings. In terms of bias, MF_true  

 

 
Figure 3. Comparison of estimated validation 

statistics (reliability, bias, dispersion) based on the 

LR method for 2 pedigree settings and 5 evaluation 

methods. The error bars in the plot show the range 

from minimum to maximum and the “x” and “o” 

show the means over 10 repetitions. 
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exhibits slight downward bias compared to 

other evaluations. However, regarding 

dispersion, both MF_true and MF_sc show a 

regression coefficient close to 1.00 across both 

pedigree settings, while no_UPG and 

UPG_alteredQP demonstrate slightly worse but 

still quite good results based on this validation. 

The main conclusion is that also with this 

validation method evaluations using MF 

generally perform very well or at least better 

compared to other evaluation methods. 

However, differences in validation statistics are 

notably smaller than with true validation 

statistics. It is important to note that the 

significant bias and dispersion observed with 

UPG_fullQP is not detected by LR validation 

statistics. Such methods can only detect bias 

and dispersion if these issues are corrected in 

evaluations using complete datasets 

(Himmelbauer et al., 2023b). This is not the 

case here, as GEBV from UPG_fullQP appear 

nearly unbiased. 

In summary, in populations with numerous 

unknown pedigrees, commonly used validation 

methods tend to underestimate the advantages 

of MF compared to other evaluations. This 

emphasizes the challenge of identifying an 

optimal model for dealing with unknown 

parents in practice. 

 

Conclusions 

 

In conclusion, the findings of this study indicate 

that MF has a positive effect on reducing bias 

and dispersion. The study highlights the 

potential of significant bias and dispersion 

when UPG is considered in an incorrect 

manner. Furthermore, the scaling of variance 

components was found to have a small 

detrimental effect on true validation statistics, 

rather than an enhancing one. The study also 

shows that the method of scaling variance 

components proposed by Legarra et al. (2015) 

leads to similar results as those obtained by 

estimating variance components using 

metafounder. Finally, the study identified 

limitations in the use of the LR method for 

assessing the effectiveness of MF in this 

context. These findings emphasize some of the 

challenges and outcomes associated with 

implementing MF in dairy cattle populations. 
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