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Abstract 

Traditionally, a two-step modeling approach of residual feed intake (RFI) is incorporated into the Feed 

Saved index at dairy cattle genetic evaluation centers. Challenges have been identified in the 1st step on 

handling fixed effects in the statistical model and dealing with missing phenotypes. This could be solved 

using a multi-variate modelling approach for genetic RFI (gRFI). Most existing RFI models use changes 

in body weight, and therefore, likely inadequately account for changes in body reserves because energy 

density differs between mobilization and deposition, and between adipose and muscle tissue. 

Alternatively, energy balance can be estimated from body reserve changes (EBbody). Therefore, this 

study aimed to explore a genomic evaluation of gRFI in Nordic primiparous cows using EBbody as energy 

sink for changes in body reserves. Weekly records were collected from 2,029 Jersey (JER) cows, 3,178 

Red Dairy Cattle (RDC) cows, and 4,661 Holstein (HOL) cows. For JER and RDC, the feed intake data 

was obtained with the Cattle Feed InTake system (CFIT, VikingGenetics, Denmark). For HOL, feed 

intake data was collected from CFIT farms and a research farm (857 cows and 25,547 weekly records). 

The genotyping rate for cows with data were 92% for JER and RDC, and 81% for HOL.  The gRFI 

model was a random regression multi-variate model with 2nd order Legendre polynomials for additive 

genetic and permanent environmental effects. The gRFI model was validated with an across-herd cross-

validation scheme using the Legarra Reverter method and reporting bias, dispersion and correlation 

terms. Breeding values were predicted using the single-step approach for both genotyped and non-

genotyped animals. The bias was close to 0 for all breeds. The dispersion coefficients were found in an 

acceptable range at 0.92 (DMI) and 0.87 (gRFI) for HOL and 0.96 (DMI) and 0.85(gRFI) for RDC, 

while overdispersion was observed for JER (DMI:0.75, gRFI:0.69). Correlations between genomic 

breeding values, estimated with whole and partial phenotypic information, were moderately high for all 

breeds (DMI: 0.51-0.68, gRFI: 0.46-0.59). In conclusion, it was possible to construct a genomic gRFI 

model for all three Nordic dairy cattle breeds and integrate EBbody as an energy sink indicator. We 

observed promising validation metrics for HOL and RDC, but JER models need further refinement. The 

results demonstrate selection for gRFI is expected to provide genetic gain of feed efficiency in dairy 

cattle. 
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Introduction 

Improving feed efficiency through genetics 

poses an important part of enhancing economic 

viability and environmental sustainability in 

dairy cattle farming (VandeHaar et al., 2016). 

Several genetic evaluation centers have 

integrated the "Feed Saved" index, as selection 

criteria for feed efficiency in the national 

breeding goals. A significant component of this 

index lies in the residual feed intake (RFI) part, 

which traditionally is modelled in a two-step 
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process (Tempelman and Lu, 2020). Initially, a 

precorrection step generates a model-based 

residual for feed intake, serving as the 

phenotype for subsequent genetic evaluation. 

However, challenges arise concerning the 

handling of fixed effects and missing records 

within this initial step. To address these 

challenges, Tempelman and Lu (2020) 

proposed the genetic multi-variate approach to 

RFI (gRFI) based on the work by Kennedy et 

al. (1993). This model has not been tested 

within Nordic breeds. 

 Most existing RFI models address body 

reserve management using changes in body 

weight (ΔBW). However, this approach likely 

suffers deficiency because of significant 

variations in energy density between 

mobilization and deposition, as well as among 

different tissue types (adipose and muscle). An 

alternative is outlined by Thorup et al. (2018), 

who proposed to estimate energy balance from 

changes in body reserves (EBbody) by 

employing energy-specific coefficients tailored 

to tissue types and energy status. However, the 

effect of EBbody has yet to be investigated for 

RFI models. 

 Genomic prediction offers implementation 

of traits that have relatively few records due to 

expensive recording schemes (e.g. feed 

efficiency). Studies have demonstrated the 

feasibility of genomic prediction for dry matter 

intake (Berry et al., 2014, De Haas et al., 2015). 

As a limited number of records are available, 

the traditional forward prediction outlined in 

Mäntysaari et al. (2010) were not feasible for 

validation of genomic predictions. 

Alternatively, the Legarra-Reverter cross-

validation method (Legarra and Reverter, 

2018), using whole and partial datasets seems 

attractive. However, limited literature exists on 

genomic validation of gRFI.  

 This study aimed to explore the ability to 

establish a genomic evaluation of gRFI and 

perform herd cross-validation, using Nordic 

primiparous cows and incorporating the EBbody 

as energy sink trait for body reserve 

management. 

Materials and Methods 

The modelling of the multi-variate gRFI model 

is based on weekly means of dry matter intake 

(DMI), energy corrected milk (ECM), and 

body weight (BW) records for each individual 

cow. The phenotyping systems were the Cattle 

Feed InTake (CFIT) system installed on 19 

commercial Danish farms and research data 

from the Danish Cattle Research Center 

(DCRC) at AU-Foulum. A detailed description 

of the 3D camera based CFIT system is outlined 

in Lassen et al. (2023) and for DCRC in Li et al. 

(2017) and Stephansen et al. (2023). 

Feed intake data 

The data compromised repeated records from 

one to 45 weeks in milk of 3,873 HOL cows 

with 161K weekly CFIT DMI records (2,564 

primiparous), 2,068 JER cows with 93K weekly 

CFIT DMI records (1,505 primiparous), 3,235 

RDC cows with 139K weekly CFIT DMI 

records (2,006 primiparous) and 878 HOL cows 

with 50K weekly DCRC DMI records from the 

Roughage Intake Control System (Insentec 

B.V., Marknesse, the Netherlands) (835

primiparous). A detailed description of the data

and quality control can be found in Stephansen

et al. (2024).

Energy balance from body reserves 

We adapted the estimation method of EBbody, 

using frequent BW measurements from Thorup 

et al. (2013) as: 

𝐸𝐵𝑏𝑜𝑑𝑦 , 𝑀𝐽/𝑑𝑎𝑦 = 𝑧 × ∆𝐵𝐿 + 𝑦 × ∆𝐵𝑃𝑠𝑡𝑑

where EBbody is the energy balance phenotype 

calculated from frequent BW measurements 

and expressed in changes of mega joule per day, 

z is the energy coefficient for lipid, being 39.6 

MJ/kg mobilized and 56 MJ/kg deposited 

adipose tissue, y is the energy coefficient for 

protein, being 13.5 MJ/kg mobilized and 50 

MJ/kg deposited muscle tissue, ΔBL is the 

change in body lipid and ΔBPstd is the predicted 

change in body protein outlined in Thorup et al. 
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(2013). Details on the modelling of EBbody can 

be found in Thorup et al. (2018) and in context 

of this data in Stephansen et al. (2024). 

Pedigree and Genotypes 

Breed-specific pedigrees used from the Danish 

cattle database and underwent a pruning process 

using the DMU trace software (Madsen, 2012) 

for cows with data. The pruned pedigrees 

consisted of 18,432 HOL animals, 7,294 JER 

animals, and 12,423 RDC animals. Phantom 

parent groups were assigned to animals with 

missing parents using combinations of sex 

(Male or Female), breed (breed in analysis or 

other breeds), country (HOL: Nordic, EU, 

North America & rest; JER+RDC: Nordic & 

rest), and birth year classes (HOL: <2000, 

2000-2010, & >2010; JER+RDC: before and 

after 2000).  

Imputed genotypes were provided by Nordic 

Cattle Genetic Evaluation (Skejby, Denmark). 

Most animals were genotyped with 50k 

Illumina Bovine SNP50 or imputed from the 

LD chip panels. The imputation was done by 

SEGES Innovation (Skejby, Denmark) and part 

of the routine genetic evaluations in Nordic 

Genetic Cattle Evaluation (Skejby, Denmark). 

For Holstein 46,342 single nucleotide 

polymorphisms (SNP) were available, which 

were 41,897 SNPs for Jersey and 46,914 SNPs 

for RDC. Genotypes from animals born before 

2000 were omitted because genotypic 

information on distantly related animals 

contribute little to accuracy of prediction in 

focal animals, and because including genomic 

information across multiple generations can 

promote prediction bias.  

To calculate the relationship matrix 

encompassing genotyped and non-genotyped 

cows for a ssGBLUP analysis, we calculated the 

inverse of H as (Aguilar et al., 2010, 

Christensen and Lund, 2010):  

𝐇−1 =  𝐀−1 + [
0 0
0 (𝜔𝐆 + (1 − 𝜔)𝐀22)−1  −  𝐀22

−1],

where A-1 is the inverse of the pedigree 

relationship matrix, G the genomic relationship 

matrix, ω is the relative weight of the 

polygenetic effect (ω=0.8), A22 is the part of the 

pedigree relationship matrix with genotyped 

animals, and  𝐀𝟐𝟐
−𝟏 is the inverse of A22. The

genomic relationship matrix was calculated 

according to VanRaden (2008) using method 1 

and the invgmatrix software by Su and Madsen 

(2011). 

Statistical model 

Variance components for the multi-variate 

model were estimated using a Gibbs sampler in 

the RJMC module in DMU version 5.5 Madsen 

and Jensen (2013). For variance component 

estimation, the pedigree-based relationship 

matrix was used for following multi-variate 

model: 

y = Xb + Mh + Za + Wpe + e, 

 where y is the vector of phenotypes with 

sub-vectors for DMI, ECM, BW and EBbody in 

the different weeks of lactation; b is the fixed 

effects year x experimental diet at DCRC or 

version of CFIT system, a fourth order 

Legendre polynomial fixed regression on weeks 

in milk and nested within herd, and a second 

order Legendre polynomial fixed regression on 

age at calving; h is the vector of random effects 

for herd × year × test-week (record date); a is 

the vector of random regressions for random 

additive genetic effect of cows with sub-vectors 

for each of the traits; pe is the vector of random 

regressions for random permanent 

environmental effects of cows with sub-vectors 

for each of the traits. Weekly means were 

modelled across traits from one to 45 weeks in 

milk by a second Legendre polynomials 

(intercept, linear, quadratic) for both a and pe; 

e is the vector of random residual effects with 

sub-vectors of all traits included in the analysis. 

X is the design matrix for fixed effects, M is the 

design matrix for herd × year × test-week 

random effects and Z and W are the design 

matrices with covariable matrices containing 
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Legendre polynomial coefficients 

corresponding to week of lactation. Details on 

post-model processing of variance components 

to derive heritability, additive genetic 

correlations, and genetic regressors can be 

found in Stephansen et al. (2024). 

Genomic herd cross-validation 

We aimed to perform genomic validation by 

herd. Thereby, we assessed the expected value 

of genomic breeding values (GEBV) in herds 

which do not have the CFIT system. The 

estimated variance components of the multi-

variate model and H-1 were applied to 

ssGBLUP models to estimate GEBVs using the 

DMU5 module with the preconditioned 

conjugate gradient computation method.  

 To set up the different datasets for the herd 

cross-validation, we first formed a whole 

dataset containing all phenotypic information, 

that was used to estimate GEBVs (GEBVwhole). 

Hereafter, we formed three partial datasets for 

HOL and two for JER and RDC. In each of the 

partial datasets, we omitted all phenotypic 

information for 1-3 herds, and a herd could only 

appear as validation herd in one partial dataset. 

Assigning herds to be validation herds in the 

different partial datasets were done such that a 

group of validation herds consisted of herds that 

were geographically close and approximately 

1,000 validation cows. These partial datasets (7 

in total across breeds) were used to predict 

GEBVs (GEBVpartial). A few of the CFIT herds 

were not used as validation herds and the DCRC 

herd were always included in the training 

population for HOL to avoid backward 

predictions in time. Using only validation 

animals, we created following linear model to 

assess herd cross-validation metrics according 

to Legarra and Reverter (2018):  

GEBVwhole = µw,p + ßw,p × GEBVpartial + ɛ 

 where GEBVwhole was the GEBVs of 

validation animals with full phenotypic 

information, µw,p was the intercept (bias term), 

ßw,p was the slope (dispersion term), GEBVpartial 

was the GEBVs of validation animals with no 

phenotypic information and ɛ was the residual. 

From the linear model we also reported the 

correlation (ρw,p) for the lactation-sum GEBVs 

of DMI and gRFI. Detailed information on how 

lactation-sum results were calculated can be 

found in Stephansen et al. (2024).  

Results & Discussion 

Figure 1 presents the average phenotypic level 

of EBbody through first lactation. For all breeds, 

the cows undergo a period of negative energy 

balance in early lactation, which becomes 

positive between 5-10 weeks in milk. These 

phenotypic results of EBbody in terms of level 

and pattern throughout first lactation are in line 

with the findings in Holstein and Jersey with 

experimental data (Thorup et al., 2018). 

Variance component from the tested gRFI 

model can be found in Stephansen et al. (2024). 

Genomic validation results, using the Legarra-

Reverter method, are presented in Table 1. To 

the authors’ best knowledge, no studies have 

conducted by-herd cross-validation of GEBVs 

for feed efficiency traits in dairy cattle. We 

observed limited bias for DMI and gRFI in all 

breeds, comparing µw,p to the lactation-sum 

additive variance level. Acceptable ßw,p values 

was found for HOL and RDC, but 

overdispersion was observed in JER. Further 

research is needed for JER on the observed 

overdispersion, when more data is collected. 

Moderately high ρw,p were found across breeds 

and highest for DMI (0.51-0.68) compared to 

gRFI (0.46-0.59). The pattern across breeds 

shows the highest cross-validation correlations 

were obtained for HOL, the breed with most 

cows, while lowest for JER, the breed with 
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Holstein 

Jersey 

Red Dairy Cattle 

Figure 1. Lactation curves of energy balance 

calculated from changes in body reserves as MJ/day. 

Color and line pattern represents different herds. 

smallest number of cows. The results suggest 

that genomic predictions of gRFI in herds with 

no phenotypic information can provide reliable 

GEBVs that can be used to generate genetic 

gain for feed efficiency.  

This study aimed to validate the effect of 

GEBVs for gRFI in herds with no phenotypic 

information. However, it could be emphasized 

that not all phenotypic information would be 

missing, such as phenotypic information on 

milk production from a test-day recording 

scheme and BW records from some herds with 

milking robots or other measuring techniques  

(Lidauer et al., 2019). Future research should 

aim to investigate the effect of not having all 

phenotypic information missing in a herd cross-

validation study, but as well validate the effect 

of missing information at different life stages, 

such as very young animals before first mating 

and only phenotypic information in very early 

lactation used for extension of the lactation. 

This can potentially be valuable information for 

management and breeding decisions on dairy 

farms, but as well for the breeding companies. 

Table 1: Results from Genomic Legarra-Reverter 

validation using a herd cross-validation scheme for 

primiparous Nordic breeds. HOL = Holstein, JER = 

Jersey, RDC = Red Dairy Cattle, DMI = Dry Matter 

Intake, gRFI = genetic Residual Feed Intake, µw,p = 

intercept (bias term), ßw,p = slope of regression 

(dispersion term), ρw,p = correlation between 

genomic breeding values with whole and partial 

phenotypic information for validation animals. 

Trait HOL 

Estimates 

JER RDC 

DMI 

µw,p -0.36 3.64 -1.15

ßw,p 0.92 0.75 0.96

ρw,p 0.68 0.51 0.66

gRFI 

µw,p 0.34 1.69 -2.00

ßw,p 0.87 0.69 0.85

ρw,p 0.59 0.46 0.54

Conclusions 

We aimed to evaluate gRFI genomically and 

test the feasibility of incorporating a novel 

energy sink trait for changes in body energy for 

Nordic primiparous cows, using data from the 

3D camera-based system CFIT and the DCRC 

research herd. The genomic validation results 

show limited bias, and acceptable dispersion of 

predicted breeding values for HOL and RDC. 

However, overdispersion of predicted breeding 

values was observed in JER. Correlations 

between GEBVs from whole and partial 

datasets of validation cows, shows moderately 

high (0.46-0.59). These results show that 

selecting for gRFI GEBVs are expected to 
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provide genetic gain of feed efficiency in other 

dairy herds. 
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