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Abstract 

Residual Feed Intake (RFI) is commonly defined as residuals from linear regression of feed intake on 

energy sinks, expressed on the phenotypic scale.  Estimates of partial regression coefficients are 

obtained by Least Squares, and RFIs are subsequently used as phenotypes in a genetic evaluation 

model. Alternatively, regression coefficients for RFI can be derived directly from phenotypic co-

variances among feed intake and the energy sinks, and EBVs for RFI can be formulated as 

reparameterizations of EBVs for feed intake and energy sinks from a multiple-trait (MT) model. This 

is equivalent to the recursive model (RM) approach, with EBVs calculated as system parameters. 

Using RM as operational tools, RFI can be defined and the respective parameters calculated, for 

overall and any individual source of random variation covered by the MT model for feed intake and 

energy sinks, i.e., genetic, PE, residual.  Different definitions of RFI result in independence of RFI 

from energy sinks on different levels of variability. These concepts are illustrated by application of the 

genetic evaluation model for feed efficiency of Canadian Holsteins. A six-trait MT model for Dry 

Matter Intake (DMI), Energy Corrected Milk (ECM) and Metabolic Body Weight (MBW) in two DIM 

intervals of 1st lactation was fitted to approximately 100,000 weekly records on 5,000 cows, with 

9,000 genotyped animals in the pedigree via MC-EM-REML and Single-Step GBLUP, for the purpose 

of co-variance component estimation and genomic evaluation. Four different expressions of RFI in 61 

– 305 DIM in lactation (phenotypic = pRFI, genetic = gRFI, permanent environmental = eRFI and

residual = rRFI) were defined and examined as potential selection criteria or as tools for optimizing

management, with respect to estimates of genetic parameters and GEBV. Standardized regression

coefficients of DMI on sinks differed among RFI definitions, but the relative impact of sinks was

similar. Heritabilities of RFIs ranged from 0.05 (gRFI) to 0.15 (rRFI). Genetic and phenotypic

expressions of RFI were genetically correlated at 0.84. Genetic correlations between pRFI and energy

sinks were 0.62 for ECM and 0.04 for MBW (versus 0.00 for gRFI). Genetic correlations with DMI

were 0.37 and 0.59 for gRFI and pRFI, respectively. Correlations between GEBV, for official sires (N

= 298), ranged from 0.64 (gRFI and pRFI) to 0.99 (pRFI and eRFI). Results illustrate substantial

differences among definitions of RFI in dairy cattle and consequences of using different definitions for

genetic evaluation and selection. Generalizations to other traits are straightforward.
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Introduction 

Feed represents a significant proportion of 

dairy cattle production expenses. To reduce 

costs, genetic selection for feed efficiency has 

recently become more widely used across 

different dairy populations. Examples include 

the Canadian Holstein genetic evaluation for 

metabolic feed efficiency (Jamrozik et al., 

2022), and US genetic evaluation for feed 

saved (Parker Gaddis et al., 2021). Both North 

American approaches are based on the concept 

of Residual Feed Intake, as a measure of feed 

efficiency independent of an animal’s body 

size and production level. It is considered to 
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represent the inherent variation in metabolic 

processes to describe efficiency. 

Residual Feed Intake (RFI) was initially 

proposed by Koch et al. (1963) as the residuals 

from linear regression of feed intake on 

various energy sinks, expressed on the 

phenotypic scale. For simplicity, let Energy 

Corrected Milk (ECM) and Metabolic Body 

Weight (MBW) be the only energy sinks 

acting on Dry Matter Intake (DMI). 

 The equation for linear regression can 

be represented as: 

DMIi = xi‘b + cM*ECMi + cW*MBWi + ei, 

with b being a vector of selected systematic 

(fixed) effects acting on DMI. 

Estimates of the covariable regression 

coefficients cM  and cW  are obtained by Least 

Squares (LS) and phenotypes for RFI are 

defined as residuals (ei) from the above model. 

These residuals are subsequently used as 

observations in genetic and genomic 

evaluation models for RFI. 

 Alternatively and equivalently, cM  and cW 

can be derived as partial regression 

coefficients from phenotypic co-variances 

between DMI and the energy sinks. Define C = 

[Cij] (2x2) phenotypic co-variance matrix for 

ECM and MBW,  w = [wij] vector of 

phenotypic co-variances between sinks and 

DMI. Then [cM  cW ]’ = C-1w (Kennedy et al., 

1993). 

The calculation of phenotypes for RFI from 

LS, to be used for further (i.e. genetic) 

analyses,  faces challenges from conceptual, 

statistical, and practical perspectives (Lu et al., 

2015): 

1. RFI is not an observable trait and hence it

may be difficult to explain to farmers,

2. Any regression analysis used to derive RFI

implicitly assumes that all covariates (i.e.,

energy sinks) are recorded and known without

any measurement error,

3. If any of the energy sink covariates are

completely missing for a particular animal,

none of the records on that animal can be used

to derive the animal’s RFI, and

4. The presence of non-zero genetic and

residual correlations between DMI and the

energy sink traits distorts heritability estimates

for RFI (Kennedy et al., 1993) and

interpretation of the inferences.

Materials and Methods 

Use of mixed model methods for RFI 

Genetic parameters and EBVs for RFI can be 

obtained without directly using phenotypes for 

RFI. The mixed linear model associated with 

the i-th multivariate record for ECM, MBW 

and DMI can be written as: 

yi = X b + ai + pi + ei, where 

yi is a vector of observations on subject i for 

DMI and the two energy sink measurements, b 

is a vector of fixed effects, ai is a vector of 

animal additive genetic effects, pi is a vector of 

permanent environmental (PE) effects, ei is a 

vector of residuals, X is an incidence matrix. 

Assumptions are that: v(ai) = G, a genetic 

covariance (3x3) matrix;  v(pi) = E, a 

covariance (3x3) matrix for the PE effects; 

v(ei) = R,  a residual covariance matrix. 

Phenotypic co-variance matrix (P) can be 

defined as P = G + E + R.  

Let a = [a1, a2, a3]’ refer to EBV for ECM, 

MBW and DMI, respectively. To obtain 

phenotypic independence between an RFI 

variable (not yet defined) and the energy sinks, 

a linear re-parameterization of the EBV for 

ECM, MBW and DMI can be postulated as:  

a* = Λ a, with 

 1     0       0 

Λ = 0        1         0 

-L31   -L32  1 

Non-zero elements of Λ, L31 and L32, can be 

expressed as functions of elements of 

phenotypic co-variance matrix P as: 

L31 = (p12*p23 - p13*p22)/(p12*p12 - p11*p22) 

L32 = (p12*p13 - p11*p23)/(p12*p12 - p11*p22), 
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and they are partial phenotypic regression 

coefficients of DMI on ECM and MBW. The 

EBV of ECM and MBW remain unchanged, 

and EBV for DMI is transformed into an EBV 

for RFI:  

 a3
* = a3 – L31 a1 – L32 a2. 

This definition for RFI can be interpreted as 

DMI phenotypically adjusted for energy sinks. 

Co-variance components involving this RFI 

can be obtained as:  

G* = ΛGΛ’, 

E* = ΛEΛ’, 

R* = ΛRΛ’, and 

P* = G* + E* + R*. 

The re-parameterization described above 

can also be derived using a recursive model 

approach (Jamrozik et al., 2017). Let Y1, Y2, 

and Y3 refer to phenotypes for ECM, MBW 

and DMI, respectively, and let recursive  

equations for DMI in this model be: 

Y1   = fixed1 + random1 + e1  

Y2   = fixed2 + random2 + e2  

Y3  = L31* Y1 + L32* Y2 + fixed3 + random3 + 

e3,  

with Ljk denoting a recursive coefficient  

parameter for the effect of change in trait j 

caused by the phenotype of trait k. The mixed 

linear recursive model associated with the i-th 

record for ECM, MBW and DMI can be 

written as: 

Λ yi = X b* + ai
*+ pi

* + ei
*, with 

v(ai
*) = G*, v(pi 

*) = E*, v(ei
*) = R*, and P* = 

G* + E* + R*. 

Imposing restrictions on phenotypic co-

variances i.e. setting p13
* = p23

* = 0 of the 

phenotypic co-variance matrix P* of the 

recursive model will yield the same Λ and 

expressions of co-variance components and 

EBVs on a recursive scale for RFI, as 

presented earlier using a simple re-

parametrization of the EBVs to compute EBVs  

for RFI. Additionally, the recursive model 

parameters G*, E*, and R* can be interpreted as 

system co-variances.  

Given the estimates of partial regression 

coefficients and the known co-variance 

structure of the model, EBV for RFI can be 

derived using estimates of EBV for DMI and 

sinks from a regular multiple-trait model for 

these traits, due to the equivalency between 

recursive and multiple-trait models (Jamrozik 

et al., 2017). In addition, the EBVs for RFI can 

be interpreted as parameters of the recursive 

model from sinks to DMI, under the 

assumption of known recursive regression 

coefficients.  

Alternative RFI definitions 

So far, RFI has been discussed on the 

phenotypic level (pFRI), as feed intake 

phenotypically adjusted for, or independent of, 

energy sinks. In other words, we looked at RFI 

as feed intake on the same phenotypic level of 

ECM and MBW. This can be extended to other 

random variables affecting DMI, like genetic 

or  permanent environment effects, which 

would lead to different interpretations with 

different definitions for RFI. Genetic RFI 

(gRFI) can be defined as feed intake 

genetically independent of energy sinks. 

Similarly, PE RFI (eRFI) can describe feed 

intake adjusted for (or independent of) 

systematic environmental effects  on repeated 

measurements for an animal over time (e.g. 

affecting all daily or weekly DMI 

measurements throughout a lactation). Finally, 

residual RFI (rRFI) will refer to feed intake 

adjusted for all effects in the model or 

independent of all residual effects on the 

energy sink observations. For derivation of 

regression coefficients on any given sources of 

variation we can use the corresponding co-

variance matrix of interest to compute Ljk, 

either as shown in the previous paragraph for a 

pair of energy sinks, or using the more 

generalized equation below, which 

accommodates any number of sinks. 

Let vector L with order (n-1) be the vector 

of multi-variate regressions of variable n on 

variables 1 through (n-1). Partition the 

covariance matrix V of interest for recursions 
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(e.g. genetic, phenotypic, etc.) to separate the 

nth row and column from all previous rows and 

columns, and L is then defined as follows: 

It is easily verified that the general equation 

above yields the same values for L31 and L32 as 

shown in the earlier example for phenotypic 

RFI with two energy sinks, where V=P, and 

the generalization by Kennedy et al. (1993) for 

genetic RFI, where V=G. 

In the scope of recursive modelling, 

phenotypic restrictions on covariances (i.e. 

zeroing phenotypic co-variances between 

traits) are replaced by restrictions related to the 

definition of RFI.  

An example of application 

A first lactation feed efficiency model applied 

to Canadian Holsteins was used to illustrate the 

concepts presented above. The data and model 

descriptions, from Jamrozik et al. (2021), are 

as follows. 

Traits 

The model defined all traits in two periods of 

first lactation: 5-60 days and 61-305 days in 

milk (DIM). Traits were: 

 MBW, calculated as (body weight)0.75;

 ECM, calculated as 0.25*Milk + 12.2*Fat +

7.7*Protein; and

 DMI.

All traits were weekly averages expressed in

kg/day (ECM and DMI) or kg0.75 (MBW).

Data 

The feed efficiency data available at Lactanet 

included data from seven herds in five 

countries within the EDGP project plus eight 

more US herds outside of EDGP. 

The final data (after edits) for co-variance 

component estimation consisted of 99,713 

weekly records on 4,952 first lactation cows 

from 1,101 sires. Pedigrees of cows with 

phenotypes were traced back four generations, 

for a total of 18,085 animals included in the 

estimation. More details on the data can be 

found in Jamrozik et al. (2021). 

Model 

The linear animal model used for co-variance 

components estimation was the same for each 

of the 6 feed efficiency traits (ECM, MBW and 

DMI, in 2 DIM intervals). Fixed effects in the 

model were: Age at calving, Lactation week, 

Year-Season of calving, and Herd-Year of 

calving. Random effects included Additive 

genetic, Permanent Environmental (PE), and 

Residual effects. 

The multiple-trait model for 6 traits can be 

written as: 

y = X b + Z1 a + Z2 p + e, where 

y is a vector of observations (traits within cows 

within DIM interval), b is a vector of all fixed 

effects, a is a vector of animal additive genetic 

effects, p is a vector of PE effects, e is a vector 

of residuals, X and Zi (i =1, 2) are respective 

incidence matrices. 

Assumptions were that: 

v(a) =A  G, A is additive genetic relationship 

matrix, G is the additive genetic covariance 

(6x6) matrix;  

v(p) = I  E, E is the covariance (6x6) matrix 

for the PE effects; 

v(e) =



N

i 1





N

i 1

Ri, Ri is a residual covariance 

matrix (3x3) for either first or second DIM 

interval, N is the total number of weekly 

records. Residuals for traits collected in the 

same week of lactation were assumed 

correlated, and uncorrelated otherwise.  

Co-variance components of the model were 

estimated with the Monte Carlo - Expectation 

Maximization - Restricted Maximum 

Likelihood (MC-EM-REML) algorithm 

(Matilainen et al., 2012) implemented in the 

MiX99 software package (MiX99 

Development Team, 2017).  

Recursive model matrix for the six-trait 

model Λ was defined as  ∑+ Λi, where Λi (i = 
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1, 2) corresponds to the i-th DIM interval of 

lactation. 

Genomic evaluation 

The Single-Step method was used to fit the 

multiple-trait linear animal model for 6 traits 

(ECM, MBW and DMI, in 2 DIM intervals) 

with genotypic information via MiX99 

software. The same model as presented for co-

variance component estimations was used for 

genomic evaluation, with A replaced by H 

(combined pedigree/genotypes relationship 

matrix).  

The data included 111,857 weekly records 

on 5,325 cows (4,585 cows with DMI; 4,313 

genotyped cows with data). There were 1,160 

sires of those cows with data (934 genotyped 

sires). In total, there were 19,137 animals in 

pedigree, and the genomic reference 

population included 8,375 genotyped animals.  

GEBVs for different expressions of RFI 

were derived as presented earlier. Sire 

evaluation for all traits was defined as 

‘Official’ when the bull had at least 5 

daughters with DMI data and a minimum 

reliability for GEBV for RFI of 50%. There 

were 298 Holstein sires with an official status.  

Results & Discussion 

Genetic RFI calculated in 61 – 305 DIM is the 

principal selection criterion for feed efficiency 

in Canadian Holsteins. Therefore, and also for 

illustration purposes of the proposed methods, 

only results pertaining to traits (including 

different expressions of RFI) defined in this 

part of lactation will further be presented and 

discussed in this paper. In addition, the most 

emphasis will be put on comparisons between 

gRFI and pRFI, as the most popular 

expressions of RFI. 

Genetic parameters 

Estimates of regressions coefficients of DMI 

on energy sinks for different definitions of RFI 

are in Table 1. 

Table 1. Estimates of regression coefficients and 

relative impact (%) of energy sinks on DMI   

gRFI pRFI eRFI rRFI 

Regression 

coefficient 

ECM 0.48 0.31 0.28 0.19 

MBW 0.14 0.13 0.11 0.15 

Relative 

impact 

ECM 63 62 63 62 

MBW 37 38 37 38 

Regression coefficients differed among 

different RFI definitions, especially for ECM. 

Relative impact of energy sinks on RFI 

remained approximately the same (60:40) for 

different RFI, with a larger emphasis on ECM. 

Estimates of heritability for ECM, MBW 

and DMI in 61 – 305 DIM were 0.29, 0.50 and 

0.27, respectively. Corresponding 

repeatabilities were 0.67, 0.91 and 0.57. 

Estimates of heritability and repeatability for 

different definitions of RFI are in Table 2. 

Table 2. Estimates of heritability and repeatability 

(x100) for different RFI expressions 

gRFI pRFI eRFI rRFI 

Heritability 5 9 11 15 

Repeatability 38 40 42 45 

Heritability of RFI ranged from 5% (gRFI) 

to 25% (eRFI). Estimates of repeatability were 

more similar across RFI definitions (38 – 

45%), with the same pattern of changes 

between different RFIs  as observed for 

heritability. 

Estimates of genetic and phenotypic 

correlations between each definition of RFI 

and the other traits in the model (sinks and 

DMI) are in Table 3. 

By definition, genetic correlations between 

gRFI and energy sinks were equal to zero. 

Similarly, pRFI and energy sinks were 

phenotypically independent. The same patterns 

applied to eRFI and rRFI, they were 

independent of energy sinks on PE and R 

scale, respectively (results not shown).   
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Table 3. Estimates of genetic and phenotypic 

correlations (x100)   between RFI versus energy 

sinks and DMI, for different expressions of RFI 

Correlation gRFI pRFI eRFI rRFI 

Genetic ECM 0 62 67 80 

MBW 0 4 11 -11

DMI 37 82 88 83 

Phenotypic ECM -33 0 6 23 

MBW -4 0 3 -6

DMI 59 81 85 88 

Phenotypic RFI was strongly genetically   

correlated with ECM. It was also genetically 

and phenotypically more similar to DMI than 

was the case for gRFI. 

Genetic correlations among different RFI 

expressions were on average smaller than 

corresponding phenotypic correlations (Table 

4). Genetic  correlation of 0.84 between pRFI 

and gRFI would suggest that phenotypic and 

genetic RFIs are genetically not the same 

traits. 

Table 4. Genetic (above diagonal) and phenotypic 

(below diagonal) correlations (x100) between 

different expressions of RFI 

gRFI pRFI eRFI rRFI 

gRFI - 84 72 68 

pRFI 94 - 92 99 

eRFI 84 92 - 92

rRFI 84 98 91 -

Genomic evaluation 

Correlations between GEBVs for gRFI and 

other definitions of RFI were significantly 

smaller than 1 for a set of ‘Official’ bulls 

(Table 5).  

Table 5. Correlations (x100) between GEBV of RFI 

for ‘Official’ sires (N = 298) 

gRFI pRFI eRFI rRFI 

gRFI - 64 58 46 

pRFI - - 99 96 

eRFI - - - 96 

Significant re-ranking of animals can 

therefore be expected between genetic versus 

phenotypic RFI. 

Correlations in Table 6 show that relative to 

gRFI ranking, pRFI ranking was more similar 

to ECM and DMI.  Selecting for pRFI is to 

some degree like selecting for ECM. 

Table 6. Correlations (x100) between GEBV of RFI 

and other traits for ‘Official’ sires (N = 298) 

ECM MBW DMI 

gRFI -1 -8 21 

pRFI 75 14 83 

eRFI 80 23 89 

rRFI 88 1 82 

General remarks 

Using recursive modelling as operational tools 

(re-parameterization of multiple-trait model 

parameters) allowed for definition, derivation 

and interpretation of different expressions of 

RFI in dairy cattle. 

No causal links between traits were 

imposed in the context of structural equation 

models discussed above. Recursive 

parameterizations served solely as operational 

tools, enabling inferences for traits (e.g. RFI) 

defined as linear combinations of correlated 

variables (ECM, MBW and DMI), and given 

certain assumption regarding correlations (i.e. 

imposing restriction on system parameters). 

The presented RFI derivations, based on 

either the multiple-trait co-variance matrix or 

the recursive model machinery, can be easily 

extended for additional energy sinks, for 

example body weight change. 

Similarly, we may contemplate other 

definitions of RFI. ‘Producing Ability’ RFI, 

derived from G + PE co-variance components, 

can serve as another management tool. We 

may also have ‘Herd’ RFI, derived from 

random ‘herd’ (if considered in the model) 

parameters. These again will have different, 

and possibly not always straightforward, 

interpretations. 

Generalizations can also include an 

expansion of the model for multiple recursive 

traits of interest. For example, with lifetime 

feed efficiency being of interest, the first 

lactation RFI model was extended to a 
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multiple-lactations RFI model, with DMI and 

energy sinks all treated as different traits in 

first versus second lactation for genomic 

evaluation of Canadian Holsteins (Jamrozik et 

al., 2022). Finally, heterogeneity of RFI 

between and across lactations can be modeled 

using random regressions for DMI and energy 

sinks (Houlahan et al., 2024) 

Recursive model approach to attain genetic 

independence between trait and energy 

sinks/sources has recently been applied to 

derive residual methane production that is 

genetically independent of milk production 

traits, for methane efficiency of Canadian 

Holsteins (Oliveira et al., 2023). Another 

application could be for functional herd life in 

dairy cattle, derived as length of productive 

life independent of production levels. 

A similar approach can be used for analysis 

of traits expressed as ratios (Jamrozik et al., 

2017). This relates, in particular, to possible 

application of this method for methane yield 

(g/kg DMI) or methane efficiency (g/kg milk).  

Conclusions 

Results indicate substantial differences among 

definitions of RFI, for estimates of genetic 

parameters and genomic evaluations of 

animals. It should be emphasized, that this 

could have serious consequences of using 

genetic vs. phenotypic RFI for 

genetic/genomic selection in dairy cattle. 

Phenotypic RFI is commonly used across the 

world for genetic evaluation of feed efficiency 

in dairy cattle. An exception is Canada, where 

gRFI is the genomic selection criterion in 

Holsteins. 
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