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Abstract 

Genetic correlations are relevant parameters in genetic evaluations, particularly when a breeding 

program aims to achieve genetic progress for multiple traits altogether. These correlations are usually 

estimated from a base population as one of the many parameters that define the distribution used to 

predict breeding values for the selection candidates. In such a fashion, genetic correlations are 

assumed to be identical for all selection candidates. However, with a preliminary study on the output 

predicted breeding values of sires with more than 500 daughters from the French Montbéliarde 

population, we observed that the genetic correlation among daughters from different sires may differ 

substantially, i.e., different sires expressed different genetic correlations between traits through their 

daughters. Thus, if genetic correlations are specific values inherent to each individual, they could be 

considered as a phenotype; in other words, genetic correlations may be the observable consequence of 

a concealed regulatory trait guiding the relationship between observable traits. For antagonistic traits 

(e.g. production and fertility in dairy cattle), it is reasonable to believe that individuals on the extremes 

of the trade-off distribution are likely to present a low breeding value for this concealed regulatory 

trait. However, due to our inability to directly measure this potential regulatory trait, it can be 

considered a latent phenotype. Although a method to consider such hypothesis that genetic 

correlations may be a latent phenotype is yet undefined, there is no doubt that such hypothesis has an 

impact on the medium to long-term perspectives of a breeding program, given its breeding goals. 

Hypothesizing that genetic correlations are latent phenotypes, simulations can then be used to assess 

the genetic progress for multiple traits of interest in a breeding program over many generations, as 

well as to assess the trajectory of genetic correlations between traits and the genetic progress of the 

latent regulatory phenotype driving such correlations. Such comprehension of the genetic progress for 

the latent phenotype is of particular relevance, since a regulatory trait is likely to impact more than 

only two antagonistic traits, but many of the traits selected for in a breeding program. 

Key words: correlated traits; multi-trait evaluation; physiological trait regulation; non-linear genetic 

correlation; genetic progress 

Introduction 

Genetic correlations (GC) are relevant 

parameters in genetic evaluations, particularly 

when a breeding program aims to achieve 

genetic progress for multiple traits altogether. 

These correlations are typically estimated from 

a base population as parameters from the joint 

distribution of the breeding values of the traits 

of interest, a distribution that is then used to 

predict the breeding values (BV) for the 

selection candidates (Patterson and Thompson, 

1971; Henderson et al., 1959; Henderson, 

1975). In such a fashion, GC are assumed to be 

identical for all evaluated individuals. In terms 

of statistical modelling, the assumption that 
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GC are population parameters, thus identical to 

all selection candidates, enables the 

implementation of the best linear unbiased 

prediction (BLUP) (Henderson, 1975) and 

Bayesian methods (Meuwissen et al., 2001; 

Gianola and van Kaam, 2008), widely used to 

predict BV in genetic evaluations. 

While the assumption that GC is a 

population parameter is of great value to 

describe the underlying genetic architecture 

that drive the relationship between traits, such 

assumption ignores potential physiological 

genetic effects in the regulation of multiple 

traits (Berry et al., 2016). A preliminary study 

on the output predicted BV of sires with more 

than 500 daughters from a dairy cattle 

population, showed that the GC among 

daughters from different sires may differ 

substantially, i.e., different sires may express 

different GC between traits through their 

daughters. 

Physiological traits may impact both 

positive and negatively correlated traits. Our 

study focused on the latter case, particularly on 

the classic antagonism between production and 

fertility traits in dairy cattle (Boichard and 

Manfredi, 1994; Hoekstra et al., 1994; 

Veerkamp et al., 2001), traits of great 

commercial interest for this production system. 

Our hypothesis is that, rather than a modelling 

parameter, GC may be the observable 

consequence of an underlying physiological 

trait, responsible to regulate the trade-off 

between production and fertility, and such 

regulatory trait is not directly measurable. 

Under this hypothesis that GC is a 

consequence of an underlying physiological 

trait, it is reasonable to believe that individuals 

on the extremes of a trade-off distribution (i.e. 

individuals who present a very high breeding 

value for production and a very low breeding 

value for fertility, or vice-versa) are likely to 

present a low breeding value for this concealed 

regulatory trait. Conversely, individuals on the 

center of a trade-off distribution, with average 

breeding values for both commercial traits, are 

likely to present a good regulatory capacity. 

Therefore, GC would be a measure inherent to 

each individual, representing their genetic 

capacity to regulate a trade-off. However, due 

to our inability to directly measure this 

potential regulatory trait, it can be considered 

as a latent phenotype, making it difficult to be 

evaluated and included in the unified index for 

the selection candidates. 

Rather than aiming on how to include the 

hypothesis that GC are latent phenotypes in a 

genetic evaluation, the objective of the present 

work was to compare the genetic progress of 

production and fertility traits in a simulated 

breeding program, with data simulated under 

the assumptions that GC was either a 

parameter or a latent phenotype. Simulations 

were performed for different scenarios of 

selection, and the consequences of these 

scenarios on the regulatory trait and on the 

observed GC between the measurable traits 

was also studied. 

Although the objective of our study was the 

discussion of the hypothesis that GC are latent 

phenotypes, without neither developing novel 

methods to evaluate antagonistic traits, nor 

proposing a manner to consider the possibility 

that GC are latent phenotypes in the unified 

index for the selection candidates, the 

discussion of this hypothesis is still relevant, 

since it sheds a light on the medium to long-

term consequences of breeding decisions on 

the genetic progress of traits of interest. 

Materials and Methods 

Preliminary study on real data 

The data set analyzed consisted of records 

from production (PROD) and fertility (FERT) 

traits from the French Montbéliarde 

population. PROD consisted of milk yield on 

first lactation corrected for 305 days, and 

FERT consisted of the cow conception rate at 

the first insemination after the beginning of the 

first lactation. Records on both traits were 

available for 806,159 cows, for which pedigree 

data with ~ 4 million animals were available. 

The phenotypes analyzed were recorded for 
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cows that began their first lactation between 

the years of 2002 and 2021. 

The model used for both the variance 

component estimation and the genetic 

evaluation was a two-trait model (PROD and 

FERT), with an overall mean, age, and herd-

year-season included as fixed effects for both 

traits; lactation length was included as a fixed 

effect only for PROD, and calving-

insemination interval, sexed semen, artificial 

insemination (AI) operator, and day of the 

week as fixed effects for FERT only; for both 

traits, the random additive genetic effect was 

included assuming a normal distribution with 

mean zero and variances  and 

for PROD and FERT respectively, and a 

covariance  between the two traits, such 

that was the nominal relationship matrix, 

and were the total additive 

genetic variances of PROD and FERT 

respectively, and  was the additive genetic 

covariance between the two traits evaluated; 

the random effect of the AI bull was included 

into the model for FERT only, assuming 

independence between the bulls and a normal 

distribution with mean zero and variance 

; finally, for both traits the random 

residuals were considered to be normally 

distributed with mean zero and a 

heterogeneous variance per herd-year group. 

Variance components were estimated using 

the residual maximum likelihood (REML), and 

the genetic evaluation was performed using the 

BLUP, to obtain the estimated breeding values 

(EBV) for all animals in the pedigree. After the 

evaluation model was performed, from the 

pedigree we subset 247 sires with more than 

500 daughters evaluated among those 806,159 

cows with records on both traits. For each of 

these sires, we calculated the mean EBV of 

their daughters for both PROD and FERT per 

year of their first lactation, and the GC 

between their daughters’ EBVs for PROD and 

FERT, over all the years, and separated by 

year of the daughters’ first lactation. This 

descriptive study per sire was performed to 

confirm the genetic progress for both traits 

(thus, selection for both PROD and FERT), 

and to verify whether different sires expressed 

different GC between the traits of interest, 

through their daughters. 

Simulation study 

Datasets were simulated to contemplate the 

two hypotheses we intended to discuss with 

this present study: (1) GC are statistical 

parameters modulating the genetic relationship 

between two traits; (2) GC are observable 

consequences from a latent physiological trait 

(RGLT) that regulates the genetic relationship 

between two traits. Under both hypotheses, 

PROD and FERT were simulated with 

heritabilities and 

respectively, and with a GC 

between them. The total phenotypic variances 

were 50 and 75 for PROD and FERT 

respectively. 

For the simulated datasets under each of the 

two hypotheses, a base population with 2,000 

individuals was simulated, with 50k SNPs 

allocated in 29 chromosomes, such that the 

number of SNPs per chromosome and the 

linkage disequilibrium (LD) pattern were 

adjusted to resemble the cattle genome. 

Genomic data simulations were performed 

in R language (R core team, 2018), using 

routines from the GenEval package 

(https://github.com/bcuyabano/GenEval), and 

correlated traits were simulated using self-

coded routines. All evaluations were also 

performed in R language. 

Selection scenarios with different weights 

for the two traits in the breeding goals were 

defined to evolve the population over many 

generations. For every simulated scenario, 

selection was performed on sires only, by 

selecting the top 20% bulls in agreement with 

the scenario’s breeding goal. The choice of 

selection of sires only was made so that the 

simulation resembled a dairy cattle breeding 

program. 
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Genetic correlation as parameter 

When GC was simulated as a parameter, its 

origin was purely quantitative. This means that 

part of the correlation was due to pleiotropic 

quantitative trait loci (QTL) for both PROD 

and FERT, and part of this correlation was due 

to different QTL for each trait, but that were in 

close proximity, such that these QTL were in a 

sufficient level of LD for GC to arise. For each 

trait, 3,000 out of the 50k simulated SNPs 

were assigned as QTL; 1,000 of these QTL 

were shared by both traits (pleiotropic); 1,000 

QTL were trait-specific, but in close proximity 

to those trait-specific from the other trait so 

that these QTL were in LD; 1,000 QTL were 

trait-specific and far enough from any QTL 

from the other trait, so that their between-trait 

effects were completely independent. Figure 1 

illustrates the described scheme of the QTL 

display on the simulated genome. 

Figure 1. Scheme of the QTL display on the 

simulated genome, indicating the QTL responsible 

for creating genetic correlation between PROD and 

FERT (pleiotropic QTL, and QTL in LD), and the 

QTL that created independent effects on each trait. 

For the simulation study under the 

hypothesis that GC was a parameter, the 

population was evolved over 40 generations 

under five different scenarios, one scenario in 

completely random mating, and four scenarios 

with selection of the top 20% bulls, with 

different weights for %PROD-%FERT in the 

breeding goal: (1) 100-0; (2) 90-10; (3) 80-20; 

and (4) 50-50. Each scenario was replicated 

100 times. 

Genetic correlation as a latent phenotype 

When GC was simulated as a latent phenotype, 

we initially simulated RGLT was with 

heritability , and then both PROD 

and FERT were simulated to have a concave 

parabolic relationship with RGLT, following 

the simulation method in Shokor et al. 2024. 

Figures 2 and 3 illustrate the relationship 

between the simulated BV for the three traits. 

For the simulation study under the 

hypothesis that GC was a latent phenotype, the 

population was evolved over 50 generations 

under three selection scenarios of the top 20% 

bulls, with different weights for %PROD-

%FERT-%RGLT in the breeding goal: (1) 

100-0-0; (2) 80-20-0; and (3) 80-10-10. Each 

scenario was replicated 1,000 times. 

Figure 2. Scatterplots of the BV, denoted as g, 

simulated for the three traits when the genetic 

correlation between PROD and FERT was the 

consequence of a latent phenotype. The full black 

line in all the panels indicate the mean relationship 

between the pairs of traits. 

Figure 3. 3D scatterplot of the BV (colored dots, 

with the gradient red-yellow-blue representing 

negative-zero-positive values for RGLT), denoted 

as g, simulated for the three traits when the genetic 

correlation between PROD and FERT was the 

consequence of a latent phenotype. The gray dots 

are the projection of the simulated BV for PROD 

and FERT only, which are the observable traits. 

The full black line indicates the mean relationship 

between PROD and FERT, perceived as a linear 

correlation. 

182



INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

Results & Discussion 

Descriptive results on real data 

On the group of 247 subset sires, we could 

observe a clear pattern of genetic progress 

from 2002 for PROD, and from 2009 for 

FERT, as shown in Figure 4. Although FERT 

has been included in the breeding goals for the 

French Montbéliarde population in 2001, at 

this moment this breeding goal was defined 

mostly for the AI sires. Therefore, the genetic 

progress is not immediately perceived. Given 

the low heritability of FERT and considering 

the generation interval needed for a change in 

breeding goals to take effect, it not surprising 

that the clear pattern of genetic progress arises 

from 2009. Moreover, to further explain the 

trajectory of the genetic progress for FERT, it 

is only from 2006 that females began to be 

more systematically selected for fertility traits. 

Figure 4. Yearly mean breeding values of PROD 

and FERT from 2002 until 2021, for the daughters 

of 247 sires with more than 500 daughters 

evaluated, all with both traits recorded. 

With respect to the sire-specific GC 

between PROD and FERT, from Figure 5 we 

can observe that their values range from -0.3 to 

0.3, a great dispersion around the GC of 0.051 

estimated by REML. This dispersion is 

observed both on the sire-specific GC 

disregarding their daughters’ year of birth and 

taking the year into account. When observing 

the distributions of the sire-specific GC per 

their daughters’ year of birth, we observed that 

this distribution changes most visibly from 

2009. From the year 2002 until 2008, sire-

specific GC were on average negative, with a 

mean of -0.055. From 2009 on, these mean 

shifts to approach zero, and finally become 

mildly positive, with a mean of 0.063. 

Based on our knowledge of the historical 

breeding goals for the French Montbéliarde 

population in the period from 2002 to 2021, 

and the observed response in genetic progress 

for PROD and FERT, it is then of no surprise 

that visible changes in the distribution of the 

sire-specific GC arise from 2009, as shown in 

Figure 5. 

The great dispersion of the sire-specific GC 

between PROD and FERT suggests that 

considering these correlations as a static 

parameter may not reflect the true nature of 

what drives the relationship between PROD 

and FERT. 

Figure 5. Histogram of the sire-specific genetic 

correlations (GC) between PROD and FERT, for 

247 sires with more than 500 daughters evaluated, 

all with both traits recorded. 

Genetic progress and genetic correlation on 

simulated data 

The different assumptions of what causes GC 

between the antagonistic traits have a 

remarkably different impact on the trajectory 

of GC over generations for populations under 

selection. 

When GC was simulated as a parameter, 

different selection scenarios generally 

presented significantly different outcomes. 

Under this hypothesis, a single-trait selection 

resulted in an attenuation of GC, i.e., the 

negative GC evolved towards zero as 

generations progressed, as shown in Figure 6. 

Although we solely present the trajectory of 
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the GC for single-trait selection on PROD, the 

exact same trajectory was observed when 

selection was performed for FERT only. 

Still under the hypothesis that GC is a 

parameter, with the exception of the scenario 

90%PROD-10%FERT, for which GC 

remained stable around its original value, 

selection scenarios for both PROD and FERT 

inevitably lead to an intensification of GC, i.e., 

the negative GC evolved to a farther more 

negative value as generations progressed, as 

shown in Figure 6. Moreover, the greater the 

equilibrium in the breeding goal between the 

two antagonistic traits, the faster this 

intensification of GC was observed. 

Although the observed results in Figure 6 

were initially surprising, these trends were 

statistically supported when we performed the 

calculus on the expected GC for the truncated 

bivariate normal distribution to select 

progressively increasing values for both means 

(calculus not shown), and can be explained in 

terms of loss of genetic diversity, assuming 

that the hypothesis that GC is a parameter is 

true, i.e., that GC arises uniquely due to QTL 

effects. Nonetheless, questions remained about 

whether the observed trends in the simulated 

data were biologically sound, specially when 

compared to the results observed with the real 

data, as presented in Figures 4 and 5. This, 

combined with research in bovine physiology 

(Berry et al., 2016) lead us to hypothesize that 

genetic correlations may be a latent phenotype, 

or in other words, the observable consequence 

of a concealed physiological trait, responsible 

to regulate the trade-off between the antagonist 

traits. 

When GC was simulated as the 

consequence of a latent phenotype, as shown 

in Figure 7, we observed that the different 

selection scenarios did not present the great 

differences as previously observed in Figure 6. 

In fact, in the short to medium term (up to 

approximately generation 15), the trajectory of 

GC was statistically the same for all selection 

scenarios. During the first 15 generations 

Figure 6. Trajectory of GC between PROD and 

FERT over 40 generations of populations under 

selection according to the five simulated scenarios 

of breeding goals (%PROD-%FERT). The full lines 

in the plot represent the mean GC observed with 

100 replicates of each scenario, and the shaded area 

around the mean GC represent their 95% 

confidence interval. 

under selection, the negative GC tended to be 

attenuated. 

From generation 15 on, the overall trend of 

GC under selection for a single trait differs 

from that of selection for both traits. While 

under all simulated selection scenarios the GC 

reached a peak of attenuation, and then 

presented a trend of slow re-intensification, 

this trend seemed to be temporary when 

selection was performed for more than one 

trait, with GC reaching an apparent 

stabilization in its trend, from generation 30. 

When selection was performed for a single 

trait (in our simulations, PROD), the trend of 

re-intensification seemed constant throughout 

all generations after generation 15. These 

results presented in Figure 7 suggest that, 

although initially any breeding goal for a 

breeding program will lead to the attenuation 

of GC, in the long-term, single-trait selection 

will inevitably lead to stronger negative GC, 

compared to multi-trait selection. 

To conclude the discussion with respect to 

the trends observed for the GC over 

generations in the simulated populations under 

different selection scenarios, the contrasting 

results from the two hypotheses considered to 
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Figure 7. Trajectory of GC between PROD and 

FERT over 50 generations of populations under 

selection according to the three simulated scenarios 

of breeding goals (%PROD-%FERT-%RGLT). The 

full lines in the plot represent the mean GC 

observed with 1,000 replicates of each scenario, 

and the shaded area around the mean GC represent 

their 95% confidence interval. 

simulate correlated traits presented in Figures 

6 and 7, when compared to the results 

observed in real data, gives us information to 

support the hypothesis that GC is a 

consequence of a latent phenotype. 

Finally, we evaluated the genetic progress 

achieved with the different selection scenarios, 

when GC was simulated under the hypothesis 

that they are a consequence of a latent 

phenotype. The results presented in Figure 8 

show that, as expected, after 50 generations the 

average BV for production was mildly lower 

when multi-trait selection was in place. Since 

breeding goals for multi-trait selection kept a 

weight of 80% for production, although 

significant, the difference in PROD between 

the simulated scenarios was small. Therefore, 

the inclusion of FERT and RGLT did not 

largely decrease PROD. On the other hand, the 

inclusion of FERT alone, or FERT+RGLT to 

the breeding goal resulted in great changes to 

the average BV for these two traits, compared 

to the scenario in which selection was 

performed uniquely for PROD. 

It was interesting to observe that, in the 

scenario for which selection was performed for 

PROD and FERT (without RGLT), the dual 

selection did impact positively the genetic 

progress of RGLT. Although not surprising, 

this result is reassuring that, if GC are the 

observed consequence of a latent physiological 

trait, selection for the observable traits is 

indirectly selecting for the latent trait. 

To conclude the discussion with respect to 

the genetic progress, a final remark has to be 

done with respect to the selection including the 

latent physiological trait (RGLT) responsible 

to regulate the trade-off between PROD and 

FERT. If RGLT can be measured either 

directly or indirectly, and the included in the 

breeding goals, the genetic progress of this 

trait is relevant, counterbalancing the mild loss 

in genetic progress for the other traits of 

commercial interest (in the simulation PROD 

and FERT). The great genetic progress in 

RGLT due to its inclusion in the breeding goal 

has an importance, because such trait is very 

likely to have an influence in many other traits 

of commercial interest, beyond PROD and 

FERT. Thus, including RGLT in the breeding 

goals is expected to improve many of the traits 

considered in a real breeding program, which 

are far more traits than PROD and FERT. 

Figure 8. Genetic progress per generation, for 

PROD, FERT, and RGLT over 50 generations of 

populations under selection according to the three 

simulated scenarios of breeding goals (color-coded 

as in Figure 7, i.e. blue: 100%PROD-0%FERT-

0%RGLT; green 80%PROD-20%FERT-0%RGLT; 

red 80%PROD-10%FERT-10%RGLT). The full 

lines in the plot represent the mean breeding values 

observed with 1,000 replicates of each scenario, 

and the shaded area around the mean GC represent 

their 95% confidence interval. 

Conclusions 

This work had the objective open a discussion 

about the nature of genetic correlations 

between traits. We evoked two hypothesis, one 

that assumes genetic correlations as a 

parameter driving the genetic architecture of 

correlated traits, and another that assumes that 

genetic correlations are the observable 
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consequence of a latent physiological trait 

responsible to balance the expression of 

measurable traits. Using simulations of 

breeding schemes considering different 

breeding goals under these two hypotheses, 

and comparing our simulated medium to long-

term results with observations in real data, we 

believe that our study provides information to 

support the hypothesis that GC are a 

consequence of a latent phenotype. This 

hypothesis is relevant to define breeding 

objectives, since a regulatory trait may impact 

not two, but many traits altogether. Last but 

not least, although our study focused on the 

antagonism between production and fertility 

traits, the concept that genetic correlations may 

be the consequence of a latent phenotype can 

be extended to many other traits. 
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