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Abstract 

A Genomic evaluation has been developed for feed efficiency for German Holsteins and the first official 

release was in April 2024. As of the release date, more than 327,000 weekly phenotypes of dry matter 

intake (DMI), body weight (BW) and energy-corrected milk (ECM) were obtained from 14,774 cows 

from six countries through a collaboration in the resilient dairy genome project. Lactations 1, 2 and 3+ 

are considered genetically distinct traits. Variance components were estimated with a multi-trait 

repeatability model, where each of the first three parities was divided into four equal lactation stages. 

(Co)variance matrices for the random regression model were derived from this multi-trait estimation 

using the covariance function approach. These are used to obtain genomic estimated breeding values 

(GEBVs) for DMI, BW and ECM with a single-step random regression model in the routine genetic 

evaluation. Fixed effects are herd-test-week, inbreeding depression (as a covariate), and calving age by 

lactation week as a fixed curve (2nd-order Legendre polynomials). The permanent environmental and 

additive genetic animal effects are fitted as random effects in the model. The averages of heritability 

estimates for parities 1 to 3, respectively, were 0.19, 0.17, 0.16 for DMI, 0.30, 0.22, 0.20 for ECM and 

0.48, 0.45 and 0.50 for BW. The average genetic correlation between parities was 0.79 for DMI, 0.71 

for ECM and 0.89 for BW. GEBV for body weight change (BWC) were derived from BW. GEBV 

correlations of DMI with ECM and BWC were 0.15 and 0.74, respectively. The GEBV correlation 

between ECM and BWC was -0.07. GEBV for feed saved (FS; expressed in kg DMI), which represents 

feed efficiency, is then computed from the traits’ GEBV as 0.4×ECM + 4.5×BWC - DMI. GEBV 

correlations of FS with the milk production index RZM and other main indices in the total merit index 

are close to zero. The genetic standard deviation of FS is 247 kg per 305 days in milk, which is roughly 

3.5% of total DMI per 305 d. Starting in April 2024, the new GEBV for feed efficiency, 

RZFeedEfficiency, will be published routinely, expressed on a scale with a mean of 100 and a genetic 

standard deviation of 12. 
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Introduction 

As feed expenses form the largest single part of 

the operating costs of dairy farms, enhancing 

the feed efficiency (FE) of dairy cattle is a major 

priority for dairy farmers (Connor, 2015). 

Reducing the environmental impact of dairy 

production can also be achieved through 

improving feed efficiency. Animals with higher 

feed efficiency could generate less greenhouse 

gas emissions and manure (Bell et al., 2012; 

Connor, 2015). Furthermore, animals with 

lower feed requirements use less land (Connor, 

2015). 

Compared to many other dairy cattle traits, 

defining FE is particularly challenging. This is 

because selecting for FE requires knowledge of 

how much feed has been used for production. 

Consequently, several approaches (e.g., Pryce 

et al., 2015 and VandeHaar et al., 2016) have 

been developed to account for all components 

involved and to obtain a phenotype that most 

accurately identifies animals with favorable 

genetic merit for FE. 
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Data on FE is scarce because obtaining feed 

intake records is both costly and challenging. 

Hence, the amount of available data is still a 

limiting factor for achieving highly reliable 

genetic predictions for FE. Therefore, an 

international collaboration became essential to 

expand the reference population (van Staaveren 

et. al., 2024). 

Random regression models (RRM) are well-

suited for analyzing longitudinal data with 

varying variation of traits across the different 

lactation stages. However, with limited data 

size, estimation of the variance parameters of an 

RRM is difficult. Thus, an indirect estimation 

approach, based on a covariance function, has 

been proposed (Kirkpatrick et. al., 1994 and Liu 

et. al., 2000). We describe the German genetic 

evaluation of FE including variance component 

estimates, genetic correlations, and the 

development of the target selection index 

RZFeedEfficiency. 

Materials and Methods 

Data 

The current data set used in the German genetic 

evaluation consisted of 327,408 weekly 

phenotypes of dry matter intake (DMI), body 

weight (BW), and energy-corrected milk 

(ECM) from 14,774 cows. The data was 

obtained through a collaboration with six 

countries in Europe and North America within 

the resilient dairy genome project (van 

Staaveren et al., 2024). These countries are 

Canada (CAN), Switzerland (CHE), Germany 

(DEU), Denmark (DNK), Spain (ESP) and the 

United States of America (USA; Figure 1).  

In addition to the phenotypes of the three 

traits mentioned above, the pedigrees along 

with the genotypes (50K) of these cows were 

also obtained. As per quality control for the 

phenotypes, for each parity, a record was 

excluded if it exceeded 3 standard deviations 

either above or below the mean. Animals that 

had a conflict in the pedigrees and/or the 

genotypes, had less than 4 records per parity, or 

had no DMI records were also excluded.  

Figure 1. Number of cows with dry matter intake 

records per country. 

Records from higher than the 3rd parity were 

considered repeated measurements of 3rd parity 

records. The quality control for the genotypes to 

clean the genotypic data was the same as for all 

other German Holstein routine genomic 

evaluations. For the variance component 

estimation, the pedigree was limited to the 

previous five generations of animals with 

phenotypes. A summary of the final data set is 

shown in Table 1. 

Table 1. Number of records, means and standard 

deviations for DMI, ECM and BW within the first 

three parities. 

Trait* Parity 
Number of 

records 
Mean SD 

DMI 

1 163,833 20.47 3.89 

2 110,419 24.06 4.50 

3+ 92,813 24.78 5.06 

ECM 

1 127,599 32.51 6.25 

2 876,88 39.60 8.38 

3+ 759,91 40.68 9.08 

BW 

1 124,535 605.59 62.84 

2 842,11 669.33 66.86 

3+ 721,58 713.03 72.01 

*DMI: Dry matter intake.

*ECM: Energy-corrected-milk.

*BW: Live body weight.

Model 

The traits DMI, BW, and ECM were analyzed 

separately, but within trait, the first three 

parities were analyzed jointly, treating them as 

genetically distinct traits. Higher parities were 

considered as repeated measurements of the 
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third parity. We first fitted a repeatability 

animal model by dividing each parity into 4 

equal stages (11 weeks). Herd-test-week was 

fitted as a fixed effect, animal as an additive 

genetic effect, as well as a permanent 

environmental effect, were fitted as random. 

The analysis was carried out using WOMBAT 

(Meyer, 2007).  

The variance components obtained from this 

multivariate model were then used to derive the 

(co)variances of second-order random 

regression coefficients (RRC) for the additive 

genetic, the permanent environmental and the 

error effects. This was done based on the 

covariance function approach (Kirkpatrick et. 

al., 1994, Tijani et. al., 1999 and Liu et. al., 

2000). The residual variance was assumed to be 

homogeneous throughout lactation. 

Subsequently, a single-step RRM was fitted to 

estimate the breeding values for each 

phenotype.  

In the single-step random regression model, 

three fixed effects were fitted: herd-test-week, a 

fixed curve (2nd order) of calving age by 

lactation week and a regression on inbreeding. 

Random effects were animal additive genetic 

and permanent environmental effects, and the 

analysis was implemented in MiX99 (Vuori et. 

al., 2006). In the April 2024 routine genetic 

evaluation run, the number of genotyped 

animals was 1,518,447 and the number of 

animals in the pedigree was 3,839,445. 

Genomic estimated breeding values (GEBV) 

for BWC were calculated as the weekly change 

in GEBV of BW, using the derivative of the 

genetic Legendre function. GEBV from the 

three parities were aggregated with an equal 

weight (1/3) into a single GEBV per trait. 

Feed efficiency index (RZFeedEfficiency, 

short: RZFE) 

The expected GEBV for DMI was calculated 

from ECM and BWC. It was assumed that an 

average ration’s energy density is 7.0 MJ NEL 

per kg DMI. Additionally, it is assumed that 

0.4 kg DMI are required to produce 1 kg ECM, 

and 4.5 kg DMI are required to produce 1 kg 

BWC. Hence, feed saved was calculated as 

follows: 

GEBVFeed saved = 4.5 × GEBVBWC + 0.4 × 

GEBVECM – GEBVDMI 

The resulting EBV for feed efficiency is the 

feed saved, expressed in kg DMI, compared to 

the average cow. It represents a measure of feed 

efficiency over the first three lactations, which 

is roughly the average longevity of Holsteins in 

Germany. This feed saved GEBV is then 

expressed as a relative GEBV with a mean 

value of 100 in the female base population and 

a genetic standard deviation of 12. The female 

base population is defined as 4 to 6-year-old 

genotyped Holstein females at the time of the 

routine genetic evaluation. 

Results and Discussion 

The bar chart in Figure 1 shows the number of 

cows for the six countries whose data is used in 

the German genetic evaluation of feed 

efficiency from the resilient dairy genome 

project database. The United States have the 

highest number of cows by a significant margin, 

followed by Germany while Switzerland has the 

lowest number. Collaboration in the resilient 

dairy genome project (van Staaveren et al., 

2024) with international partners provided the 

largest possible reference population for feed 

intake. Modelling the underlying component 

traits of feed efficiency (DMI, ECM, and BWC) 

offers flexibility in defining the target trait on 

the genetic side (based on GEBV), which could 

be, if necessary, easily adjusted. We found that 

applying the covariance function approach 

(Kirkpatrick et. al., 1994, Tijani et. al., 1999 and 

Liu et. al., 2000) provides stable random 

regression coefficients, especially as the 

phenotypic data is limited. Additionally, since 

feed efficiency varies at different periods of 

lactation, using an RRM has the advantage of 

fitting the genetic curves to capture the changes 

over time. Moreover, switching to daily 

measurements in this case would be 
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straightforward, and future improvements can 

be, if needed, easily implemented. 

The heritability estimates obtained from the 

RRM over the 44 weeks in milk in the first three 

parities are depicted in Figure 1. In the first 

parity, heritability starts around 0.1, peaks 

around 0.25 between 15 to 20 weeks, then 

slightly decreases and stabilizes around 0.2. In 

the second parity, it starts around 0.1, peaks 

slightly below 0.2 around the 15th week, then 

gradually decreases and stabilizes around 0.15. 

Finally, in parity 3 heritability estimates were 

also around 0.1 at the beginning of the lactation 

and slightly increased to reach 0.2 while 

remaining relatively stable towards the end of 

the lactation.  

It can be seen that heritability estimates of 

DMI change over time along the lactation cycle 

with slight differences between parities 

showing distinct patterns for each parity group. 

Heritability for DMI has been intensively 

reported in the literature based on different 

methods and in general, it averages between 

0.08 and 0.34 (e.g., Berry et. al., 2014, Khanal 

et. al., 2022 and Stephansen et. al., 2023). Our 

estimates for the three parities were highly 

similar and generally slightly lower at the 

beginning of the lactation, compared to mid-

lactation and after. Nevertheless, these 

estimates are consistent with the most recent 

reported estimates.  

Total heritability estimates for each parity 

for the three traits are presented on the diagonal 

of Table 2. Highest estimates were observed in 

the first parity for all three traits, while the 

lowest were observed in the third parity for 

DMI and ECM. The heritability for DMI ranged 

from 0.30 to 0.39, with an overall total of 0.38. 

The weekly and the cumulative heritability over 

parities indicates substantial genetic variation, 

allowing for better discrimination of genetic 

differences between animals. 

The heatmap in Figure 3 illustrates the 

correlations between weeks in milk across the 

first three parities. As expected, adjacent weeks 

had the highest positive correlations. 

Figure 2. Heritability of DMI over the weeks in milk 

in the first three parities. 

Although genetic correlations between 

different weeks are all moderately to highly 

positive, our results show that DMI is 

genetically not the same trait within and across 

lactations with minimum genetic correlation 

estimates within parities of 0.64 (parity 1), 0.52 

(parity 2), and 0.70 (parity 3). The minimum 

genetic correlation between parity 1 and 2 was 

0.50, between 1 and 3 was 0.39, between 2 and 

3 was 0.49. 

Figure 3. Genetic correlation of DMI over the weeks 

in milk in the first three parities (Par1, Par2, Par3). 

Each cell of the matrix represents the correlation 

between two weeks. 

Numerous studies (e.g., Pech et al., 2014) 

have reported lower genetic correlations for 

DMI than our estimates, and even negative 

between mid-lactation and both the start and 

end of the lactation. It is well known that dairy 

cattle traits do differ over the course of 

lactation, but the vast shifts from high positive 
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to negative correlations could be essentially 

attributed to the way that RRM estimates are 

obtained when the data used is small 

(Kirkpatrick et al., 1994; Liu et al., 2000). For 

this reason, we implemented the covariance 

function to reliably estimate random regression 

coefficients. Genetic correlations within and 

between entire parities for the three traits are 

listed below the diagonal in Table 2. Genetic 

correlation estimates between parities are 

highly positive, but many values, especially 

between first and higher parities are below 0.90, 

indicating a somewhat distinct genetic 

background of the same trait at different times 

in the life of the cow. 

Table 2. Estimates of heritability (on diagonal) and 

genetic correlations (below diagonal) for DMI, ECM 

and BW across the first three paraties. 

Trait* Parity# 1 2 3 1/2/3 

DMI 

1 0.39 

2 0.88 0.31 

3 0.79 0.95 0.30 

1/2/3 0.93 0.99 0.96 0.38 

ECM 

1 0.43 

2 0.79 0.31 

3 0.63 0.97 0.29 

1/2/3 0.86 0.99 0.94 0.40 

BW 

1 0.58 

2 0.94 0.54 

3 0.88 0.94 0.61 

1/2/3 0.96 0.99 0.97 0.63 

*DMI: Dry matter intake.

*ECM: Energy-corrected-milk.

*BW: Live body weight.

#1/2/3: Combination of parities 1, 2 and 3.

The variance component parameters were 

then used with the genetic evaluation model to 

obtain GEBV for the three traits based on a 

single-step approach, including all available 

genotyped and pedigree animals.  

GEBV of the different traits were then 

combined to the overall index representing feed 

efficiency, expressed as feed (DMI) saved. For 

this index combination, we do not only consider 

the economically most relevant output of dairy 

cows, milk (ECM), but also BWC. This is, 

because body weight is an important storage of 

energy in the body of the cows. Not respecting 

BWC could therefore lead to a wrong 

estimation of the energy balance of the cows, 

e.g., when a cow uses energy from her body

weight within a lactation, but regains weight

between lactations. Additionally, slaughter

weight is a secondary output from dairy cows

that has also an economic value for the farmers.

On average, Holstein cows gain more than 200

kg body weight over the first three parities.

Mean genomic reliability is 0.4.

The correlation between GEBV of the 

different traits was 0.74 (DMI with ECM), 0,15 

(DMI with BWC), and -0.07 (ECM with BWC). 

The values suggest that DMI is genetically 

highly correlated with ECM and mostly 

genetically independent of BWC. Many studies 

have reported a positive genetic correlation of 

DMI with ECM and typically ranging from 

moderate to high (e.g., Hüttman et. al., 2009 and 

Li et al., 2018). As selection increases milk 

production, DMI also tends to increase due to 

the higher energy demands. The genetic 

standard deviation of RZFE is 247 kg per 305 

days in milk, which is roughly 3.5% of total 

phenotypic DMI. Correlations of RZFE with 

GEBV of other trait complexes calculated for 

352,692 genotyped females born in 2021 and 

2022 are shown in Table 3. Overall, GEBV 

correlations among RZFE and other trait 

complexes were low, close to zero. This 

suggests that genetic improvement for feed 

efficiency can be targeted without significantly 

affecting other main dairy traits, including 

health traits. 

To find out how RZFE characterizes the 

more and the less efficient animals, we obtained 

the differences in GEBV between the 25% top 

and the 25% bottom RZFE genotyped females, 

born in 2021 or 2022 (N = 352,692 per quartile; 

Table 4). Clear differences exist between the 

two subgroups in feed efficiency (16.4 for 

RZFE and 1,264 kg feed saved) while the level 

for ECM and BWC is very similar between the 

top and bottom animals. It can be noted that 

selection for feed efficiency will not decrease 

ECM and will also not decrease the weight of 

the cows, because even the top 25% cows for 

RZFE have a slightly positive breeding value 
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for body weight. Therefore, most of the 

difference in RZFE between top and bottom 

animals stems from the difference in DMI. 

Table 3. Correlations of RZFE and GEBVs of other 

trait complexes 

Breeding 

value 
Trait complex 

Correlation 

to RZFE 

RZG Total merit 0.02 

RZ€ Total merit (€) 0.05 

RZM Production -0.07

RZN Longevity 0.05

RZE Conformation -0.11

RZR Reproduction 0.02

RZHealth Health -0.03

RZKm Calving, maternal 0.03

RZKd Calving, direct 0.10

RZCalffit Young stock survival 0.06

Table 4. Differences between the top and the bottom 

25% females for feed efficiency (352,692 per 

quartile) born between 2021 and 2022. 

Item Top 25% Bottom 25% Difference 

RZFE# 107.9 91.5 16.4 

FS* 607 -657 1,264 

DMI* -307 917 -1,224

ECM* 743 625 118

BWC* 0.6 2.2 -1.5

BW+ 4.1 27.1 -23.0

RZFE: Feed efficiency index (RZFeedEfficiency). 

FE: Feed saved. 

DMI: Dry Matter Intake. 

ECM: Energy Corrected Milk. 

BWC: Body Weight Change. 
# On a relative scale (Mean of 100±12) 
* Sum of first three parities in kg.
+ Mean of first three parities in kg

Conclusions 

The German feed efficiency index 

(RZFeedEfficiency, short: RZFE) was first 

introduced in April 2024. The international data 

exchange enables a sufficient data basis for the 

genetic evaluation of feed efficiency. However, 

with 0.4, the genomic reliability of the RZFE is 

at the lower range of genomic reliabilities when 

compared to other traits under routine genetic 

evaluation in Holsteins. Applying the 

covariance function approach facilitated the 

estimation of variance components for the 

random regression model. Our results show that 

underlying traits are heritable with reasonable 

estimates of the genetic parameters, allowing 

for considerable genetic selection. The feed 

efficiency trait definition considers dry matter 

intake, energy-corrected milk and body weight 

change as main energy sources/sinks and refers 

to three lactations, the average productive life 

of Holstein cows in Germany. RZFE is mostly 

independent of production level and health 

traits. The genetic standard deviation of RZFE 

is 247 kg per 305 days in milk, which is roughly 

3.5% of phenotypic DMI. 

Acknowledgments 

The authors gratefully acknowledge the 

financial support from the Förderverein 

Bioökonomieforschung e.V. (FBF) and the 

German Livestock Association (BRS) for the 

data collection within Germany. We extend our 

gratitude to all international partners for 

providing the data within the resilient dairy 

genome project and acknowledge the funding 

from the organizations for supporting the 

project. 

References 

Bell, M. J., Wall, E., Russel, G., Simm, G., 

Stott, A. W. 2012. The effect of improving 

cow productivity, fertility, and longevity on 

the global warming potential of dairy 

systems. J. Dairy Sci. 94, 3662-3678. DOI: 

https://doi.org/10.3168/jds.2010-4023 

Berry, D.P., Coffey, M.P., Pryce, J.E., De 

Haas, Y., Løvendahl, P., Krattenmacher, 

N., Crowley, J.J., Wang, Z., Spurlock, D., 

Weigel, K. and Macdonald, K. 2014. 

International genetic evaluations for feed 

intake in dairy cattle through the collation 

of data from multiple sources. J. Dairy Sci. 

97(6), 3894-3905. DOI: 10.3168/jds.2013-

7548 

Connor, E. E. 2015. Improving feed efficiency 

in dairy production: Challenges and 

possibilities. Anim (9), 395-408. DOI: 

10.1017/S1751731114002997 

52

https://doi.org/10.3168/jds.2010-4023
https://doi.org/10.3168/jds.2013-7548
https://doi.org/10.3168/jds.2013-7548
10.1017/S1751731114002997


INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

Khanal, P., Gaddis, K.P., Vandehaar, M.J., 

Weigel, K.A., White, H.M., Peñagaricano, 

F., Koltes, J.E., Santos, J.E.P., Baldwin, 

R.L., Burchard, J.F. and Dürr, J.W. 2022.

Multiple-trait random regression modeling

of feed efficiency in US Holsteins. J. Dairy

Sci, 105(7), 5954-5971. DOI:

10.3168/jds.2021-21739

Kirkpatrick, M., Hill, W. G. and Thompson, R. 

1994. Estimating the covariance structure 

of traits during growth and ageing, 

illustrated with lactation in dairy cattle. 

Genet. Res. 64(1), 57-69. DOI: 

10.1017/S0016672300032559 

Li, B., Fikse, W.F., Løvendahl, P., Lassen, J., 

Lidauer, M.H., Mäntysaari, P. and 

Berglund, B. 2018. Genetic heterogeneity 

of feed intake, energy-corrected milk, and 

body weight across lactation in primiparous 

Holstein, Nordic Red, and Jersey cows. J. 

Dairy Sci. 101(11), 10011-10021. -DOI: 

10.3168/jds.2018-14611 

Liu, Z., F. Reinhardt, and R. Reents. 2000. 

"Estimating parameters of a random 

regression test day model for first three 

lactation milk production traits using the 

covariance function approach. Interbull 

Bulletin. 25, 74-74. 

https://journal.interbull.org/index.php/ib/art

icle/view/816 

Meyer, K. 2007. WOMBAT—A tool for 

mixed model analyses in quantitative 

genetics by restricted maximum likelihood 

(REML). J. Zhejiang Univ. Sci. 8.11, 815-

821. DOI: 10.1631%2Fjzus.2007.B0815

Pech, C.M., Veerkamp, R.F., Calus, M.P.L., 

Zom, R., Van Knegsel, A., Pryce, J.E. and 

De Haas, Y. 2014. Genetic parameters 

across lactation for feed intake, fat-and 

protein-corrected milk, and liveweight in 

first-parity Holstein cattle. J. Dairy Sci. 

97.9, 5851-5862. DOI: 10.3168/jds.2014-

8165 

Pryce, J. E., Gonzalez-Recio, O., Nieuwhof, 

G., Wales, W. J., Coffey, M. P., Hayes, B. 

J., Goddard, M. E. 2015. Definition and 

implementation of a breeding value for feed 

efficiency in dairy cows. J. Dairy Sci. 98. 

7340-7350. DOI: 10.3168/jds.2015-9621 

Stephansen, R. B., Martin, P., Manzanilla-

Pech, C. I. V., Gredler-Grandl, B., Sahana, 

G., Madsen, P., Weigel, K., Tempelman, R. 

J., Peñagaricano, F., Parker Gaddis, K. L., 

White, H. M., Santos, J. E. P., Koltes, J. E., 

Schenkel, F., Hailemariam, D., Plastow, G., 

Abdalla, E., VandeHaar, M., Veerkamp, R. 

F., and Lassen, J. 2023. Novel genetic 

parameters for genetic residual feed intake 

in dairy cattle using time series data from 

multiple parities and countries in North 

America and Europe. J. Dairy Sci. 106(12), 

9078–9094. DOI: 10.3168/jds.2023-23330 

Tijani, A., Wiggans, G.R., Van Tassel, C.P., 

Philpot, J.C. and Gengler, N. 1999. Use of 

(co)variance functions to describe 

(co)variances for test day yield. J. Dairy 

Sci. 82(1), 226-e1. 

     DOI: https://doi.org/10.3168/jds.S0022-

0302(99)75228-8 

VandeHaar, M. J., L. Armentano, K. Weigel, 

D. Spurlock, R. Tempelman, and R.

Veerkamp. 2016. Harnessing the genetics

of the modern dairy cow to continue

improvements in feed efficiency. J. Dairy

Sci. (99), 4941–4954. DOI:

10.3168/jds.2015-10352

Vuori, Kaarina, Ismo Strandén, Martin 

Lidauer, and E. A. Mäntysaari. MiX99-

effective solver for large and complex 

linear mixed models. 2006. Proceedings of 

the 8th World Congress on Genetics 

Applied to Livestock Production. (9) 27-33. 

van Staaveren, N., Rojas de Oliveira, H., 

Houlahan, K., Chud, T. C. S., Oliveira, G. 

A., Hailemariam, D., Kistemaker, G., 

Miglior, F., Plastow, G., Schenkel, F. S., 

Cerri, R., Sirard, M. A., Stothard, P., Pryce, 

J., Butty, A., Stratz, P., Abdalla, E. A. E., 

Segelke, D., Stamer, E. and Baes, C. F. 

2024. The Resilient Dairy Genome 

Project—A general overview of methods 

and objectives related to feed efficiency and 

methane emissions. J. Dairy Sci. 107(3), 

1510–1522. DOI: 10.3168/jds.2022-22951 

53

https://doi.org/10.3168/jds.2021-21739
https://doi.org/10.1017/S0016672300032559
https://doi.org/10.3168/jds.2018-14611
https://journal.interbull.org/index.php/ib/article/view/816
https://journal.interbull.org/index.php/ib/article/view/816
https://doi.org/10.1631%2Fjzus.2007.B0815
https://doi.org/10.3168/jds.2014-8165
https://doi.org/10.3168/jds.2014-8165
https://doi.org/10.3168/jds.2015-9621
https://doi.org/10.3168/jds.2023-23330
https://doi.org/10.3168/jds.S0022-0302(99)75228-8
https://doi.org/10.3168/jds.S0022-0302(99)75228-8
https://doi.org/10.3168/jds.2015-10352
https://doi.org/10.3168/jds.2022-22951



