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Abstract 

 

Crossbreeding exploits heterozygosity and is increasingly adopted in dairy cattle. However, genomic 

selection for crossbred animals is challenging due to difficulties in establishing suitable multi-breed 

reference populations and modelling missing pedigree information. This study aimed to investigate the 

benefits of multi-breed multi-trait single-step genomic evaluations that jointly analyse New Zealand 

data from two purebred populations (Holstein and Jersey) and a derived crossbred population (XBD). 

We also investigated the impact of modelling missing pedigree information using genetic groups (GG) 

or metafounders (MF). Pedigree (1.1M), genotypes (127K), and individual phenotypes for calving 

season days (deviation between planned and actual calving date, CSD; ~370K records) and 305-days 

milk yield (MY; ~538K records) were available for purebred and crossbred animals. Six scenarios were 

implemented: A) a single-step evaluation per breed, each using phenotypes of all breeds treated as a 

single trait, but only genotypes of the respective breed, and 255 GG; B) a joint evaluation using the 

genotypes of all breeds, with phenotypes and GG as in A; C) as B but grouping all GG into only 4 GG; 

D) as B but replacing all GG by MF; E) as B but replacing all GG by only 4 MF; F) as B but with 

phenotypes from different breeds treated as separate correlated traits. CSD and MY were jointly 

analysed in a multi-trait model in all scenarios. Validation statistics were computed for both purebred 

and XBD genotyped cows and bulls born in recent years. Scenarios using all purebred and XBD 

genotypes had higher accuracies than the scenario analysing each breed separately. Using all genotypes 

and modelling traits across breeds as different traits showed the highest accuracy among all scenarios 

for MY but the lowest for CSD. Reducing the number of GG gave similar results to using all GG. 

Moving from GG to MF had limited benefits. Overall, results showed that combining Holstein, Jersey, 

and the derived XBD data into multi-breed single-step evaluations can enhance the accuracy of genomic 

predictions for both purebred and crossbred animals. 
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Introduction 

 

In dairy cattle, high emphasis on functional 

traits, such as fertility and health, and longevity-

related traits have contributed to an increase in 

the number of crossbred animals (Sørensen et 

al., 2008; Winkelman et al., 2015; VanRaden et 

al., 2020; Harris, 2022). Crossbreeding is 

increasingly adopted as it allows to take 

advantage of heterosis and breed 

complementary (Sørensen et al., 2008), next to 

reducing issues connected to inbreeding and 

loss of genetic diversity, which are increasing in 

different cattle breeds such as in Holstein-

Friesian populations (e.g., Doekes et al., 2018; 

Makanjuola et al., 2020; Ablondi et al., 2022). 

Single-step genomic prediction approaches 

allow combining pedigree, genomic, and 

phenotypic data into a single evaluation 

(Legarra et al., 2014). Multi-breed genomic 

evaluations that combine data from different 

populations and crossbred animals may allow 
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for more efficient use of collected data and the 

simultaneous prediction of genomic estimated 

breeding values (GEBVs) of both purebred and 

crossbred animals. However, genomic 

predictions including different populations and 

crossbred are challenging due to difficulties in 

establishing a suited reference population 

(Khansefid et al., 2020; van den berg et al., 

2020; Cesarani et al., 2022). Single Nucleotide 

Polymorphism (SNP) and Quantitative Trait 

Loci (QTL) effects may differ between 

purebred and crossbred animals due to 

differences in their genetic background, 

environmental conditions (which can lead to 

genotype-by-environment interactions), and 

differences in linkage disequilibrium between 

SNP and QTL (Vandenplas et al., 2016). Thus, 

designing and validating multi-breed genomic 

predictions is crucial to ensure that data from 

different populations are efficiently combined 

into a single-step approach. 

Multi-breed single-step evaluations combine 

genomic information from purebred and 

crossbred animals next to complex pedigree 

information in which individuals may have 

missing parental information. Unknown parents 

of individuals with missing parental 

information are assumed to come from the base 

population and therefore assumed to be 

unselected, unrelated, and having the same 

genetic level (Schaeffer, 2019). Due to 

selection, these assumptions are violated, 

especially when animals originate from 

different populations, countries, or breeds, as 

different genetic levels among individuals are 

expected. Genetic groups can be used in single-

step models to model differences in the genetic 

levels of unknown parents (Masuda et al., 

2022). An alternative approach to genetic 

groups is the use of metafounders, as proposed 

by (Legarra et al., 2015), which can also be 

implemented in multi-breed single-step 

evaluations. In addition to genetic groups, the 

concept of metafounders can model the 

relationships within and across different base 

populations of different breeds. 

In this study, we aimed to investigate the 

benefits of multi-breed multi-trait single-step 

genomic predictions that jointly analyse two 

purebred populations (Holstein and Jersey) and 

a derived crossbred population. In particular, 

we aimed to investigate the benefits of multi-

breed genomic evaluations for both purebred 

and crossbred animals and to investigate the 

impact of modelling missing pedigree 

information using genetic groups (GG) or 

metafounders (MF). 

 

Materials and Methods 

 

Data available 

Pedigree information was available for 

1,151,801 dairy cattle animals from New 

Zealand. The population included purebred 

animals (≥87.5% of breed composition) for 

Holstein (HOL) and Jersey (JER) populations, 

and a derived crossbred population (XBD). The 

XBD population was composed of animals 

defined as having at least 50% of their breed 

composition as HOL or JER, and <87.5% HOL 

or JER. The pedigree had a total of 255 GG 

defined based on the breed and the year of birth 

of the animal. 

 

Table 1. Pedigree size, number of phenotypes (for whole and partial datasets), number of genotypes, and number 

of validation animals per breed. 

Breed a Pedigree 

Phenotypes b 

(whole) 

Phenotypes 

(partial) Genotypes 

Validation 

animals 

CSD MY CSD MY Cows Bulls 

HOL 341,215 140,441 207,905 118,911 169,911 46,610 8,953 353 

JER 141,012 51,489 74,456 44,160 61,412 22,842 3,827 168 

XBD 395,976 177,713 255,357 146,389 202,515 57,852 13,713 129 

Other 273,598 - - - - - - - 

Total 1,151,801 369,643 537,718 309,460 433,838 127,304 26,493 650 
a HOL = Holstein, JER = Jersey, XBD = crossbred. b MY = Milk Yield, CSD = Calving Season days. 
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 Individual phenotypes were available for 

first parity cows on one reproduction and one 

production trait: Calving Season Days (CSD) 

and 305-day milk yield (MY), respectively. 

CSD is defined as the (positive or negative) 

deviation in the number of days from the 

planned start of calving date to the actual 

calving date for a given herd-year. The number 

of phenotypes available in each breed is 

reported in  

Table 1. For both traits, most of the recorded 

phenotypes were available on XBD animals 

(~48% of the total), followed by HOL (~38%) 

and JER (~14%). All cows had a record for MY, 

and ~68% of them had a record for CSD. 

 A total of 127,304 genotypes were available 

at 85,394 SNP density.  

Table 1 reports the number of genotypes 

available per breed. Overall, 45%, 37%, and 

18% of the genotypes were from XBD, HOL, 

and JER, respectively. 

 

Scenarios 

Six scenarios were investigated to implement 

multi-breed single-step genomic predictions 

including both purebred and crossbred animals. 

All scenarios used the full pedigree and always 

analysed CSD and MY jointly with a multi-trait 

approach. The first 3 scenarios used 255 GG 

and are described below: 

 SINGLE: three separate evaluations were 

conducted, each using the phenotypes of all 

breeds treated as a single trait, but only 

genotypes of the respective breed, i.e., only 

HOL, JER, or XBD. 

 ALL: a multi-breed evaluation using 

phenotypes and genotypes from all breeds 

jointly and in which phenotypes of different 

breeds are treated as a single trait. 

 MBMT: a multi-breed multi-trait evaluation 

using phenotypes and genotypes from all 

breeds jointly and in which phenotypes of 

different breeds are treated as different 

correlated traits. 

 

Additional scenarios were implemented to 

investigate the impact of MF and of reducing 

the number of GG or MF. The last 3 scenarios 

are as follows: 

 ALL_4GG: as ALL but replacing all GG by 

only 4 GG. The 4 GG were defined and 

assigned to individuals with unknown 

parents based on their breed composition 

and corresponded to HOL, JER, XBD, and 

OTHERS (for all other breeds). 

 ALL_255MF: as ALL but replacing GG by 

MF. 

 ALL_4MF: as ALL_4GG but replacing GG 

with MF. 

 

Model and software 

The following model was used: 

𝐲𝑖 ~ 𝐗𝑖𝐛𝑖 + 𝐙𝑖𝐮𝑖 + 𝐞𝑖, 

where 𝑖 is the trait (either CSD or MY), 𝐲𝑖 is the 

vector of observations for trait 𝑖, 𝐮𝑖 is the vector 

of random additive genetic effects for trait 𝑖, 

and 𝐞𝑖 is the vector of random residual effects 

for trait 𝑖. 𝐗𝑖 and 𝐙𝑖 are incidence matrices 

linking records of trait 𝑖 to fixed effects and 

additive genetic effects, respectively. Fixed 

effects included heterozygosity, recombination, 

inbreeding, age at first calving (only for CSD), 

herd-year-season at first calving, and age at 

second calving (only for MY). It was assumed 

that: 

 

𝑣𝑎𝑟 [
𝐮𝐶𝑆𝐷

𝐮𝑚𝑖𝑙𝑘
] = 𝐆 ⊗ 𝐀

= [
σ𝑢 𝐶𝑆𝐷

2 𝑆𝑦𝑚

σ𝑢 𝐶𝑆𝐷,𝑀𝑌
σ𝑢 MY

2 ] ⊗ 𝐀, 

 

where 𝐆 is the genetic co-variance matrix, 𝐀 is 

the numerator relationship matrix, σ𝑢 𝐶𝑆𝐷
2  and 

σ𝑢𝑀𝑌
2  are the additive genetic variances for CSD 

and MY, respectively, σ𝑢 𝐶𝑆𝐷,𝑚𝑖𝑙𝑘
 is the additive 

genetic covariance between CSD and MY, and 

⊗ indicates the Kronecker product. Residuals 

were assumed to be uncorrelated. 

In the MBMT scenario, phenotypes of 

different breeds were modelled as different 

correlated traits. Thus, the model was adapted 

as follows: 
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[
 
 
 
 
 
𝐲𝐻𝐶𝑆𝐷

𝐲𝐻𝑀𝑌

𝐲𝐽𝐶𝑆𝐷

𝐲𝐽𝑀𝑌

𝐲𝑋𝐶𝑆𝐷

𝐲𝑋𝑀𝑌 ]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝐗𝐻𝐶𝑆𝐷

𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝐗𝐻𝑀𝑌
𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝐗𝐽𝐶𝑆𝐷
𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝐗𝐽𝑀𝑌
𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝐗𝑋𝐶𝑆𝐷
𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝐗𝑋𝑀𝑌]
 
 
 
 
 
 

 

[
 
 
 
 
 
 
𝐛𝐻𝐶𝑆𝐷

𝐛𝐻𝑀𝑌

𝐛𝐽𝐶𝑆𝐷

𝐛𝐽𝑀𝑌

𝐛𝑋𝐶𝑆𝐷

𝐛𝑋𝑀𝑌 ]
 
 
 
 
 
 

 +

[
 
 
 
 
 
 
𝐙𝐻𝐶𝑆𝐷

𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝐙𝐻𝑀𝑌
𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝐙𝐽𝐶𝑆𝐷
𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝐙𝐽𝑀𝑌
𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝐙𝑋𝐶𝑆𝐷
𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝐙𝑋𝑀𝑌]
 
 
 
 
 
 

[
 
 
 
 
 
𝐮𝐻𝐶𝑆𝐷

𝐮𝐻𝑀𝑌

𝐮𝐽𝐶𝑆𝐷

𝐮𝐽𝑀𝑌

𝐮𝑋𝐶𝑆𝐷

𝐮𝑋𝑀𝑌 ]
 
 
 
 
 

+

[
 
 
 
 
 
𝐞𝐻𝐶𝑆𝐷

𝐞𝐻𝑀𝑌

𝐞𝐽𝐶𝑆𝐷

𝐞𝐽𝑀𝑌

𝐞𝑋𝐶𝑆𝐷

𝐞𝑋𝑀𝑌 ]
 
 
 
 
 

, 

 

and it was assumed that: 

𝑣𝑎𝑟 

[
 
 
 
 
 
 
 
 
𝐮𝐻𝐶𝑆𝐷

𝐮𝐻𝑀𝑌

𝐮𝐽𝐶𝑆𝐷

𝐮𝐽𝑀𝑌

𝐮𝑋𝐶𝑆𝐷

𝐮𝑋𝑀𝑌 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

𝜎𝑢 𝐻𝐶𝑆𝐷

2

𝜎𝑢 𝐻𝑀𝑌,𝐻𝐶𝑆𝐷
𝜎𝑢 𝐻𝑀𝑌

2 𝑆𝑦𝑚

𝜎𝑢 𝐽𝐶𝑆𝐷,𝐻𝐶𝑆𝐷
𝜎𝑢 𝐽𝐶𝑆𝐷,𝐻𝑀𝑌

𝜎𝑢 𝐽𝐶𝑆𝐷

2

𝜎𝑢 𝐽𝑀𝑌,𝐻𝐶𝑆𝐷
𝜎𝑢 𝐽𝑀𝑌,𝐻𝑀𝑌

𝜎𝑢 𝐽𝑀𝑌,𝐽𝐶𝑆𝐷
𝜎𝑢 𝐽𝑀𝑌

2

𝜎𝑢 𝑋𝐶𝑆𝐷,𝐻𝐶𝑆𝐷
𝜎𝑢 𝑋𝐶𝑆𝐷,𝐻𝑀𝑌

𝜎𝑢 𝑋𝐶𝑆𝐷,𝐽𝐶𝑆𝐷
𝜎𝑢 𝑋𝐶𝑆𝐷,𝐽𝑀𝑌

𝜎𝑢 𝑋𝐶𝑆𝐷

2

𝜎𝑢 𝑋𝑀𝑌,𝐻𝐶𝑆𝐷
𝜎𝑢𝑋𝑀𝑌,𝐻𝑀𝑌

𝜎𝑢 𝑋𝑀𝑌,𝐽𝐶𝑆𝐷
𝜎𝑢 𝑋𝑀𝑌,𝐽𝑀𝑌

𝜎𝑢 𝑋𝑀𝑌,𝑋𝐶𝑆𝐷
𝜎𝑢 𝑋𝑀𝑌

2
]
 
 
 
 
 
 
 
 

⊗A, 

 

where H, J, and X refer to HOL, JER, and XBD, 

respectively. All other terms are defined as 

above. Residuals were fitted using block-

diagonal variance matrices and were assumed to 

be uncorrelated across breeds. 

The same co-variance components were 

used for CSD and MY in all scenarios 

(heritability and genetic correlations between 

traits are reported in Table 2), except for the 

MBMT scenario in which pedigree-based co-

variance components were estimated using 

GIBBSF90+ (Misztal et al., 2002). The data for 

variance component estimation was prepared as 

follows to reduce the size of the analysed 

dataset: i) animals with phenotypes deviating 

more than 3 standard deviations from the mean 

of each breed were removed; ii) only 

phenotyped animals born from 2010 onwards, 

with both parents known, and belonging to a 

contemporary group (i.e., herd-year-season) 

with a size of at least 5 individuals were 

retained; iii) a pedigree depth of six generations 

from the retained phenotyped animals was used. 

The genetic and residual co-variances used in 

other scenarios were used as starting values. 

Gibbs sampling was run for two hundred 

thousand samples, 2,000 samples were 

discarded as burn-in, and every 150th sample 

was saved. POSTGIBBSF90 (Misztal et al., 

2002) was used to monitor convergence and to 

obtain estimates and standard errors. 

In all the above models, a single-step SNP-

BLUP (ssSNPBLUP) approach (Liu et al., 

2014) assuming 30% of the additive genetic 

variance due to residual polygenic effects was 

used. A J covariate was added as a fixed effect 

in the model to ensure the compatibility 

between pedigree and genomic information 

(Hsu et al., 2017), except for the two scenarios 

using MF (i.e., ALL_255MF and ALL_4MF). J 

covariates were computed as described by 

(Tribout et al., 2019). 

GEBVs were computed using the software 

MiXBLUP (Vandenplas et al., 2022). The 

computed GEBVs were rebased using HOL, 

JER and XBD animals born in 2000 with an 

available phenotype for MY as the base 

population. All validation results were obtained 

using the rebased GEBVs. 

 

Table 2. Heritability (diagonal) and genetic 

correlation (below diagonal) for CSD and MY. 

  CSD MY 

CSD 0.05  

MY 0.22 0.31 

 

Validation 

The Linear Regression (LR) validation method 

was used to compare the different scenarios 

implemented (Legarra and Reverter, 2018; 

Macedo et al., 2020). For each scenario, a 

“whole” and a “partial” evaluation were carried 

out. In the whole evaluation, GEBVs (𝑢𝑤) were 

obtained using all information (pedigree, 
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phenotypes, and genotypes). In the partial 

evaluation, GEBVs (𝑢𝑝) were obtained using 

less information, i.e., by removing the 

phenotypes of animals born in the last 6 years 

(corresponding to a cut-off in the year 2016) 

while maintaining the same pedigree and 

genotypes as in the whole evaluation. Table 1 

reports the number of phenotypes in the whole 

and the partial evaluations. 

In each scenario, the following estimators 

from the LR method were computed: 

 Level bias (∆̂𝑝): defined as the difference 

between the mean GEBV of the partial 

evaluations and the mean GEBV of the 

whole evaluation as: ∆̂𝑝= �̂�𝑝 − �̂�𝑤. In 

absence of level bias, ∆̂𝑝 is expected to be 0. 

Level bias was expressed in genetic standard 

deviations for easier interpretation (∆̂𝑝 �̂�𝑢⁄ ). 

 Dispersion bias (�̂�𝑝): defined as the slope of 

the regression of 𝑢𝑤 on 𝑢𝑝 and calculated as 

�̂�𝑝 = 
𝑐𝑜𝑣(�̂�𝑤,�̂�𝑝)

𝑣𝑎𝑟( �̂�𝑝)
. In absence of dispersion 

bias, the expected value of �̂�𝑝 is 1. Values of 

�̂�𝑝 < 1 indicate over-dispersion, while 

values of �̂�𝑝 > 1 indicate under-dispersion. 

Values of �̂�𝑝 within 15% from the expected 

value were considered as acceptable 

similarly to other studies (e.g., Tsuruta et al., 

2011; Bonifazi et al., 2022). 

 Accuracy of partial GEBV (𝑎𝑐�̂�𝑝): 

computed as 𝑎𝑐�̂�𝑝 = √
𝑐𝑜𝑣(�̂�𝑤,�̂�𝑝)

(1−�̅�) 𝜎𝑢
2 , where �̅� 

is the mean inbreeding coefficient of the 

validation group derived from pedigree and 

𝜎𝑢
2 is the additive genetic variance. 

LR validation statistics were obtained for 

two validation groups within each breed and 

defined as follows: 

 cows: genotyped cows phenotyped for MY 

and/or CSD and born after the cut-off. 

 bulls: genotyped bulls with at least 20 

daughters with phenotypes for MY and/or 

CSD born after the cut-off, and with no 

daughters with phenotypes for MY or CSD 

born before the cut-off. 

The estimators of the LR method were 

computed using the “compute_LR_stats” R 

function available in Bonifazi (2023). Standard 

errors (SE) of LR estimators were obtained 

using bootstrapping with replacement of 

individuals within each validation group. A 

total of 10,000 bootstrap samples were utilized 

for all analyses. 

 

Results & Discussion 

Hereafter, we first report results on the 

population structure and the relationship 

between the breeds analysed. We then present 

the validation results and discuss the findings of 

this study. 

 

Population structure and estimated genetic 

parameters 

Figure 1 reports the three principal components 

from a Principal Component Analysis (PCA) 

using genotypes from all three breeds. The PCA 

shows that HOL and JER clustered separately 

and that the XBD is an unstructured cross which 

is genetically linked to both purebred 

populations. This pattern was expected as the 

XBD population is derived from HOL and JER 

crossing (Khansefid et al., 2020). 

Table 4 reports estimated heritabilities and 

genetic correlations for the MBMT scenario. 

For CSD, estimated heritabilities were similar  

for all breeds (ranging from 0.03 to 0.04), 

while for MY they ranged from 0.24 for HOL 

to 0.27 for JER. For CSD, across-breed genetic 

correlations were the lowest between JER and 

other breeds (≤0.66), while a high genetic 

correlation (0.93) was estimated between XBD 

and HOL. For MY, across-breed genetic 

correlations were high, ranging from 0.82 

between JER and HOL to 0.96 between XBD 

and HOL. Within-breed across-traits genetic 

correlations ranged from 0.24 for JER to 0.46 

for XBD. Across-breed across-traits genetic 

correlations ranged from 0.34 for CSD in XBD 

and CSD in JER to 0.70 for MY in JER and 

CSD in XBD (Table 4). Across-breed across-

traits genetic correlations not significantly 

different from zero were estimated between 

131



INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

 

 

CSD in JER and MY in HOL, and between CSD 

in JER and MY in XBD. Overall, the estimated 

genetic correlations indicate that XBD is 

genetically closer to the HOL than to the JER 

for both CSD and MY. The closer genetic link 

between XBD and HOL than with JER was also 

reflected in the estimated Γ matrix representing 

the relationships within and between MF for the 

ALL_4MF scenario. A higher relationship was 

estimated between the XBD MF and the HOL 

MF than with the JER MF (Table 3). As 

expected, the OTHER MF showed the lowest 

relationships between MF since it included all 

other breeds. 

 

Validation results 

Level bias 

Overall, larger level bias was observed for CSD 

than MY and, for both traits, standard errors 

were larger for bulls than for cows (Table 5). 

For CSD, larger ∆̂𝑝 were observed for bulls 

compared to cows in all scenarios, with XBD 

bulls showing the largest ∆̂𝑝. Scenario SINGLE 

showed ∆̂𝑝 for CSD of -0.05 GSD and 0.00 

GSD on average across breeds for bulls and 

cows, respectively. Scenario ALL showed 

similar level bias to SINGLE: ∆̂𝑝 for CSD of -

0.04 GSD and 0.02 GSD on average across 

breeds for bulls and cows, respectively. 

Likewise, ALL_4MF showed similar bias to 

ALL: ∆̂𝑝 of -0.04 GSD and 0.01 GSD on 

average across breeds for bulls and cows, 

respectively. Finally, ∆̂𝑝 for CSD under the 

MTMB scenario was of -0.06 GSD and -0.01 

GSD on average across breeds for bulls and 

cows, respectively. 

For MY, no large differences were observed 

across the different scenarios for level bias 

(Table 5): on average across breeds, ∆̂𝑝 ranged 

between -0.04 GSD for cows for the 

ALL_255MF scenario to 0.02 GSD for bulls for 

the ALL_4GG scenario (results not shown). 

 

 

 

Figure 1. Plot of the first three principal components 

(PC). Colours indicate the breed associated with the 

genotype (HOL = Holstein, JER = Jersey, XBD = 

crossbred). 

 

 

Table 3. Estimated Γ matrix for the ALL_4MF 

scenario. 
 HOLa JER XBD OTHER 

HOL 0.93 0.78 0.83 0.57 

JER  0.72 0.75 0.54 

XBD   0.78 0.56 

OTHER    0.77 
a Four metafounders: HOL = Holstein, JER = Jersey, 

XBD = crossbred, OTHER = other breeds. 

 

 

 

 

 

Table 4. Estimated heritabilities (on the diagonal) and within- and across-breeds genetic correlations (lower 

diagonal) for CSD and MY (standard errors between brackets). 

  CSD b MY 

  HOLa JER XBD HOL JER XBD 

CSD 

HOL 0.03 (0.00)      

JER 0.59 (0.09) 0.04 (0.01)     

XBD 0.93 (0.03) 0.66 (0.06) 0.03 (0.00)    

MY 

HOL 0.41 (0.05) -0.02 (0.10) 0.47 (0.05) 0.24 (0.01)   

JER 0.55 (0.06) 0.24 (0.07) 0.70 (0.06) 0.82 (0.05) 0.27 (0.02)  

XBD 0.34 (0.04) -0.03 (0.10) 0.46 (0.04) 0.96 (0.01) 0.87 (0.03) 0.26 (0.01) 
a HOL = Holstein, JER = Jersey, XBD = crossbred. b CSD = Calving Season Days, MY = Milk Yield. 
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Dispersion bias 

Overall, CSD showed mostly over-

dispersion (�̂�𝑝 < 1 in all scenarios, except for 

JER bulls and cows) while MY showed both 

over- and under-dispersion (Table 5). For both 

CSD and MY, �̂�𝑝 were within the 15% 

acceptable range for all validation groups and 

scenarios, except for CSD-HOL bulls in the 

SINGLE scenario and for MY-XBD bulls in the 

MTMB scenario (Table 5). For both CSD and 

MY, cows showed less dispersion than bulls, 

with �̂�𝑝 closer to 1 on average across breeds and 

scenarios. Scenarios ALL_255MF and 

ALL_4GG showed similar dispersion bias to 

ALL (results not shown). Larger standard errors 

of �̂�𝑝 were observed for bulls compared to 

cows, likely due to the smaller number of 

validation animals available. 

For CSD, SINGLE showed the most 

dispersion across all scenarios: �̂�𝑝 of 0.90 and 

0.94 on average across breeds for bulls and 

cows, respectively. Scenario ALL showed less 

dispersion for CSD than SINGLE, with values 

closer to 1: �̂�𝑝 of 0.94 and 0.95 on average 

across breeds for bulls and cows, respectively. 

Scenario ALL_4MF showed the least 

dispersion for CSD among all scenarios 

analysed: �̂�𝑝 of 0.96 and 0.97 on average across 

breeds for bulls and cows, respectively. Finally, 

dispersion for CSD under the MTMB scenario 

was in between that of SINGLE and ALL: �̂�𝑝 of 

0.91 and 0.95 on average across breeds for bulls 

and cows, respectively. 

For MY, SINGLE and ALL gave overall 

similar results, with �̂�𝑝values ranging between 

0.99 and 1.01 on average across breeds for bulls 

and cows, respectively. Scenario ALL_4MF 

gave slightly higher dispersion than ALL for 

MY: �̂�𝑝 of 1.04 and 1.03 on average across 

breeds for bulls and cows, respectively. Finally, 

MTMB had the highest dispersion among all 

scenarios, albeit within the acceptable range: �̂�𝑝 

of 1.06 and 1.05 on average across breeds for 

bulls and cows, respectively. 

 

Accuracy of partial GEBV 

Overall, for both CSD and MY, higher 𝑎𝑐�̂�𝑝 

were obtained for HOL validation groups, 

followed by XBD and JER (Table 5). 

For CSD, 𝑎𝑐�̂�𝑝 in scenario SINGLE was 

0.49 and 0.44 on average across breeds for bulls 

and cows, respectively. Scenario ALL gave the 

highest accuracies for CSD: 𝑎𝑐�̂�𝑝 of 0.53 and 

0.49 on average across breeds for bulls and 

cows, respectively. MTMB showed the lowest 

accuracies for CSD among all scenarios: 𝑎𝑐�̂�𝑝 

of 0.44 and 0.42 on average across breeds for 

bulls and cows, respectively. Finally, accuracies 

for ALL_4MF were close to those of scenario 

ALL (Table 5). ALL_4GG and ALL_255MF 

scenarios gave similar accuracies as scenario 

ALL (results not shown). 

For MY, 𝑎𝑐�̂�𝑝 in scenario SINGLE was 0.44 

and 0.50 on average across breeds for bulls and 

cows, respectively. Scenario ALL gave higher 

accuracies than SINGLE for MY: 𝑎𝑐�̂�𝑝 of 0.48 

and 0.56 on average across breeds for bulls and 

cows, respectively. The MTMB scenario 

showed the highest accuracies for MY among 

all scenarios: 𝑎𝑐�̂�𝑝 on average across breeds of 

0.56 and of 0.63 for bulls and cows, 

respectively. Finally, similarly to CSD, 𝑎𝑐�̂�𝑝for 

MY for scenarios ALL_4MF, ALL_4GG and 

ALL_255MF were close to ALL (results not 

shown). 

 

Impact of moving from single-breed to multi-

breed evaluations 

Our results show that a combined multi-breed 

evaluation improves the accuracy of GEBVs 

compared to a single-breed evaluation. LR 

validation results showed increased 𝑎𝑐�̂�𝑝 when 

moving from single-breed genomic evaluations 

(scenario SINGLE) to multi-breed genomic 

evaluations, such as those of scenario ALL, for 

both CSD and MY and for both purebred and 

crossbred animals. The observed increase in 

𝑎𝑐�̂�𝑝 is likely due to the close genetic 

relationship among the three populations 

(Figure 1), which allows for (genomic) data 
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Table 5. Level bias in genetic standard deviations (∆̂𝑝), dispersion (�̂�𝑝), and accuracy of partial GEBVs (𝑎𝑐�̂�𝑝) for 

CSD and MY from validation cows and bulls. Standard errors between brackets. 

 CSD b MY 

Scenario c  Bulls   Cows   Bulls   Cows  

 HOL a JER XBD HOL JER XBD HOL JER XBD HOL JER XBD 

𝑎𝑐�̂�𝑝             

SINGLE 0.58 

(0.03) 

0.38 

(0.03) 

0.50 

(0.03) 

0.49 

(0.00) 

0.39 

(0.01) 

0.45 

(0.00) 

0.49 

(0.03) 

0.36 

(0.03) 

0.47 

(0.04) 

0.55 

(0.00) 

0.38 

(0.01) 

0.59 

(0.00) 

ALL 0.63 

(0.03) 

0.42 

(0.02) 

0.53 

(0.04) 

0.54 

(0.00) 

0.43 

(0.01) 

0.51 

(0.00) 

0.52 

(0.03) 

0.45 

(0.03) 

0.48 

(0.04) 

0.59 

(0.01) 

0.46 

(0.01) 

0.62 

(0.00) 

ALL_4MF 0.62 

(0.03) 

0.44 

(0.03) 

0.52 

(0.04) 

0.52 

(0.00) 

0.43 

(0.01) 

0.47 

(0.00) 

0.54 

(0.02) 

0.47 

(0.03) 

0.47 

(0.04) 

0.60 

(0.00) 

0.49 

(0.01) 

0.62 

(0.00) 

MBMT 0.52 

(0.02) 

0.30 

(0.02) 

0.49 

(0.04) 

0.46 

(0.00) 

0.32 

(0.00) 

0.47 

(0.00) 

0.59 

(0.03) 

0.55 

(0.04) 

0.55 

(0.05) 

0.65 

(0.01) 

0.55 

(0.01) 

0.70 

(0.00) 

�̂�𝑝             

SINGLE 0.84 

(0.04) 

0.94 

(0.08) 

0.91 

(0.08) 

0.90 

(0.01) 

0.99 

(0.01) 

0.93 

(0.01) 

0.87 

(0.06) 

1.03 

(0.10) 

1.06 

(0.10) 

1.01 

(0.01) 

0.99 

(0.02) 

1.01 

(0.01) 

ALL 0.87 

(0.04) 

1.03 

(0.06) 

0.92 

(0.08) 

0.91 

(0.01) 

1.01 

(0.01) 

0.94 

(0.01) 

0.91 

(0.06) 

0.96 

(0.07) 

1.11 

(0.11) 

1.01 

(0.01) 

0.99 

(0.01) 

1.02 

(0.01) 

ALL_4MF 0.90 

(0.04) 

1.04 

(0.06) 

0.93 

(0.08) 

0.92 

(0.01) 

1.02 

(0.01) 

0.95 

(0.01) 

1.00 

(0.05) 

1.01 

(0.07) 

1.11 

(0.11) 

1.03 

(0.01) 

1.01 

(0.01) 

1.03 

(0.01) 

MBMT 0.88 

(0.04) 

0.92 

(0.08) 

0.94 

(0.08) 

0.92 

(0.01) 

0.97 

(0.01) 

0.95 

(0.01) 

0.98 

(0.05) 

1.05 

(0.07) 

1.17 

(0.11) 

1.04 

(0.01) 

1.06 

(0.01) 

1.05 

(0.01) 

∆̂𝑝             

SINGLE -0.03 

(0.03) 

0.07 

(0.03) 

-0.20 

(0.04) 

0.02 

(0.00) 

0.02 

(0.00) 

-0.04 

(0.00) 

0.01 

(0.03) 

0.04 

(0.03) 

-0.03 

(0.04) 

0.00 

(0.01) 

0.02 

(0.01) 

-0.04 

(0.00) 

ALL -0.04 

(0.03) 

0.08 

(0.03) 

-0.17 

(0.04) 

0.03 

(0.00) 

0.04 

(0.00) 

-0.01 

(0.00) 

0.02 

(0.03) 

-0.02 

(0.03) 

0.00 

(0.04) 

-0.02 

(0.00) 

-0.02 

(0.01) 

-0.03 

(0.00) 

ALL_4MF -0.03 

(0.02) 

0.06 

(0.02) 

-0.13 

(0.03) 

0.01 

(0.00) 

0.02 

(0.00) 

-0.01 

(0.00) 

-0.02 

(0.02) 

0.00 

(0.02) 

0.01 

(0.03) 

-0.03 

(0.00) 

-0.01 

(0.00) 

-0.02 

(0.00) 

MBMT -0.06 

(0.03) 

0.03 

(0.03) 

-0.16 

(0.04) 

0.00 

(0.00) 

0.01 

(0.00) 

-0.04 

(0.00) 

-0.02 

(0.03) 

0.01 

(0.04) 

-0.02 

(0.05) 

-0.04 

(0.01) 

-0.01 

(0.01) 

-0.05 

(0.00) 
a HOL = Holstein, JER = Jersey, XBD = crossbred. b CSD = Calving Season Days, MY = Milk Yield. c SINGLE 

= separate single-breed evaluations using the phenotypes of all breeds treated as a single trait, but only genotypes 

of the respective breed; ALL = multi-breed evaluation using all phenotypes and genotypes from all breeds and 

treating phenotypes of different breeds as a single trait; MBMT = a multi-breed multi-trait evaluation using 

phenotypes and genotypes from all breeds jointly and treating phenotypes of different breeds as different correlated 

traits; ALL_4MF = as ALL, but using four metafounders. 
 

 collected on one breed to contribute valuable 

information for the prediction of GEBVs in 

other breeds. Finally, no consistent pattern 

across scenarios and traits was observed for 

level bias and dispersion bias when moving 

from single-breed to multi-breed genomic 

evaluations for both purebred and crossbred. 

The results of our study are in line with those 

of Khansefid et al. (2020) and Karaman et al. 

(2021), who reported increased accuracies for 

both purebred and crossbred animals when 

using a multi-breed reference population for 

genomic evaluations of both (small) purebred 

and crossbred populations. In contrast, Cesarani 

et al. (2022) reported a decrease in accuracy and 

an increase in inflation for breeds with a small 

reference population when included in a multi-

trait evaluation next to other purebred but 

numerically dominant breeds. This reduction in 

accuracy was not observed in our study, likely 

due to the sizeable (genomic) data collected on 

both purebred and crossbred individuals (Table 

1) and the inclusion of data from crossbred 

individuals in the multi-breed evaluation. 

The MTMB scenario treated the same trait 

in different breeds as different correlated traits 

and showed the lowest 𝑎𝑐�̂�𝑝 for CSD but the 

highest 𝑎𝑐�̂�𝑝 for MY (Table 5). These results 

could be related to the higher genetic 
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correlations between MY in different 

populations compared to CSD (Table 4). 

Genetic correlations influence the degree to 

which information recorded in one population 

will influence the GEBVs in another trait and 

population. The results of this study suggest that 

a MTMB scenario may perform better for traits 

showing high correlations between populations 

and highlight the importance of genetic 

correlations in determining the optimal scenario 

for implementing multi-breed genomic 

evaluations. Nonetheless, further testing and 

validation of the multi-breed multi-trait 

approach on other traits should be conducted. 

 

Impact of reducing the number of GG and 

implementation of MF 

We observed no impact in reducing the number 

of GG on the accuracy of validation animals. 

Having a large number of GG with potentially 

few animals in each group may impact the 

performance of genomic evaluations (ten Napel 

et al., 2022). The results of this study suggest 

that the number of GG could be reduced for the 

studied population without negatively 

impacting the GEBVs of animals in recent 

generations. This observed lack of impact was 

likely related to missing parental information 

being related to mostly animals in older 

generations, resulting in limited to no impact on 

younger animals. Moreover, animals with 

missing parental information were mostly 

related to other breeds than the three validated 

ones. Out of the total number of animals in the 

pedigree with missing parental information, 

19%, 6%, 23% and 52% were assigned to the 

HOL, JER, XBD, and “other breeds” GG, 

respectively. Therefore, reducing the number of 

GG did not have a large impact on the HOL, 

JER and XBD animals. Finally, results showed 

limited benefits in replacing GG with MF. 

 

Conclusions 

We implemented different scenarios to model 

data of two purebred and a derived crossbred 

population into a multi-breed single-step 

evaluation. First, moving from single-breed to 

multi-breed single-step evaluations improved 

the accuracy of genomic predictions for both 

purebred and crossbred animals. Multi-breed 

multi-trait evaluations that treated phenotypes 

of different breeds as different correlated traits 

showed the highest accuracy for MY but the 

lowest for CSD. Second, we observed no impact 

on the GEBVs of validation animals when 

reducing the number of GG in multi-breed 

evaluations likely due to missing parental 

information being mostly related to animals 

belonging to other breeds or older generations. 

Finally, there were limited benefits in replacing 

GG with MF. 
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