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Abstract

Enteric methane emissions from ruminants are a major contributor to global greenhouse gas emissions
and pose a significant challenge to the sustainability of livestock production. To mitigate these
emissions, breeding strategies have been mentioned as a promising tool, but prediction accuracies of
methane emission traits are still limited by the size of datasets with records. Hence, using methane
concentrations (MeC) in Danish Holstein cows as target trait, this study evaluated the predictive
performance of pedigree-based BLUP (pBLUP) and single-step genomic BLUP (ssGBLUP) in
univariate and multi-trait models, the latter including milk production traits. Previously, both ssGBLUP
as well as multi-trait models have been shown to enhance prediction accuracies. The dataset included
1,744 primiparous (PP) and 2,989 multiparous (MP) cows from 15 Danish dairy farms, with over
600,000 daily records of MeC, fat yield (FY), and energy-corrected milk yield (ECM). Methane
concentrations were measured using sniffers, and milk production data was acquired from milking
robots and national milk recording data. At first, a pedigree-based variance component estimation
revealed heritabilities between 0.17 (SE=0.03) for MeC in PP and MP cows to 0.38 (SE=0.06) for ECM
in PP cows. Similarly, repeatabilities ranged from 0.32 (MeC, SE=0.01) to 0.81 (ECM, SE=0.01).
Genetic correlations between MeC and production traits were positive but unfavorable, i.e., in a range
from 0.15 (SE=0.13) between MeC and ECM in PP cows to 0.41 (SE=0.09) between MeC and ECM in
MP cows, indicating a genetic antagonism between reducing emissions and maintaining milk yield.
Prediction accuracies were generally higher for ssGBLUP compared to pPBLUP models (up to 61.90%
increase), and for MP cows compared to PP cows. Multi-trait models outperformed univariate models,
particularly when phenotypic data for FY and ECM were available in both the reference and validation
populations. The highest accuracy for MeC prediction in PP cows was 0.38 (ssGBLUP), while MP cows
reached up to 0.51, both for the multi-trait model including both, ECM and FY. While incorporating FY
and ECM improved MeC prediction, the unfavorable genetic correlations highlight the risk of
compromising milk production when selecting for reduced emissions. Therefore, future breeding
strategies should aim to expand methane phenotyping, develop methane traits independent of milk
production, and implement multi-trait selection indices that balance environmental and economic goals.
This study demonstrates the potential of multi-trait genomic prediction to enhance the genetic evaluation
of methane emissions and supports its integration into sustainable dairy cattle breeding programs.
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Introduction times greater than that of carbon dioxide (IPCC,
Methane is a potent greenhouse gas (GHG) with 2024). At this, a significant proportion of
a global warming potential approximately 28 anthropogenic methane emissions originates
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from enteric fermentation in ruminants, where
microbial digestion of fiber in the rumen
produces methane as a by-product (Knapp et al.,
2014). Effective and sustainable mitigation
strategies have thereby become imperative,
given the fact that the European Union has
committed to reducing GHG emissions by 55%
by 2030 and achieving climate neutrality by
2050 (European Commission, 2019). Among
the various approaches to reduce enteric
methane emissions, such as feed additives and
improved management practices, genetic
selection offers a particularly promising long-
This is,
management-based strategies, genetic
improvement can lead to cumulative and

term solution. because unlike

permanent reductions in methane emissions
across generations (Knapp et al., 2014;
Manzanilla-Pech et al., 2022a). However, the
success of breeding programs targeting
methane emissions depends on the availability
of reliable phenotypic data for large populations
of genotyped animals. Recent advances in
phenotyping technologies have enabled the
development of non-invasive, high-throughput
methods for measuring methane emissions.
Here, the sniffer method has gained popularity
world-wide and measures methane
concentrations (MeC) in the breath of cattle
during routine milking or feeding (Garnsworthy
et al., 2019; Lassen and Difford, 2020). This
approach facilitates large-scale data collection
at relatively low cost and has been shown to
result in heritable phenotypes, with heritability
estimates of MeC around 0.14 (e.g.,
Manzanilla-Pech et al., 2020). Despite these
advances, accuracies of genomic prediction for
methane emissions that are sufficiently high to
enable genetic progress, remains limited,
primarily due to the relatively small datasets.
Different strategies to improve prediction
of genomic evaluations, e.g.,
simultaneously exploiting genotypic,
phenotypic and pedigree information, as in

accuracies

single step genomic prediction (Christensen and
Lund, 2010), or by applying indirect
information from correlated predictor traits, as
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in multi-trait prediction, have been proposed.
Multi-trait genomic prediction methods are
thereby exploiting genomic information from
predictor traits that are highly correlated with
the target trait and have earlier been shown to
outperform univariate prediction methods
(Calus and Veerkamp, 2011).

The objective of this study was to evaluate
the predictive ability of pPBLUP and ssGBLUP
as well as univariate and multi-trait models to
estimate genetic breeding values (GEBV) for
MeC. Fat yield (FY) and energy corrected milk
yield (ECM) were included as predictor traits in
multi-trait models, since they were previously
shown to be genetically correlated with
methane emissions (Lassen and Difford, 2019).
Moreover, these traits are directly recorded on
the large scale, as they are part of the national
milk recording scheme (Danish Cattle Database
(SEGES, Skejby, Denmark)). To account for
physiological differences between growing and
mature animals, presumably leading to a
different covariance structure between the

conducted
(PP)

traits, were

for

applied analyses

separately primiparous and

multiparous (MP) cows.

Materials and Methods

Data collection

The dataset used in this study comprised daily
records from 1,744 PP and 2,989 MP Danish
Holstein cows, housed on 15 commercial dairy
farms in Denmark. In total, 182,288
(PP) and 424,888 (MP) daily records were
available for MeC, ECM and FY, collected
between March 2021 and December 2024.
Additional
including pedigree, genotypic  data, days in
milk (DIM; 0-365 days), week in milk
(WIM), parity, and age at first calving (AFC),
was retrieved the Danish ~ Cattle
Database (SEGES Skejby,
Denmark). The pedigree was pruned using
the DMU trace software (Madsen, 2012) to
include only animals with records and their

animal-level information,

from
Innovation,

ancestors born after 1970, resulting in a final
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pedigree of 47,383 animals. Genotypic data
were provided by Nordic Cattle
Evaluation (Skejby, Denmark). Most animals
were genotyped using the Illumina
BovineSNP50 BeadChip or imputed from
lower-density ~ panels.  Imputation

Genetic

was
performed by SEGES Innovation as part of
routine evaluations resulting in a total of 46,342
single nucleotide polymorphisms available for
the analysis. The majority, i.e. 97.31% of PP
cows were genotyped, whereas the genotyping
rate was lower for MP cows (73.00%).

Methane concentration measurements

Methane concentrations were recorded every
second during the cows’ visits to the automatic
milking system (AMS) using sniffers, i.e.,
nondispersive infrared sensors (Guardian NG,
Edinburgh Sensors, Livingston, UK) that were
installed in the AMS feed bins and had a
measurement range of 0—10 000 ppm for MeC.
Since the sniffers themselves did not record
animal identification numbers, which, however,
are required to extract the abovementioned
additional information about the cows from the
Danish Cattle Database,
approach (Milkevych et al., 2022) was applied
to link each measurement to the corresponding

a matching filter

cow. Next, we applied a method to correct for
background gas concentrations, head-lifting
and diurnal variation, as described in detail in
Levendahl et al. (2024). For each visit, the mean
MeC was calculated and then averaged across
all visits per day to calculate daily MeC records,
that are applied in this study.

Milk production traits
Daily milk yields (MY) were calculated from
AMS data by using all milkings within the

previous 96 hours, following ICAR
standards (ICAR, 2023). Moreover, milk
component data, i.e., fat percentage

(FPCT) and protein percentage (PPCT), from
monthly milk recordings were obtained from
the Danish Cattle Database and linearly
interpolated between two consecutive milk
component

recordings to  generate daily
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values in alignment with the daily methane
records. Next, daily FY and protein yield
(PY) were computed by multiplying MY with
FPCT and PPCT, respectively, in order to
calculatet ECM as ECM (kg) = 0.25 *
MY (kg) + 12.2 =« FY (kg) + 7.7 = PY (kg),

using the formula from Sjaunja et al. (1991).

Variance components and GEBYV estimation
At first, variance components for MeC, ECM,
and FY were estimated using the AI-REML
algorithm  implemented in  the DMU
software (Version 6, Release 5.4; Madsen and
Jensen, 2014), thereby applying the following
linear mixed model
y=XB+Za+ Wpe + Ie.

Here, y is the vector of phenotypic
observations for MeC, ECM, or FY. The
vector f§ includes the overall mean and fixed
effects, i.e., the WIM, as well as the AFC for PP
cows (20-30 months), and parity 2™ to 8"
parity) for MP cows. Moreover, a combined
fixed effect of herd-year-season x AMS x
sniffer box (HYS x AMS x sniffer) was
included for MeC, while for ECM and FY,
only HYS was modeled as a fixed effect. The
corresponding incidence matrix that links the
trait records to the fixed effect was denoted with
X, and the terms a and pe are the random
additive genetic as well as the permanent
environmental effect with their corresponding
matrices Z and W. The residual was denoted
with e. It was assumed that these three terms
with
and

follow a  normal  distribution
a~ N(0,Ac?), pe ~ N(0,105,),
e ~N(0,Ic2), where A is the pedigree-based
relationship matrix and [ an identity matrix.
Conversely, the additive genetic, permanent
environmental and residual variance were
denoted with o2, 6, and 6Z. The heritability
was calculated as h* = 03/(05 + 05, + 03), and
the repeatability as t = (65 + 05.)/(05 + 05 +
02). Genetic and phenotypic correlations were
estimated from multi-trait analyses for MeC,
ECM, and FY.
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Table 1 Overview over the different scenarios performed per method (pBLUP, ssGBLUP).

Information included in

Traits included in GEBV Type of Scenario —
.. . validation reference
estimation analysis name . .
population population
MeC Univariate 1 - MeC
2 FY
MeC-FY Bivariate zi MeC, FY
3 ECM
MeC-ECM Bivariate 32 MeC, ECM
. 4a ECM, FY
MeC-ECM-FY Trivariate m MeC, ECM, FY

GEBYV: genomic EBV, pBLUP: pedigree-based BLUP, ssGBLUP: single-step genomic BLUP, MeC: methane
concentrations, ECM: energy corrected milk, FY: fat yield

Next, different pBLUP and ssGBLUP
methods, divided into seven univariate and
multi-trait scenarios, were applied to estimate
GEBYV for MeC. An overview of the different
scenarios can be taken from Table 1.

Briefly, the basic scenario, i.e., scenario 1,
was a simple univariate scenario where
phenotypes were only available for animals in
the reference population. Multi-trait scenarios
included FY, ECM, or both as predictor traits,
each with two sub-scenarios: one where
predictor trait phenotypes were available in
both reference and validation populations, and
one where they were restricted to the reference
population. All scenarios were applied
separately to PP and MP cows. GEBVs for MeC
were estimated using DMU, applying the same
fixed and random effects as in the variance
component estimation. For ssGBLUP, the
inverse of the H matrix was computed following
Aguilar et al. (2010) and Christensen and Lund
(2010):

H'= a4 ) 0

0 ((,l)G + (1 - (U)Azz)_l - Agzl
where G is the genomic relationship matrix
(VanRaden, 2008),

the invgmatrix software

computed using
(Su and Madsen,
2011), A, is the pedigree relationship matrix
0.8 is the
weight assigned to the genomic information.

for genotyped animals, and ® =
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Cross-validation groups

A 10-fold cross-validation strategy was used to
assess the prediction accuracy of each scenario.
Validation groups were constructed by sire
using stratified random sampling to ensure
balanced representation of paternal half-sibs.
Sires were ranked by the number of genotyped
daughters with MeC records, and one sire from
each group of ten was randomly assigned to one
of the ten folds. For each fold, MeC phenotypes
were excluded from the validation group, and
GEBVs were predicted using the remaining
data as the reference population.

Accuracy calculation

Prediction accuracies were obtained following
the approach of Manzanilla-Pech et al. (2020).
At first, adjusted phenotypes for MeC were
computed as the sum of the estimated genetic
and permanent environmental effects from the
full dataset, providing a single phenotype per
animal. Then, accuracies for cross-validation
group were calculated as the correlation
between the adjusted phenotype and the GEBV
for MeC divided by the following formula
adapted from Mrode (2013) computed to
calculate the accuracy for repeated records.

Accuracy =
nh2
J1+(n-1t
Here, the correlation between the adjusted
phenotype and GEBYV is denoted with r. The
average amount of repeated records for each
animal, specified per cross-validation group, is
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defined as n, and h? (t) is the heritability highest repeatability with 0.81 (SE=0.01), while
(repeatability) of MeC, taken from the variance MeC was found to have low repeatability in
component estimation (Table 2). Then, the both PP and MP cows, i.e., 0.32 (SE=0.01).
accuracy for each scenario was calculated as the Genetic  correlations between MeC and
average of all cross-validation groups, and production traits were moderate to weak and
corresponding standard errors were obtained by varied by parity. In MP cows, the genetic
dividing the standard deviation of accuracies correlation between MeC and ECM was 0.41
across cross-validation groups by the square (SE=0.09), and 0.37 (SE=0.09) between MeC
root of the number of validation groups, i.e., 10. and FY. In PP cows, these correlations were

lower and accompanied by larger standard
Results & Discussion errors: 0.15 (SE=0.13) for MeC and ECM,

and 0.18 (SE=0.13) for MeC and FY.
The estimation of variance components Importantly, these positive genetic correlations
revealed moderate heritability estimates for are considered unfavorable, as they suggest that
MeC, FY, and ECM. Specifically, the selection for increased milk production may
heritability for MeC was estimated at0.17 inadvertently lead to higher methane emissions.
(SE=0.03) in both PP and MP cows. In contrast, A similar structure has been reported in
ECM in PP cows exhibited the highest previous studies, including a genetic correlation
heritability at 0.38 (SE=0.06). These findings of 0.35 between MeC and ECM (Manzanilla-
are consistent with previously reported Pech et al, 2022b) and a correlation
estimates in the literature, such as heritabilities 0f 0.27 between GEBV for MeC and FY
ranging from 0.26 to 0.37 for ECM (Li et al., (Lopez-Paredes et al., 2020). A detailed
2018) and 0.14 for MeC (Manzanilla-Pech et al. summary of the estimated genetic parameters is
2020). Moreover, ECM in PP cows showed the provided in Table 2.

Table 2 Genetic parameters for methane concentrations (MeC), energy corrected milk (ECM) and fat yield (FY).
Shown are the heritabilities (h?), repeatabilities (t), and the genetic correlation (ry) with MeC together with the
corresponding standard errors in parentheses.

. Primiparous Multiparous
Trait . .
h? t 1, with MeC h? t 1, with MeC

MeC 0.17(0.03)  0.32(0.01) 0.17(0.02)  0.32(0.01)

ECM 0.38(0.06)  0.81(0.01)  0.15(0.13)  0.24(0.03)  0.74(0.01)  0.41 (0.09)

FY 0.31(0.06)  0.74(0.01)  0.18(0.13)  020(0.03)  0.65(0.01)  0.37(0.09)

Regarding the different prediction scenarios, multi-trait models, but only when phenotypic

accuracies were generally higher for ssGBLUP information on predictor traits was available for
than pBLUP models and for MP compared with the animals in the validation population. For PP
PP cows. For PP cows, the increase from cows, the highest accuracy of 0.38 was found
pBLUP to ssGBLUP was largest, i.e., 61.90% for the ssGBLUP scenarios 4a (SE=0.03), 4b
for the univariate scenario. Two scenarios and 2b (SE=0.05, respectively), whereas the
resulted in a decrease in accuracies between lowest accuracy was observed for the pBLUP
pBLUP and ssGBLUP, i.e., -4.55% for scenario scenario 1 (0.21, SE=0.04). In MP cows,
3a in MP cows and -3.58% for scenario 3b in prediction accuracies ranged from 0.31
PP cows (Table 3). However, the observed (SE=0.04) in pPBLUP  scenario 2bto a
difference was only small and might be owed to maximum of 0.51 (SE=0.03) in ssGBLUP
the generally rather small dataset. Moreover, we scenario 4a. A comprehensive overview of.

found an increase in accuracy from univariate to
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Table 3 Overview over the different pPBLUP and ssGBLUP scenarios’ accuracies (Acc), corresponding standard
errors (SE, in parentheses), and difference between pBLUP and ssGBLUP (in %).

Traits included in pBLUP ssGBLUP
GEBYV estimation ) PP MP PP MP
Scenario
Acc Acc Acc Difference to Acc Difference to
(SE) (SE) (SE) pBLUP (in%) (SE) pBLUP (in%)
0.21 0.35 0.34 61.90 0.43 22.86
MeC 1
(0.04) (0.02) (0.03) (0.03)
24 0.27 0.43 0.37 37.04 0.49 13.95
MeC-FY (0.03) (0.04) (0.03) (0.04)
% 0.28 0.31 0.38 35.71 0.42 35.48
(0.05) (0.04) (0.05) (0.03)
3a 0.24 0.44 0.36 50.00 0.42 -4.55
(0.03) (0.04) (0.03) (0.05)
MeC-ECM
3b 0.28 0.33 0.27 -3.58 0.41 24.24
(0.05) (0.04) (0.04) (0.04)
4a 0.28 0.44 0.38 35.71 0.51 15.91
0.03 0.04 0.03 0.03
MeC-ECM-FY ( ) ( ) ( ) ( )
ab 0.28 0.33 0.38 35.71 0.43 13.16
(0.05) (0.04) (0.05) (0.03)

GEBV: genomic EBV, pBLUP: pedigree-based BLUP, ssGBLUP: single-step genomic BLUP, MeC: methane
concentrations, ECM: energy corrected milk, FY: fat yield, PP: primiparous, MP: multiparous

prediction accuracies across all scenarios is
presented in Table 3

As anticipated based on previous results in
dairy cattle (Hayes and Goddard, 2008;
VanRaden et al., 2009), the accuracies of
GEBV using ssGBLUP were
consistently higher than those obtained using
pBLUP. This trend was observed across all

obtained

scenarios and parities. Furthermore, multi-trait
prediction scenarios yielded mostly higher
GEBV accuracies compared to the univariate
scenarios, which is in alignment with e.g.
Tsuruta et al. (2011) for linear type traits.
Notably, the
accuracy  was
phenotypic information for the predictor traits,
ECM and FY, was available in both the
reference and validation populations. This
observation is consistent with the results of

improvement in prediction
most pronounced when

Pszczola et al. (2013), who reported enhanced
prediction accuracy for dry matter intake when
information on predictor traits was included in
both populations. It is important to emphasize
that the gain in GEBV accuracy for the goal trait
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in multi-trait genomic prediction depends on the
extent of genetic correlations between the goal
and predictor traits. Additionally, as noted by
Jia and Jannink (2012), the relative heritability
of the goal trait compared to the predictor traits
also influences the extent of accuracy
improvement. Specifically, the benefit of multi-
trait prediction is more substantial when the
goal trait has a lower heritability, as the
contribution of genetically correlated traits
becomes more impactful. Interestingly, both PP
and MP cows exhibited increased prediction
accuracies when FY and ECM were included in
the genomic prediction models, despite the
relatively low and imprecise genetic
correlations between MeC and the predictor
traits in PP cows. This may be explained by the
larger difference in heritability between MeC
and the predictor traits in PP cows, which could
enhance the relative contribution of the
predictor traits to the accuracy of MeC
predictions.
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Conclusions

In conclusion, using ECM and FY records can
improve accuracy of MeC breeding values,
especially for individuals without MeC records.
However, it is important to keep in mind that the
genetic correlations between MeC and both FY
and ECM are unfavorable, indicating that
selection for reduced methane emissions may
reduce genetic progress in milk production.
Since multi-trait prediction models are designed
to exploit, but not to disentangle genetic
correlations, selection based on these models
may lead to genetic gains in MeC at the expense
of economically important traits such as milk
yield. Hence, further efforts are urgently needed
to record methane emissions in more animals;
to develop methane emission traits that are
genetically independent from economically
important, correlated traits like FY or ECM; and
to design a multi-trait selection index including
all economically important.
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