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Abstract 

Enteric methane emissions from ruminants are a major contributor to global greenhouse gas emissions 
and pose a significant challenge to the sustainability of livestock production. To mitigate these 
emissions, breeding strategies have been mentioned as a promising tool, but prediction accuracies of 
methane emission traits are still limited by the size of datasets with records. Hence, using methane 
concentrations (MeC) in Danish Holstein cows as target trait, this study evaluated the predictive 
performance of pedigree-based BLUP (pBLUP) and single-step genomic BLUP (ssGBLUP) in 
univariate and multi-trait models, the latter including milk production traits. Previously, both ssGBLUP 
as well as multi-trait models have been shown to enhance prediction accuracies. The dataset included 
1,744 primiparous (PP) and 2,989 multiparous (MP) cows from 15 Danish dairy farms, with over 
600,000 daily records of MeC, fat yield (FY), and energy-corrected milk yield (ECM). Methane 
concentrations were measured using sniffers, and milk production data was acquired from milking 
robots and national milk recording data. At first, a pedigree-based variance component estimation 
revealed heritabilities between 0.17 (SE=0.03) for MeC in PP and MP cows to 0.38 (SE=0.06) for ECM 
in PP cows. Similarly, repeatabilities ranged from 0.32 (MeC, SE=0.01) to 0.81 (ECM, SE=0.01). 
Genetic correlations between MeC and production traits were positive but unfavorable, i.e., in a range 
from 0.15 (SE=0.13) between MeC and ECM in PP cows to 0.41 (SE=0.09) between MeC and ECM in 
MP cows, indicating a genetic antagonism between reducing emissions and maintaining milk yield. 
Prediction accuracies were generally higher for ssGBLUP compared to pBLUP models (up to 61.90% 
increase), and for MP cows compared to PP cows. Multi-trait models outperformed univariate models, 
particularly when phenotypic data for FY and ECM were available in both the reference and validation 
populations. The highest accuracy for MeC prediction in PP cows was 0.38 (ssGBLUP), while MP cows 
reached up to 0.51, both for the multi-trait model including both, ECM and FY. While incorporating FY 
and ECM improved MeC prediction, the unfavorable genetic correlations highlight the risk of 
compromising milk production when selecting for reduced emissions. Therefore, future breeding 
strategies should aim to expand methane phenotyping, develop methane traits independent of milk 
production, and implement multi-trait selection indices that balance environmental and economic goals. 
This study demonstrates the potential of multi-trait genomic prediction to enhance the genetic evaluation 
of methane emissions and supports its integration into sustainable dairy cattle breeding programs. 
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Introduction   
Methane is a potent greenhouse gas (GHG) with 
a global warming potential approximately 28 

times greater than that of carbon dioxide (IPCC, 
2024). At this, a significant proportion of 
anthropogenic methane emissions originates 
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from enteric fermentation in ruminants, where 
microbial digestion of fiber in the rumen 
produces methane as a by-product (Knapp et al., 
2014). Effective and sustainable mitigation 
strategies have thereby become imperative, 
given the fact that the European Union has 
committed to reducing GHG emissions by 55% 
by 2030 and achieving climate neutrality by 
2050 (European Commission, 2019). Among 
the various approaches to reduce enteric 
methane emissions, such as feed additives and 
improved management practices, genetic 
selection offers a particularly promising long-
term solution. This is, because unlike 
management-based strategies, genetic 
improvement can lead to cumulative and 
permanent reductions in methane emissions 
across generations (Knapp et al., 2014; 
Manzanilla-Pech et al., 2022a). However, the 
success of breeding programs targeting 
methane emissions depends on the availability 
of reliable phenotypic data for large populations 
of genotyped animals. Recent advances in 
phenotyping technologies have enabled the 
development of non-invasive, high-throughput 
methods for measuring methane emissions. 
Here, the sniffer method has gained popularity 
world-wide and measures methane 
concentrations (MeC) in the breath of cattle 
during routine milking or feeding (Garnsworthy 
et al., 2019; Lassen and Difford, 2020). This 
approach facilitates large-scale data collection 
at relatively low cost and has been shown to 
result in heritable phenotypes, with heritability 
estimates of MeC around 0.14 (e.g., 
Manzanilla-Pech et al., 2020). Despite these 
advances, accuracies of genomic prediction for 
methane emissions that are sufficiently high to 
enable genetic progress, remains limited, 
primarily due to the relatively small datasets. 
Different strategies to improve prediction 
accuracies of genomic evaluations, e.g., 
simultaneously exploiting genotypic, 
phenotypic and pedigree information, as in 
single step genomic prediction (Christensen and 
Lund, 2010), or by applying indirect 
information from correlated predictor traits, as 

in multi-trait prediction, have been proposed. 
Multi-trait genomic prediction methods are 
thereby exploiting genomic information from 
predictor traits that are highly correlated with 
the target trait and have earlier been shown to 
outperform univariate prediction methods 
(Calus and Veerkamp, 2011).  

The objective of this study was to evaluate 
the predictive ability of pBLUP and ssGBLUP 
as well as univariate and multi-trait models to 
estimate genetic breeding values (GEBV) for 
MeC. Fat yield (FY) and energy corrected milk 
yield (ECM) were included as predictor traits in 
multi-trait models, since they were previously 
shown to be genetically correlated with 
methane emissions (Lassen and Difford, 2019). 
Moreover, these traits are directly recorded on 
the large scale, as they are part of the national 
milk recording scheme (Danish Cattle Database 
(SEGES, Skejby, Denmark)). To account for 
physiological differences between growing and 
mature animals, presumably leading to a 
different covariance structure between the 
applied traits, analyses were conducted 
separately for primiparous (PP) and 
multiparous (MP) cows.  
 
Materials and Methods  
 
Data collection 
The dataset used in this study comprised daily 
records from 1,744 PP and 2,989 MP Danish 
Holstein cows, housed on 15 commercial dairy 
farms in Denmark. In total, 182,288 
(PP) and 424,888 (MP) daily records were 
available for MeC, ECM and FY, collected 
between March 2021 and December 2024. 
Additional animal-level information, 
including pedigree, genotypic data, days in 
milk (DIM; 0–365 days), week in milk 
(WIM), parity, and age at first calving (AFC), 
was retrieved from the Danish Cattle 
Database (SEGES Innovation, Skejby, 
Denmark). The pedigree was pruned using 
the DMU trace software (Madsen, 2012) to 
include only animals with records and their 
ancestors born after 1970, resulting in a final 
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pedigree of 47,383 animals. Genotypic data 
were provided by Nordic Cattle Genetic 
Evaluation (Skejby, Denmark). Most animals 
were genotyped using the Illumina 
BovineSNP50 BeadChip or imputed from 
lower-density panels. Imputation was 
performed by SEGES Innovation as part of 
routine evaluations resulting in a total of 46,342 
single nucleotide polymorphisms available for 
the analysis. The majority, i.e. 97.31% of PP 
cows were genotyped, whereas the genotyping 
rate was lower for MP cows (73.00%). 

Methane concentration measurements 
Methane concentrations were recorded every 
second during the cows` visits to the automatic 
milking system (AMS) using sniffers, i.e., 
nondispersive infrared sensors (Guardian NG, 
Edinburgh Sensors, Livingston, UK) that were 
installed in the AMS feed bins and had a 
measurement range of 0–10 000 ppm for MeC. 
Since the sniffers themselves did not record 
animal identification numbers, which, however, 
are required to extract the abovementioned 
additional information about the cows from the 
Danish Cattle Database, a matching filter 
approach (Milkevych et al., 2022) was applied 
to link each measurement to the corresponding 
cow. Next, we applied a method to correct for 
background gas concentrations, head-lifting 
and diurnal variation, as described in detail in 
Løvendahl et al. (2024). For each visit, the mean 
MeC was calculated and then averaged across 
all visits per day to calculate daily MeC records, 
that are applied in this study. 

Milk production traits 
Daily milk yields (MY) were calculated from 
AMS data by using all milkings within the 
previous 96 hours, following ICAR 
standards (ICAR, 2023). Moreover, milk 
component data, i.e., fat percentage 
(FPCT) and protein percentage (PPCT), from 
monthly milk recordings were obtained from 
the Danish Cattle Database and linearly 
interpolated between two consecutive milk 
component recordings to generate daily 

values in alignment with the daily methane 
records. Next, daily FY and protein yield 
(PY) were computed by multiplying MY with 
FPCT and PPCT, respectively, in order to 
calculate ECM as ECM (kg) = 0.25 ∗
MY (kg) + 12.2 ∗ FY (kg) + 7.7 ∗ PY (kg), 
using the formula from Sjaunja et al. (1991). 

Variance components and GEBV estimation 
At first, variance components for MeC, ECM, 
and FY were estimated using the AI-REML 
algorithm implemented in the DMU 
software (Version 6, Release 5.4; Madsen and 
Jensen, 2014), thereby applying the following 
linear mixed model 

𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝑊𝑊𝑊𝑊𝑊𝑊 + 𝐼𝐼𝑒𝑒. 
Here, 𝑦𝑦 is the vector of phenotypic 

observations for MeC, ECM, or FY. The 
vector 𝛽𝛽 includes the overall mean and fixed 
effects, i.e., the WIM, as well as the AFC for PP 
cows (20–30 months), and parity (2nd to 8th 
parity) for MP cows. Moreover, a combined 
fixed effect of herd-year-season × AMS × 
sniffer box (HYS × AMS × sniffer) was 
included for MeC, while for ECM and FY, 
only HYS was modeled as a fixed effect. The 
corresponding incidence matrix that links the 
trait records to the fixed effect was denoted with 
𝑋𝑋, and the terms 𝑎𝑎 and 𝑝𝑝𝑝𝑝 are the random 
additive genetic as well as the permanent 
environmental effect with their corresponding 
matrices 𝑍𝑍 and 𝑊𝑊. The residual was denoted 
with 𝑒𝑒. It was assumed that these three terms 
follow a normal distribution with 
𝑎𝑎 ~ 𝑁𝑁(0,𝐴𝐴𝜎𝜎𝑎𝑎2), 𝑝𝑝𝑝𝑝 ~ 𝑁𝑁(0, 𝐼𝐼𝜎𝜎𝑝𝑝𝑝𝑝2 ), and 
𝑒𝑒 ~ 𝑁𝑁(0, 𝐼𝐼𝜎𝜎𝑒𝑒2), where 𝐴𝐴 is the pedigree-based 
relationship matrix and 𝐼𝐼 an identity matrix. 
Conversely, the additive genetic, permanent 
environmental and residual variance were 
denoted with 𝜎𝜎𝑎𝑎2, 𝜎𝜎𝑝𝑝𝑝𝑝2 , and 𝜎𝜎𝑒𝑒2.  The heritability 
was calculated as ℎ2 = σ𝑎𝑎2 /(σ𝑎𝑎2 + σ𝑝𝑝𝑝𝑝2  + σ𝑒𝑒2), and 
the repeatability as 𝑡𝑡 = (σ𝑎𝑎2 + σ𝑝𝑝𝑝𝑝2 )/(σ𝑎𝑎2 + σ𝑝𝑝𝑝𝑝2  + 
σ𝑒𝑒2). Genetic and phenotypic correlations were 
estimated from multi-trait analyses for MeC, 
ECM, and FY.  
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Table 1 Overview over the different scenarios performed per method (pBLUP, ssGBLUP). 

Traits included in GEBV 
estimation 

Type of 
analysis 

Scenario 
name 

Information included in 
validation 
population 

reference 
population 

MeC Univariate 1 - MeC 

MeC-FY Bivariate 
2a FY 

MeC, FY 2b - 

MeC-ECM Bivariate 
3a ECM 

MeC, ECM 
3b - 

MeC-ECM-FY Trivariate 
4a ECM, FY 

MeC, ECM, FY 
4b - 

GEBV: genomic EBV, pBLUP: pedigree-based BLUP, ssGBLUP: single-step genomic BLUP, MeC: methane 
concentrations, ECM: energy corrected milk, FY: fat yield 

Next, different pBLUP and ssGBLUP 
methods, divided into seven univariate and 
multi-trait scenarios, were applied to estimate 
GEBV for MeC. An overview of the different 
scenarios can be taken from Table 1.  

Briefly, the basic scenario, i.e., scenario 1, 
was a simple univariate scenario where 
phenotypes were only available for animals in 
the reference population. Multi-trait scenarios 
included FY, ECM, or both as predictor traits, 
each with two sub-scenarios: one where 
predictor trait phenotypes were available in 
both reference and validation populations, and 
one where they were restricted to the reference 
population. All scenarios were applied 
separately to PP and MP cows. GEBVs for MeC 
were estimated using DMU, applying the same 
fixed and random effects as in the variance 
component estimation. For ssGBLUP, the 
inverse of the H matrix was computed following 
Aguilar et al. (2010) and Christensen and Lund 
(2010): 

𝑯𝑯−1 =  𝑨𝑨−1 + �0 0
0 (𝜔𝜔𝑮𝑮 + (1 −𝜔𝜔)𝑨𝑨22)−1 −  𝑨𝑨22−1

�

where 𝑮𝑮 is the genomic relationship matrix 
(VanRaden, 2008), computed using 
the invgmatrix software (Su and Madsen, 
2011), 𝑨𝑨22 is the pedigree relationship matrix 
for genotyped animals, and ω = 0.8 is the 
weight assigned to the genomic information. 

Cross-validation groups 
A 10-fold cross-validation strategy was used to 
assess the prediction accuracy of each scenario. 
Validation groups were constructed by sire 
using stratified random sampling to ensure  
balanced representation of paternal half-sibs. 
Sires were ranked by the number of genotyped 
daughters with MeC records, and one sire from 
each group of ten was randomly assigned to one 
of the ten folds. For each fold, MeC phenotypes 
were excluded from the validation group, and 
GEBVs were predicted using the remaining 
data as the reference population. 

Accuracy calculation 
Prediction accuracies were obtained following 
the approach of Manzanilla-Pech et al. (2020). 
At first, adjusted phenotypes for MeC were 
computed as the sum of the estimated genetic 
and permanent environmental effects from the 
full dataset, providing a single phenotype per 
animal. Then, accuracies for cross-validation 
group were calculated as the correlation 
between the adjusted phenotype and the GEBV 
for MeC divided by the following formula 
adapted from Mrode (2013) computed to 
calculate the accuracy for repeated records. 

Accuracy = 𝑟𝑟

� 𝑛𝑛ℎ2

�1+(𝑛𝑛−1)𝑡𝑡

Here, the correlation between the adjusted 
phenotype and GEBV is denoted with 𝑟𝑟. The 
average amount of repeated records for each 
animal, specified per cross-validation group, is 
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defined as 𝑛𝑛, and ℎ2 (𝑡𝑡) is the heritability 
(repeatability) of MeC, taken from the variance 
component estimation (Table 2). Then, the 
accuracy for each scenario was calculated as the 
average of all cross-validation groups, and 
corresponding standard errors were obtained by 
dividing the standard deviation of accuracies 
across cross-validation groups by the square 
root of the number of validation groups, i.e., 10.  
 
Results & Discussion  
 
The estimation of variance components 
revealed moderate heritability estimates for 
MeC, FY, and ECM. Specifically, the 
heritability for MeC was estimated at 0.17 
(SE=0.03) in both PP and MP cows. In contrast, 
ECM in PP cows exhibited the highest 
heritability at 0.38 (SE=0.06). These findings 
are consistent with previously reported 
estimates in the literature, such as heritabilities 
ranging from 0.26 to 0.37 for ECM (Li et al., 
2018) and 0.14 for MeC (Manzanilla-Pech et al. 
2020). Moreover, ECM in PP cows showed the 

highest repeatability with 0.81 (SE=0.01), while 
MeC was found to have low repeatability in 
both PP and MP cows, i.e., 0.32 (SE=0.01). 
Genetic correlations between MeC and 
production traits were moderate to weak and 
varied by parity. In MP cows, the genetic 
correlation between MeC and ECM was 0.41 
(SE=0.09), and 0.37 (SE=0.09) between MeC 
and FY. In PP cows, these correlations were 
lower and accompanied by larger standard 
errors: 0.15 (SE=0.13) for MeC and ECM, 
and 0.18 (SE=0.13) for MeC and FY. 
Importantly, these positive genetic correlations 
are considered unfavorable, as they suggest that 
selection for increased milk production may 
inadvertently lead to higher methane emissions. 
A similar structure has been reported in 
previous studies, including a genetic correlation 
of 0.35 between MeC and ECM (Manzanilla-
Pech et al., 2022b) and a correlation 
of 0.27 between GEBV for MeC and FY 
(Lopez-Paredes et al., 2020). A detailed 
summary of the estimated genetic parameters is 
provided in Table 2. 

 
Table 2 Genetic parameters for methane concentrations (MeC), energy corrected milk (ECM) and fat yield (FY). 
Shown are the heritabilities (ℎ2), repeatabilities (𝑡𝑡), and the genetic correlation (𝑟𝑟𝑔𝑔) with MeC together with the 
corresponding standard errors in parentheses. 

Trait 
Primiparous Multiparous 

ℎ2 𝑡𝑡 𝑟𝑟𝑔𝑔 with MeC ℎ2 𝑡𝑡 𝑟𝑟𝑔𝑔 with MeC 
MeC 0.17 (0.03) 0.32 (0.01)  0.17 (0.02) 0.32 (0.01)  
ECM 0.38 (0.06) 0.81 (0.01) 0.15 (0.13) 0.24 (0.03) 0.74 (0.01) 0.41 (0.09) 
FY 0.31 (0.06) 0.74 (0.01) 0.18 (0.13) 0.20 (0.03) 0.65 (0.01) 0.37 (0.09) 

Regarding the different prediction scenarios, 
accuracies were generally higher for ssGBLUP 
than pBLUP models and for MP compared with 
PP cows. For PP cows, the increase from 
pBLUP to ssGBLUP was largest, i.e., 61.90% 
for the univariate scenario. Two scenarios 
resulted in a decrease in accuracies between 
pBLUP and ssGBLUP, i.e., -4.55% for scenario 
3a in MP cows and -3.58% for scenario 3b in 
PP cows (Table 3). However, the observed 
difference was only small and might be owed to 
the generally rather small dataset. Moreover, we 
found an increase in accuracy from univariate to 

multi-trait models, but only when phenotypic 
information on predictor traits was available for 
the animals in the validation population. For PP 
cows, the highest accuracy of 0.38 was found 
for the ssGBLUP scenarios 4a (SE=0.03), 4b 
and 2b (SE=0.05, respectively), whereas the 
lowest accuracy was observed for the pBLUP 
scenario 1 (0.21, SE=0.04). In MP cows, 
prediction accuracies ranged from 0.31 
(SE=0.04) in pBLUP scenario 2b to a 
maximum of 0.51 (SE=0.03) in ssGBLUP 
scenario 4a. A comprehensive overview of. 
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Table 3 Overview over the different pBLUP and ssGBLUP scenarios` accuracies (Acc), corresponding standard 
errors (SE, in parentheses), and difference between pBLUP and ssGBLUP (in %). 

Traits included in 
GEBV estimation 

Scenario 

pBLUP ssGBLUP 
PP MP PP MP 

Acc 
(SE) 

Acc 
(SE) 

Acc 
(SE) 

Difference to 
pBLUP (in%) 

Acc 
(SE) 

Difference to 
pBLUP (in%) 

MeC 1 0.21 
(0.04) 

0.35 
(0.02) 

0.34 
(0.03) 

61.90 0.43 
(0.03) 

22.86 

MeC-FY 
2a 0.27 

(0.03) 
0.43 

(0.04) 
0.37 

(0.03) 
37.04 0.49 

(0.04) 
13.95 

2b 0.28 
(0.05) 

0.31 
(0.04) 

0.38 
(0.05) 

35.71 0.42 
(0.03) 

35.48 

MeC-ECM 
3a 0.24 

(0.03) 
0.44 

(0.04) 
0.36 

(0.03) 
50.00 0.42 

(0.05) 
-4.55

3b 0.28 
(0.05) 

0.33 
(0.04) 

0.27 
(0.04) 

-3.58 0.41 
(0.04) 

24.24 

MeC-ECM-FY 
4a 

0.28 
(0.03) 

0.44 
(0.04) 

0.38 
(0.03) 

35.71 0.51 
(0.03) 

15.91 

4b 0.28 
(0.05) 

0.33 
(0.04) 

0.38 
(0.05) 

35.71 0.43 
(0.03) 

13.16 

GEBV: genomic EBV, pBLUP: pedigree-based BLUP, ssGBLUP: single-step genomic BLUP, MeC: methane 
concentrations, ECM: energy corrected milk, FY: fat yield, PP: primiparous, MP: multiparous 

prediction accuracies across all scenarios is 
presented in Table 3 

As anticipated based on previous results in 
dairy cattle (Hayes and Goddard, 2008; 
VanRaden et al., 2009), the accuracies of 
GEBV obtained using ssGBLUP were 
consistently higher than those obtained using 
pBLUP. This trend was observed across all 
scenarios and parities. Furthermore, multi-trait 
prediction scenarios yielded mostly higher 
GEBV accuracies compared to the univariate 
scenarios, which is in alignment with e.g. 
Tsuruta et al. (2011) for linear type traits. 
Notably, the improvement in prediction 
accuracy was most pronounced when 
phenotypic information for the predictor traits, 
ECM and FY, was available in both the 
reference and validation populations. This 
observation is consistent with the results of 
Pszczola et al. (2013), who reported enhanced 
prediction accuracy for dry matter intake when 
information on predictor traits was included in 
both populations. It is important to emphasize 
that the gain in GEBV accuracy for the goal trait 

in multi-trait genomic prediction depends on the 
extent of genetic correlations between the goal 
and predictor traits. Additionally, as noted by 
Jia and Jannink (2012), the relative heritability 
of the goal trait compared to the predictor traits 
also influences the extent of accuracy 
improvement. Specifically, the benefit of multi-
trait prediction is more substantial when the 
goal trait has a lower heritability, as the 
contribution of genetically correlated traits 
becomes more impactful. Interestingly, both PP 
and MP cows exhibited increased prediction 
accuracies when FY and ECM were included in 
the genomic prediction models, despite the 
relatively low and imprecise genetic 
correlations between MeC and the predictor 
traits in PP cows. This may be explained by the 
larger difference in heritability between MeC 
and the predictor traits in PP cows, which could 
enhance the relative contribution of the 
predictor traits to the accuracy of MeC 
predictions. 

171



INTERBULL BULLETIN NO. 61. 21-22 June 2025, Louisville, Kentucky, USA 

 

 

Conclusions  
 
In conclusion, using ECM and FY records can 
improve accuracy of MeC breeding values, 
especially for individuals without MeC records. 
However, it is important to keep in mind that the 
genetic correlations between MeC and both FY 
and ECM are unfavorable, indicating that 
selection for reduced methane emissions may 
reduce genetic progress in milk production. 
Since multi-trait prediction models are designed 
to exploit, but not to disentangle genetic 
correlations, selection based on these models 
may lead to genetic gains in MeC at the expense 
of economically important traits such as milk 
yield. Hence, further efforts are urgently needed 
to record methane emissions in more animals; 
to develop methane emission traits that are 
genetically independent from economically 
important, correlated traits like FY or ECM; and 
to design a multi-trait selection index including 
all economically important. 
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