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Abstract

The study examined the impact of incorporating metafounders (MF) in single-step genomic BLUP
(ssGBLUP) models for the genetic evaluation of Holstein (HO) and Jersey (JE) cattle with their
crossbreds (CROSS). The dataset included 23,736,975 records on 8,560,986 cows. Genotypic data on
181,379 JE, 1,905,292 HO, and 53,799 CROSS animals was used for the evaluation. The genetic
evaluation included five production traits, namely milk yield (MY), protein yield (PY), fat yield (FY),
somatic cell score (SCS), and daughter pregnancy rate (DPR), which were analyzed using a five-trait
repeatability model using ssGBLUP with or without MF. Three different MF scenarios were tested:
4MF (based on breed), 24MF (based on the combination of breed, sex, and year of birth), and 32MF
(similar to 24MF but with CROSS as a separate genetic group). The three MF scenarios were compared
to a conventional ssGBLUP model that did not include metafounders (NO_MF). Forward-in-time
validation was carried out to evaluate predictability, inflation, and stability. For purebred Holstein and
Jersey cows, the truncated dataset included phenotypes through December 2018, whereas for crossbreds
the cutoff was December 2015; the complete dataset extended through December 2022. Validation
targeted genotyped cows lacking records in their respective truncated dataset but with at least one record
in the complete dataset, yielding 96, 295 Holsteins 26, 436 Jerseys, and 5,099 crossbreds for analysis.
Results showed that including MF affected prediction metrics differently depending on the trait, breed,
and MF configuration. While certain MF classifications (e.g., 4MF) reduce bias and improved
predictability in crossbreds for some traits, others showed minimal effects, particularly in purebred
Holsteins. For low heritability traits (SCS, DPR), MF scenarios provided better predictive ability in
CROSS animals. In contrast, for high heritability traits (MY, PY, FY), stability tended to decrease in
MF models, suggesting possible overfitting due to added model complexity. Overall, MF offers a
promising strategy to address pedigree gaps in multibreed evaluations, but its application should be
carefully tailored to trait architecture and population composition to avoid overfitting and ensure
accurate genetic predictions.
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Introduction including them in evaluations to improve

management decisions. From 1990 to 2018, the

Traditionally, genomic evaluations for dairy
cattle have been conducted on a single-breed
basis, often excluding crossbred animals.
However, the growing proportion of crossbreds
in U.S. herds underscores the importance of

proportion of crossbred cows in the U.S. Dairy
Herd Improvement program rose from 0.1% to
5.3% (Guinan et al., 2019). Recognizing this
trend, the Council on Dairy Cattle Breeding
(CDCB) extended genomic evaluations to
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crossbred animals in 2019 (Wiggans et al.,
2019; CDCB, 2020).

Several methods have been proposed for
joint evaluations of purebred and crossbred
animals (Wei & van der Werf, 1994;
Christensen et al., 2014; Steyn et al., 2021;
VanRaden et al., 2020). A straightforward
approach combines all genotypes in a single
relationship matrix (Lourenco et al., 2016). The
single-step genomic BLUP  (ssGBLUP)
approach integrates pedigree (A) and genomic
(G) matrices to estimate genomic breeding
values (GEBV) (Aguilar et al, 2010;
Christensen & Lund, 2010). However,
ssGBLUP requires uniform scaling between A
and G and a consistent base population
(Christensen, 2012). Incomplete pedigrees and
population stratification complicate these
assumptions.

To address these issues, Thompson (1979)
and Quaas (1988) introduced unknown parent
groups (UPG) to account for missing pedigree
information. More recently, Legarra et al.
(2015) proposed metafounders (MF) to model
relationships among  base  populations,
improving compatibility between A and G. MF
consider allele frequencies of 0.5 across
markers and estimate relationships among
pseudo-ancestors using a gamma matrix (I').
Studies have shown that MF can improve
prediction accuracy in multibreed populations
(Garcia-Baccino et al.,, 2017; Xiang et al,
2016).

Despite these advances, limited work has
assessed MF performance in combined
Holstein-Jersey ssGBLUP models, particularly
regarding crossbred evaluations. This study
aims to evaluate different MF classifications
and their effects on accuracy, bias, and stability
in genomic predictions of purebreds and
crossbreds.

Materials and Methods

Official data files from Zoetis Inc. were used for
this study. Phenotypic and pedigree data were
sourced from U.S. dairy producers via backups
from herd management systems (DairyComp
305, PC Dart, and DHI Plus). Quality control
excluded lactations with data collection ratings
(DCR) <0.70 or implausible yields, and
pedigree was traced back 20 generations where
possible. Pedigree completeness varied: 57.2%

of animals had known parents, 10.3% had
missing sires, 8.6% had missing dams, and
23.8% had both parents unknown.

DNA was extracted and genotyped on
[llumina BeadArray platforms (3K—80K SNPs).
Low-density genotypes (<40K SNPs) were
imputed to 45,245 markers using Flmpute
(Sargolzaei et al., 2011), achieving 97%
concordance.

The genetic evaluation included five
production traits: milk yield (MY), protein yield
(PY), fat yield (FY), somatic cell score (SCS),
and daughter pregnancy rate (DPR). Official
records comprised 23.7 million observations on
8.56 million cows, with genotypes available for
1.91 million Holsteins (HO), 181,379 Jerseys
(JE), and 53,799 crossbred (CROSS) animals.
Table 1 summarises the total number of records
and number of studied animals across traits
defined by breed. Heritabilities (+SE) for the
five traits were 0.35(0.005) for MY,
0.29 (0.008) for FY, 0.31(0.014) for PY,
0.13 (0.008) for SCS, and 0.07 (0.003) for DPR.

Table 1: number of records and cows with
phenotypes and genotypes

Genotyped
animals
Phenotypes (ssGBLUP
Group only)
N Cows

Holstein 20,166,782 7,298,374 1,905,292
Jersey 2,868,461 996,353 181,379
*CROSS 701,732 266,259 50,938

Total 23,736,975 8,560,986 2,137,609

*CROSS = Crossbred of Holstein x Jersey, N =
Number of records, Cows = Number of cows with
records

Genomic breed composition was determined
using a supervised admixture model (Zoetis
proprietary pipeline). Purebred HO and JE were
defined as >80% ancestry; CROSS animals had
combined HO and JE ancestry >80%. Three
validation sets were created: 96,295 HO, 26,436
JE, and 5,099 CROSS cows. Reduced datasets
included records until Dec 2018 (HO, JE) or
Dec 2015 (CROSS); complete datasets
extended to Dec 2022.

Models included five-trait repeatability with
random animal, permanent environment, and
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herd x sire interaction effects, and fixed effects
included contemporary groups, heterosis and
inbreeding. The genomic relationship matrix
(G) and pedigree matrix (A) were combined in
a single-step GBLUP (ssGBLUP) using the
Algorithm for Proven and Young (APY)
(Legarra et al., 2009; Aguilar et al., 2010) with
a random core size of 30,000: 22,156 females
and 1,931 males for HO, 5,643 females and
181 males for Jersey, and 678 females for
crossbred. Models were solved based on
iteration on data with the preconditioned
conjugate gradient (PCG) in algorithm
BLUP90IOD20OMP1 (Tsuruta et al., 2001).
Forward-in-time validation assessed (1)
predictability as the correlation between
adjusted phenotypes and GEBVs. Adjusted
phenotypes were obtained using PREDICT{90
v1.3 (Misztal et al., 2014); (2) inflation as the
regression slope of phenotypes on GEBVs
(ideal slope = 1); and (3) stability as the
correlation between GEBVs estimated from
reduced and complete datasets. Standard errors
for predictabilities and stabilities were
computed following Bermann et al. (2024). All
regression and correlation analyses were
performed in R software (R Development
Core Team, 2024). The different models
with and without MFs are detailed next.

SSgblup Analyses
All computations with ssGBLUP were done
using the full pedigree with 27 million animals
and the genomic relationship matrix for
2,137,609 animals. The ssGBLUP allows the
creation of a joint relationship matrix for
genotyped and non-genotyped animals by
replacing the inverse of the pedigree
relationship matrix, A~1, with the inverse of the
H matrix that combines the pedigree (A) and the
genomic relationship matrix G (Legarra et al.,
2009; Aguilar et al., 2010):
1 _ a1y |0 0 ]
H™ =A +[0 61— AL/

where A~! is an inverse of the pedigree
relationship matrix; G~1 is an inverse of the
genomic relationship matrix (VanRaden, 2008);
and A5} is an inverse of the pedigree
relationship matrix for genotyped animals only.

Single-step GBLUP with metafounders

The H! matrix considers relationships among
MF (I') in the MF approach. Hence, it is
replaced with the (H")! matrix, as described by
Legarra et al. (2015) and Christensen et al.
(2014). In this way, the H! matrix is modified
to become:

-t _ Ayt [© 0
R L R

_ _p\T
Where Ggs = M-PYM-P) P)iM P)

matrix of samples with SNPs encoded as 0, 1, 2
(i.e., the number of reference alleles), P is the
matrix where each column is filled with the

, where M is the

value 1 (i.e., assuming allele frequencies of 0.5
for all loci). The denominator k = (0.5, where
s is the total number of SNPs. This corresponds
to the genomic relationship matrix proposed by
VanRaden (2008) with all allele frequencies
assumed to be 0.5. AT is pedigree relationship
matrix formed with a I' matrix, and AL, is the
submatrix of A" for the genotyped animals, and
I' is a variance covariance matrix of the MF
estimated by I' = 8Cov(P), as proposed by
Garcia-Baccino et al. (2017), where P is an m
by r matrix of allele frequencies and r is the
number of MF. Note that this P differs from the
allele frequency matrix used earlier for
individual SNPs in the genomic relationship
matrix. Under ssGBLUP without MF, the
genomic matrix G was constructed using the
allele frequencies observed in the genotyped
data. Conversely, ssGBLUP that included MF
used a fixed allele frequency of 0.5 for all loci.
VanRaden (2008) proposed wusing allele
frequencies from base animals, representing an
unselected population, to create the genomic
matrix. Using an allele frequency of 0.5 in
ssGBLUP with MF represents a relationship
across individuals in the base pedigree
population(s) relative to an unobserved base
population with all allele frequencies equal 0.5
(Legarra et al., 2024). The only modification of
the A matrix to include MF is the assumption
that the MF have a self-relationship denoted as
I' The I' matrix, which models the means
within and across founders, was estimated using
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observed genotypes and pedigree under a
generalized least square (GLS) approach
(Garcia-Baccino et al,, 2017) using the
gammaf90 software package (Aguilar &
Misztal, 2008).

Metafounder classification

This study examined four scenarios to assess the
impact of different strategies to build MF for a
given data set and pedigree setting:

1) ssGBLUP without MF (NO_MF):

A ssGBLUP that did not include MF nor
any UPG was implemented so that all unknown
parents in the pedigree are assumed to be
unrelated and from a single population, hence
having unknown breeding values.

2) ssGBLUP with MF defined by breed (I's):

In this approach, four MF were defined
based on the breed of origin, with one MF
assigned to HO, one for JE, another for CROSS,
and a fourth assigned to the rest of the base
animals, assuming their breed of origin was
unknown. This approach treated CROSS as a
distinct genetic group (“breed”) alongside HO,
JE, and Unknown. Thus, in the end, the
variance-covariance matrix among MF was a
4x4 matrix between the means across SNP and
breeds.

3) ssGBLUP with MF defined by breed, sex,
and birth year (I'24):

In this approach, 24 MF were defined based
on breed (HO, JE, Unknown), sex, and year of
birth (<2000, 2001-2005, 2006-2010, >2011).
Here, the CROSS group was modelled within
the covariance between HO and JE.

4) ssGBLUP with MF defined by breed, sex,
year of birth and crossbreds as a breed (I'32):

This approach expanded upon I’z by
explicitly treating crossbred animals (CROSS)
as a distinct genetic group alongside HO, JE,
and Unknown. As a result, metafounders were
defined for each combination of breed (HO, JE,
CROSS, Unknown), sex, and year of birth,
resulting in 32 total metafounders. This
distinction allowed animals with mixed
ancestry and no known parents to be grouped
more consistently, rather than approximating
their breed origin via pedigree tracing. In this

case, crossbred animals with no parent
information were directly assigned to the
CROSS metafounder group.

Following Legarra et al (2015), genetic
variance parameters obtained from the model
with unrelated founders were used to estimate
corresponding parameters for the models with
MF by scaling it to become;

2
Tunrelated

1+ daag(I‘) _f

2 ~
Grelated ™

where the denominator is the scaling factor £;
62 reiateq 1S the variance among unrelated
founders. The variance of the breeding values
can then be calculated as
var{u) = HT. 62,4 Where H' is again the
combined relationship matrix described in

Legarra et al. (2015).

Comparisons
The four ssGBLUP scenarios were evaluated,
where three used different MF classifications
and one used a conventional ssGBLUP model
without the inclusion of any MF

To confirm these assumptions, we
investigated the mean differences in the
diagonal and off-diagonals of A, G, A2 and
G " matrices (defined by MF groups) by
correlations and mean differences between
these matrices.

Finally, the four sets of ssGBLUP
predictions were compared using the validation
metrics described above for each studied trait.

Results & Discussion

Elements of matrices

Table 2 shows the summary statistics for the
different matrices used in the ssGBLUP
computation using APY with a random core
size of 30,000. Values of the diagonal and off-
diagonal elements of Az, and G increased in all
augmentations of A and G that considered I'.
The mean, minimum, and maximum values of
the diagonal and off-diagonal elements of A
124, A%, G™* and G ? were similar. This

similarity implied that the assignment of an MF
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to the crossbred base population in I's; resulted
in the little to no effect on the relationship
among individuals when compared with
modeling the crossbred base population within
the covariance between the MF of HO and JE
augmented in I'z.

Incorporating MF in A increased the
correlation between the pedigree and genomic
relationship matrices. Correlation between the
diagonal elements of Ay and G, A "™, and G
AT and G™*, A2, and G ™? were 0.18,
0.64, 0.28, and 0.29, respectively. In the same
way, the correlation between the off-diagonal
elements of Ay and G, A ™, and G™ A%,
and G™*, A%, and G"** were 0.39, 0.66, 0.46,
and 0.47 respectively. In all scenarios, using the
I’y resulted in higher-than-average diagonals
and off-diagonals in the elements of A and G.
These results were expected as including MF
has been shown to improve the similarity
between the pedigree and genomic relationship
matrices compared to the traditional ssGBLUP
model (Legarra et al., 2015).

Furthermore, the off-diagonal elements in a
pedigree relationship matrix containing MF are
expected to be higher than those of a pedigree
without MF (Junqueira et al., 2020; Kudinov et
al., 2020), as shown in table 2.

Table 2: mean, minimum, and maximum element
values of Az, AT, , AT, A2, G, GG
24 /G2 from diagonal and off-diagonal'.
Element Matri Mea Minimu  Maximu
X n m m

Diagon  *Ax 1.00 1.000 1.286
al 4

G 1.00 0.779 1.453
4

AT, 132 1.266 1.551
4

G™ .32 1.121 1.568
0

A 1.30 1.008 1.504

1"2422 6

G™ 131 1.120 1.568

A 1.30 1.163 1.504

32
2 6

GB2 131 1.120 1.568

9
Oft- A 0.01  0.000 0.666
diagona 6
1
G 0.01 -0.216 1.015
6
A, 061 0532 1.154
3
G 0.63 0.397 1.386
2
A 0.60 0.385 1.073
1"2422 4

G™  0.63 0.395 1.380

1
A 0.60 0413 1.073
2, 4

G™ 063 039 1.380
1

*Ay is the pedigree relationship matrix of the
genotyped animals; G ™, G™* | and G 2 are the
genomic  relationship  matrices with allele
frequencies equal to 0.5 augmented by the T's, 24,
and I3y, respectively; G is the genomic relationship
matrix obtained using the VanRaden (2008) method
1; AT, A%, AT32,, are the pedigree relationship
matrices of genotyped animals augmented by T,
24, I'3; respectively.

Inflation

The slope (b1) of the regression of adjusted
phenotypes on GEBV from reduced datasets
measures the dispersion of predictions. A slope
close to one indicates no inflation or deflation
in GEBV (Mintysaari et al., 2010). According
to Interbull guidelines, b: should range from
0.90 to 1.10 for large populations, or be within
statistical significance of 1.0 for smaller
populations. Table 3 summarizes slopes across
traits (DPR, FY, MY, PY, SCS), methods
(NO_MF, 4MF, 24MF, 32MF), and groups
(CROSS, HO, JE).

In CROSS, NO MF exhibited severe
overdispersion, with slopes well below one for
MY (0.52 + 0.08), PY (0.42 = 0.09), and FY
(0.37 £ 0.09). Introducing 4MF improved
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dispersion (e.g., MY: 0.63 £ 0.06; PY: 0.51 +
0.07). However, finer partitions (24MF, 32MF)
did not consistently improve slopes and, for
MY, slopes declined to 0.45 = 0.04 (24MF) and
0.54 = 0.05 (32MF), suggesting potential
reintroduction of bias. For low-heritability traits
(DPR, SCS), slopes remained far from one and
highly variable across scenarios.

In HO and JE, slopes were closer to one
across models. HO slopes ranged narrowly
(0.68-0.77). For JE, 4MF slightly improved
MY slope (0.67 £ 0.03 [NO_MF] — 0.87+0.02
[4MF]), with minimal differences between
4MF, 24MF, and 32MF. These results suggest
that coarser MF groupings can reduce
overdispersion in CROSS, but finer granularity
does not guarantee further improvement and
may exacerbate bias.

Overall, slopes were significantly different
from 1.0 (*P < 0.05), indicating general
inflation in predictions. However, less biased
results for evaluations with MF were observed
as shown in other studies (e.g., Garcia-Baccino
et al.,, 2017). A potential factor is variance
scaling in MF base populations. While Legarra
et al. (2015) described theoretical scaling, its
practical implementation has been inconsistent
(Macedo et al, 2020; Meyer, 2021).
Himmelbauer et al. (2024) reported that scaled
variances tend to slightly overestimate GEBV.
In this study, scaling factors (k) for base animals
were 1.002 (4MF), 1.011 (24MF), and 1.015
(32MF), suggesting variance scaling did not
contribute  to inflation.  Breed-specific
contributions to the base population, as noted by
Kudinov et al. (2022), may explain slope
differences across groups.

Suboptimal reference populations and
limited crossbred genotypes that did not
represent this group in the APY core likely
contributed to the overdispersions observed in
our study, as shown in Khansefid et al. (2020)
and van den Berg et al. (2020).

Table 3: Regression coefficients (b1) and SE of cow-
adjusted phenotypes on genomic estimated breeding
value from different single-step genomic BLUP
(ssGBLUP) scenarios for validation cows.

Tra

Scenar  Group it

io 2 M PY FY SC DP
Y S R
07 05 0.6 0.6 02
7 5 2 5 0
06 0.6 05 04 0.1
7 5 5 9
05 04 03 0.1 03
2 2 7 0 6
07 05 0.7 0.7 02
7 5 0 9 7
08 0.7 0.6 0.6 02
7 6 9 7 2

CRO 06 05 04 02 03
3
0.6
8
0.8
9
0.4
5
0.6
8
0.8
7
0.5

NO M HO
F
JE

CRO
SS
4MF HO

JE

SS 1 9 9 5
24MF  HO 04 06 07 02
8 1 8 4
07 06 06 02
7 9 5 2
03 03 02 02
7 9 9 8
04 06 07 02
9 7 8 4
07 06 06 02
6 9 7 2

JE

CRO
SS
32MF  HO

JE

CRO . 04 04 02 03

SS 4 3 4 8 0
Scenario!: NO_MF model (single-step genomic
BLUP without metafounders); 4MF (single-step
genomic BLUP with four metafounders); 24MF
(single-step genomic BLUP with 24 metafounders);
32MF (single-step genomic BLUP with 32
metafounders). Group? = HO; Holstein (n = 96,295
animal); JE; Jersey (n = 26,436 animals); CROSS (n
=5,099). MF = Metafounder; 2SE: HO <0.02 for all
traits and scenarios; JE: < 0.06 for all traits and
scenarios; CROSS: <0.18 for all traits and scenarios;
MY =milk yield; FY = fat yield; PY = protein yield;
SCS = somatic cell score; DPR = daughter
pregnancy rate

Predictabilities

Table 4 summarizes predictabilities for MY,
PY, FY, SCS, and DPR across models
(NO_MF, 4MF, 24MF, 32MF) and groups
(CROSS, HO, JE). For MY, HO and JE cows
showed moderate, stable predictabilities across
all models (HO: 0.41-0.44; JE: 0.40-0.50). In
contrast, CROSS animals demonstrated notable
gains with MF inclusion, increasing from 0.33
under NO_MF to 0.44 with 4MF, and further to
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0.48-0.49 under 24MF and 32MF. Incremental
gains beyond 4MF were modest, suggesting
diminishing returns with finer metafounder
definitions.

For PY and FY,
observed. JE cows exhibited higher baseline
predictabilities (PY: 0.31 NO_MF — 0.37-0.38
MF), while HO showed smaller changes.
CROSS animals had the largest improvements,
especially under 4MF (e.g., FY: 0.19 NO_MF
— 0.26 4MF). Gains under 24MF and 32MF
were limited.

For SCS and DPR, purebred predictabilities
remained high and stable across all models,

similar trends were

while CROSS animals showed improvements
from low baselines (e.g., SCS: 0.04 NO MF —
0.12 4MF — 0.14 24MF/32MF).

These results highlight that MF effects on
predictability are trait- and breed-dependent.
Coarser MF groupings (4MF) improve CROSS
predictions, while finer partitions do not
guarantee further accuracy and may introduce
unnecessary complexity.

Our findings differ from Cesarani et al.

(2023), who reported higher CROSS
predictabilities than purebreds using UPG in
ssGBLUP. They attributed this to genetic
divergence between HO and JE and dense
genotype panels (imputed 79K SNPs). In
contrast, our study used a 45K SNP panel and a
random APY core including only 678
crossbreds (<3%). These factors likely reduced
CROSS prediction accuracy despite the
inclusion of MF.
A more balanced APY core design, like the
breed-stratified approach of Tabet et al. (2025),
could better capture genetic variation in small
groups like CROSS while maintaining
computational efficiency. Combining variance-
based core selection with breed stratification
may offer a promising strategy for future multi-
breed evaluations.

Table 4: Predictive ability (Pearson correlation
between genomic estimated breeding values and
adjusted phenotype) for the validation cows.

Trait

Scenario!  Group? MY PY FY SC5 DR
NO MF HO 041 030 0.33 021 0.07
JE 0.40 031 026 0.17 0.05
CROSS 033 024 0.19 0.04 0.08
4MF HO 044 031 037 025 0.08
JE 0.50 038 0.34 0.22 0.06
CROSS 044 0.33 026 0.12 0.10
24MF HO 041 028 0.35 025 0.08
JE 0.50 037 0.34 0.21 0.06
CROSS 048 0.39 029 0.14 0.09
32MF HO 041 028 0.36 025 0.08
JE 0.50 038 0.34 0.22 0.06
CROSS 049 0.39 030 0.14 0.09

Scenario!: NO_MF model (single-step genomic
BLUP without metafounders); 4MF (single-step
genomic BLUP with four metafounders); 24MF
(single-step genomic BLUP with 24 metafounders);
32MF (single-step genomic BLUP with 32
metafounders). Group? = HO; Holstein (n = 96,295
animal); JE; Jersey (n = 26,436 animals); CROSS;
HOXJE animals (n = 5,099). MF = Metafounder;
2SE: HO <0.003 for all traits and scenarios; JE: <
0.005 for all traits and scenarios; CROSS: < 0.013
for all traits and scenarios; MY = milk yield; FY = fat
yield; PY = protein yield; SCS = somatic cell score; DPR
= daughter pregnancy rate

Stabilities

In HO, stability was high under NO_MF (>0.87
for all traits) as shown in Table 5, reflecting
strong agreement between reduced and
complete datasets. Including 4MF slightly
reduced stability for production traits such as
PY (0.87 — 0.77) and MY (0.87 — 0.80), while
traits with low heritability (SCS, DPR)
remained highly stable (=0.93). Increasing MF
resolution to 24MF and 32MF had negligible
additional effects, with correlations for MY and
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PY ranging from 0.76 to 0.80 and SCS/DPR
remaining >0.93. These findings suggest that,
for HO, finer MF groupings increased model
complexity without enhancing stability and
may have even slightly destabilized predictions
for certain traits.

In JE, stability was similarly high across all

traits in NO_MF (e.g., MY and FY = 0.93) and
remained largely unchanged with MF inclusion.
Minor improvements in MY stability (0.93 —
0.94 under 4MF) were observed, but finer MF
resolutions (24MF, 32MF) did not yield further
gains, indicating limited impact of MF on
stability in this breed.
In contrast, CROSS animals showed lower
stability under NO_MF (e.g., MY = 0.59, PY =
0.52, FY = 0.69) compared to purebreds. MF
inclusion modestly improved stability (e.g.,
MY:0.59 — 0.61 under 4MF), with larger gains
observed under 24MF (MY: 0.73) and 32MF
(MY: 0.74). Similar trends were noted for other
traits, suggesting that finer MF groupings may
better account for heterogeneity in crossbred
populations.

These results highlight potential trade-offs.
In purebreds, finer MF schemes increased
model complexity without clear benefits and
may have introduced overparameterization
relative to the data. In CROSS, finer MF
improved stability but did not consistently
translate to higher predictive ability or slopes
closer to one. This decoupling suggests that
stability alone cannot fully evaluate model
performance and must be interpreted alongside
other validation metrics and trait architecture.

As Legarra and Reverter (2018) emphasized,
high stability does not necessarily reflect
improved accuracy. For traits like MY and PY
in purebreds, high stability may partly reflect
that most genetic variance was captured by
earlier data, limiting the impact of new
phenotypes. Conversely, in traits with lower
heritability (e.g., DPR, SCS), MF inclusion
improved stability, indicating that such traits
may benefit more from additional information
introduced by metafounders.

Stability should therefore be interpreted
While
evaluations, it primarily measures agreement

cautiously. desirable for routine
between evaluations and does not indicate
which evaluation is more accurate. For traits
with low h? high
unresponsiveness to new data, which could
limit genetic progress.

stability may reflect

Table 5: stability (correlation between genomic
estimated breeding values estimated in the complete
and reduced datasets) for validation cows.

Trait

Scenario!  Group? MY PY FY SCS DPR
NO MF HO 0.87 087 0.89 095 091
JE 093 092 093 092 0.89
CROSS 059 0.52 0.69 0.79 0.88
4MF HO 0.80 0.77 083 094 093
JE 094 092 092 092 0.92
CROSS 0.61 0.50 054 0.76 0.88
24MF HO 0.76 0.72 0.78 093 093
JE 092 09 091 092 09%4
CROSS 0.73 0.65 0.62 0.82 091
32MF HO 0.80 0.73 0.80 093 0.93
JE 092 090 091 092 0.93
CROSS 0.74 0.65 0.64 0.83 0091

Scenario': NO MF model (single-step genomic BLUP
without metafounders); 4MF (single-step genomic BLUP
with four metafounders); 24MF (single-step genomic
BLUP with 24 metafounders); 32MF (single-step genomic
BLUP with 32 metafounders). Group?= HO (n = 96,295
animal); JE (n =26,436 animals); CROSS (n = 5,099). MF
= Metafounder; *SE: HO <0.001 for all traits and
scenarios; JE: <0.001 for all traits and scenarios; CROSS:
< 0.011 for all traits and scenarios; MY = milk yield; FY
= fat yield; PY = protein yield; SCS = somatic cell score;
DPR = daughter pregnancy rate

Conclusions

This study demonstrated that incorporating
metafounders (MF) into genomic evaluation
models for Holstein and Jersey cattle, as well as
their crossbreds, can result in differences in
prediction metrics, with the effects varying by
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trait, breed, and metafounder configuration.
While certain MF classifications (eg, 4MF)
reduced bias and improved regression slopes in
crossbreds for some traits, others had minimal
effects, especially for purebred Holstein.
However, the added model complexity slightly
reduced stability for traits with higher
heritability, such as milk yield and protein yield.
Overall, while MF provides a promising
approach to address pedigree missingness in
multibreed evaluations, its application should
be tailored to the trait heritability and
population composition to avoid potential
overfitting and ensure accurate genetic
predictions.
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