
INTERBULL BULLETIN NO. 61. 21-22 June 2025, Louisville, Kentucky, USA 

 

 

One Moo-ve Closer: Single-Step Genomic Predictions for 
Crossbred Holstein and Jersey Cattle Using Metafounders 

I. Ampofo1,2, G. Vargas1, D. Gonzalez-Peña1, T. L. Passafaro1, Y. L. Bernal Rubio1, L.M. P. 
Sanglard1, N. Vukasinovic1, and B.O. Fragomeni2,3 

1 Zoetis Genetics, Kalamazoo, Michigan, United States 
2 Department of Animal Science, University of Connecticut, Storrs, Connecticut 
3 Institute for System Genomics, University of Connecticut, Storrs, Connecticut 

Corresponding author: issabelle.ampofo@uconn.edu 
 
 

Abstract  
 
The study examined the impact of incorporating metafounders (MF) in single-step genomic BLUP 
(ssGBLUP) models for the genetic evaluation of Holstein (HO) and Jersey (JE) cattle with their 
crossbreds (CROSS). The dataset included 23,736,975 records on 8,560,986 cows. Genotypic data on 
181,379 JE, 1,905,292 HO, and 53,799 CROSS animals was used for the evaluation. The genetic 
evaluation included five production traits, namely milk yield (MY), protein yield (PY), fat yield (FY), 
somatic cell score (SCS), and daughter pregnancy rate (DPR), which were analyzed using a five-trait 
repeatability model using ssGBLUP with or without MF. Three different MF scenarios were tested: 
4MF (based on breed), 24MF (based on the combination of breed, sex, and year of birth), and 32MF 
(similar to 24MF but with CROSS as a separate genetic group). The three MF scenarios were compared 
to a conventional ssGBLUP model that did not include metafounders (NO_MF). Forward‐in‐time 
validation was carried out to evaluate predictability, inflation, and stability. For purebred Holstein and 
Jersey cows, the truncated dataset included phenotypes through December 2018, whereas for crossbreds 
the cutoff was December 2015; the complete dataset extended through December 2022. Validation 
targeted genotyped cows lacking records in their respective truncated dataset but with at least one record 
in the complete dataset, yielding 96, 295 Holsteins 26, 436 Jerseys, and 5,099 crossbreds for analysis. 
Results showed that including MF affected prediction metrics differently depending on the trait, breed, 
and MF configuration. While certain MF classifications (e.g., 4MF) reduce bias and improved 
predictability in crossbreds for some traits, others showed minimal effects, particularly in purebred 
Holsteins. For low heritability traits (SCS, DPR), MF scenarios provided better predictive ability in 
CROSS animals. In contrast, for high heritability traits (MY, PY, FY), stability tended to decrease in 
MF models, suggesting possible overfitting due to added model complexity. Overall, MF offers a 
promising strategy to address pedigree gaps in multibreed evaluations, but its application should be 
carefully tailored to trait architecture and population composition to avoid overfitting and ensure 
accurate genetic predictions. 
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Introduction  
  
Traditionally, genomic evaluations for dairy 
cattle have been conducted on a single-breed 
basis, often excluding crossbred animals. 
However, the growing proportion of crossbreds 
in U.S. herds underscores the importance of 

including them in evaluations to improve 
management decisions. From 1990 to 2018, the 
proportion of crossbred cows in the U.S. Dairy 
Herd Improvement program rose from 0.1% to 
5.3% (Guinan et al., 2019). Recognizing this 
trend, the Council on Dairy Cattle Breeding 
(CDCB) extended genomic evaluations to 
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crossbred animals in 2019 (Wiggans et al., 
2019; CDCB, 2020). 

Several methods have been proposed for 
joint evaluations of purebred and crossbred 
animals (Wei & van der Werf, 1994; 
Christensen et al., 2014; Steyn et al., 2021; 
VanRaden et al., 2020). A straightforward 
approach combines all genotypes in a single 
relationship matrix (Lourenco et al., 2016). The 
single-step genomic BLUP (ssGBLUP) 
approach integrates pedigree (A) and genomic 
(G) matrices to estimate genomic breeding 
values (GEBV) (Aguilar et al., 2010; 
Christensen & Lund, 2010). However, 
ssGBLUP requires uniform scaling between A 
and G and a consistent base population 
(Christensen, 2012). Incomplete pedigrees and 
population stratification complicate these 
assumptions. 

To address these issues, Thompson (1979) 
and Quaas (1988) introduced unknown parent 
groups (UPG) to account for missing pedigree 
information. More recently, Legarra et al. 
(2015) proposed metafounders (MF) to model 
relationships among base populations, 
improving compatibility between A and G. MF 
consider allele frequencies of 0.5 across 
markers and estimate relationships among 
pseudo-ancestors using a gamma matrix (Γ). 
Studies have shown that MF can improve 
prediction accuracy in multibreed populations 
(Garcia-Baccino et al., 2017; Xiang et al., 
2016). 

Despite these advances, limited work has 
assessed MF performance in combined 
Holstein-Jersey ssGBLUP models, particularly 
regarding crossbred evaluations. This study 
aims to evaluate different MF classifications 
and their effects on accuracy, bias, and stability 
in genomic predictions of purebreds and 
crossbreds. 
 
Materials and Methods  
 
Official data files from Zoetis Inc. were used for 
this study. Phenotypic and pedigree data were 
sourced from U.S. dairy producers via backups 
from herd management systems (DairyComp 
305, PC Dart, and DHI Plus). Quality control 
excluded lactations with data collection ratings 
(DCR) <0.70 or implausible yields, and 
pedigree was traced back 20 generations where 
possible. Pedigree completeness varied: 57.2% 

of animals had known parents, 10.3% had 
missing sires, 8.6% had missing dams, and 
23.8% had both parents unknown. 

DNA was extracted and genotyped on 
Illumina BeadArray platforms (3K–80K SNPs). 
Low-density genotypes (<40K SNPs) were 
imputed to 45,245 markers using FImpute 
(Sargolzaei et al., 2011), achieving 97% 
concordance. 

The genetic evaluation included five 
production traits: milk yield (MY), protein yield 
(PY), fat yield (FY), somatic cell score (SCS), 
and daughter pregnancy rate (DPR). Official 
records comprised 23.7 million observations on 
8.56 million cows, with genotypes available for 
1.91 million Holsteins (HO), 181,379 Jerseys 
(JE), and 53,799 crossbred (CROSS) animals. 
Table 1 summarises the total number of records 
and number of studied animals across traits 
defined by breed. Heritabilities (±SE) for the 
five traits were 0.35 (0.005) for MY, 
0.29 (0.008) for FY, 0.31 (0.014) for PY, 
0.13 (0.008) for SCS, and 0.07 (0.003) for DPR. 

 
Table 1: number of records and cows with 
phenotypes and genotypes 

 

*CROSS = Crossbred of Holstein x Jersey, N = 
Number of records, Cows = Number of cows with 
records 

 
Genomic breed composition was determined 

using a supervised admixture model (Zoetis 
proprietary pipeline). Purebred HO and JE were 
defined as ≥80% ancestry; CROSS animals had 
combined HO and JE ancestry ≥80%. Three 
validation sets were created: 96,295 HO, 26,436 
JE, and 5,099 CROSS cows. Reduced datasets 
included records until Dec 2018 (HO, JE) or 
Dec 2015 (CROSS); complete datasets 
extended to Dec 2022. 

Models included five-trait repeatability with 
random animal, permanent environment, and 

Group 
Phenotypes 

Genotyped 
animals  
(ssGBLUP 
only) 

N Cows  

Holstein 20,166,782 7,298,374 1,905,292 

Jersey 2,868,461 996,353 181,379 

*CROSS 701,732 266,259 50,938 

Total 23,736,975 8,560,986 2,137,609 
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herd × sire interaction effects, and fixed effects 
included contemporary groups, heterosis and 
inbreeding. The genomic relationship matrix 
(G) and pedigree matrix (A) were combined in 
a single-step GBLUP (ssGBLUP) using the 
Algorithm for Proven and Young (APY) 
(Legarra et al., 2009; Aguilar et al., 2010) with 
a random core size of 30,000: 22,156 females 
and 1,931 males for HO, 5,643 females and 
181 males for Jersey, and 678 females for 
crossbred. Models were solved based on 
iteration on data with the preconditioned 
conjugate gradient (PCG) in algorithm 
BLUP90IOD2OMP1 (Tsuruta et al., 2001). 

Forward-in-time validation assessed (1) 
predictability as the correlation between 
adjusted phenotypes and GEBVs. Adjusted 
phenotypes were obtained using PREDICTf90 
v1.3 (Misztal et al., 2014); (2) inflation as the 
regression slope of phenotypes on GEBVs 
(ideal slope = 1); and (3) stability as the 
correlation between GEBVs estimated from 
reduced and complete datasets. Standard errors 
for predictabilities and stabilities were 
computed following Bermann et al. (2024). All 
regression and correlation analyses were 
performed in R software (R Development 
Core Team, 2024). The different models 
with and without MFs are detailed next. 
 
SSgblup Analyses 
All computations with ssGBLUP were done 
using the full pedigree with 27 million animals 
and the genomic relationship matrix for 
2,137,609 animals. The ssGBLUP allows the 
creation of a joint relationship matrix for 
genotyped and non-genotyped animals by 
replacing the inverse of the pedigree 
relationship matrix, , with the inverse of the 
H matrix that combines the pedigree (A) and the 
genomic relationship matrix G (Legarra et al., 
2009; Aguilar et al., 2010): 
 

 
 
where  is an inverse of the pedigree 
relationship matrix;  is an inverse of the 
genomic relationship matrix (VanRaden, 2008); 
and  is an inverse of the pedigree 
relationship matrix for genotyped animals only.  
 

Single-step GBLUP with metafounders 
The H-1 matrix considers relationships among 
MF (Γ) in the MF approach. Hence, it is 
replaced with the (H Γ)-1 matrix, as described by 
Legarra et al. (2015) and Christensen et al. 
(2014). In this way, the H-1 matrix is modified 
to become:  

�𝐇𝐇𝚪𝚪�−1 = �𝐀𝐀𝚪𝚪�−1 + �
0 0
0 𝐆𝐆𝟎𝟎𝟎𝟎−1 − �𝐀𝐀𝟐𝟐𝟐𝟐𝚪𝚪 �−1� 

 

Where 𝑮𝑮𝟎𝟎𝟎𝟎 = (𝑴𝑴−𝑷𝑷)(𝑴𝑴−𝑷𝑷)𝑇𝑇 
𝒌𝒌

, where M is the 

matrix of samples with SNPs encoded as 0, 1, 2 
(i.e., the number of reference alleles), P is the 
matrix where each column is filled with the 
value 1 (i.e., assuming allele frequencies of 0.5 
for all loci). The denominator , where 

 is the total number of SNPs. This corresponds 
to the genomic relationship matrix proposed by 
VanRaden (2008) with all allele frequencies 
assumed to be 0.5. AΓ is pedigree relationship 
matrix formed with a Γ matrix, and  is the 
submatrix of AΓ for the genotyped animals, and 
Γ is a variance covariance matrix of the MF 
estimated by Γ = 8Cov(P), as proposed by 
García-Baccino et al. (2017), where P is an m 
by r matrix of allele frequencies and r is the 
number of MF. Note that this P differs from the 
allele frequency matrix used earlier for 
individual SNPs in the genomic relationship 
matrix. Under ssGBLUP without MF, the 
genomic matrix G was constructed using the 
allele frequencies observed in the genotyped 
data. Conversely, ssGBLUP that included MF 
used a fixed allele frequency of 0.5 for all loci. 
VanRaden (2008) proposed using allele 
frequencies from base animals, representing an 
unselected population, to create the genomic 
matrix. Using an allele frequency of 0.5 in 
ssGBLUP with MF represents a relationship 
across individuals in the base pedigree 
population(s) relative to an unobserved base 
population with all allele frequencies equal 0.5 
(Legarra et al., 2024). The only modification of 
the A matrix to include MF is the assumption 
that the MF have a self-relationship denoted as 
Γ. The Γ matrix, which models the means 
within and across founders, was estimated using 
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observed genotypes and pedigree under a 
generalized least square (GLS) approach 
(Garcia-Baccino et al., 2017) using the 
gammaf90 software package (Aguilar & 
Misztal, 2008).   
Metafounder classification 
This study examined four scenarios to assess the 
impact of different strategies to build MF for a 
given data set and pedigree setting:  
1) ssGBLUP without MF (NO_MF): 

 A ssGBLUP that did not include MF nor 
any UPG was implemented so that all unknown 
parents in the pedigree are assumed to be 
unrelated and from a single population, hence 
having unknown breeding values. 
2) ssGBLUP with MF defined by breed (Γ4):  

In this approach, four MF were defined 
based on the breed of origin, with one MF 
assigned to HO, one for JE, another for CROSS, 
and a fourth assigned to the rest of the base 
animals, assuming their breed of origin was 
unknown.  This approach treated CROSS as a 
distinct genetic group (“breed”) alongside HO, 
JE, and Unknown. Thus, in the end, the 
variance-covariance matrix among MF was a 
4x4 matrix between the means across SNP and 
breeds.  
3) ssGBLUP with MF defined by breed, sex, 
and birth year (Γ24):  

In this approach, 24 MF were defined based 
on breed (HO, JE, Unknown), sex, and year of 
birth (≤2000, 2001–2005, 2006–2010, ≥2011). 
Here, the CROSS group was modelled within 
the covariance between HO and JE.  
4) ssGBLUP with MF defined by breed, sex, 
year of birth and crossbreds as a breed (Γ32):  

This approach expanded upon Γ24 by 
explicitly treating crossbred animals (CROSS) 
as a distinct genetic group alongside HO, JE, 
and Unknown. As a result, metafounders were 
defined for each combination of breed (HO, JE, 
CROSS, Unknown), sex, and year of birth, 
resulting in 32 total metafounders. This 
distinction allowed animals with mixed 
ancestry and no known parents to be grouped 
more consistently, rather than approximating 
their breed origin via pedigree tracing. In this 

case, crossbred animals with no parent 
information were directly assigned to the 
CROSS metafounder group.  

Following Legarra et al (2015), genetic 
variance parameters obtained from the model 
with unrelated founders were used to estimate 
corresponding parameters for the models with 
MF by scaling it to become; 

 
where the denominator is the scaling factor k; 

 is the variance among unrelated 
founders. The variance of the breeding values 
can then be calculated as  

, where HΓ is again the 
combined relationship matrix described in 
Legarra et al. (2015).  
 
Comparisons 
The four ssGBLUP scenarios were evaluated, 
where three used different MF classifications 
and one used a conventional ssGBLUP model 
without the inclusion of any MF 

To confirm these assumptions, we 
investigated the mean differences in the 
diagonal and off-diagonals of A22, G, A Γ

22, and 
G Γ matrices (defined by MF groups) by 
correlations and mean differences between 
these matrices.  

Finally, the four sets of ssGBLUP 
predictions were compared using the validation 
metrics described above for each studied trait.  

 
Results & Discussion  
 
Elements of matrices 
Table 2 shows the summary statistics for the 
different matrices used in the ssGBLUP 
computation using APY with a random core 
size of 30,000. Values of the diagonal and off-
diagonal elements of A22 and G increased in all 
augmentations of A and G that considered Γ. 
The mean, minimum, and maximum values of 
the diagonal and off-diagonal elements of A 

Γ24
22, A Γ32

22, G Γ24, and G Γ32 were similar. This 
similarity implied that the assignment of an MF 
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to the crossbred base population in Γ32 resulted 
in the little to no effect on the relationship 
among individuals when compared with 
modeling the crossbred base population within 
the covariance between the MF of HO and JE 
augmented in Γ24.  

Incorporating MF in A22 increased the 
correlation between the pedigree and genomic 
relationship matrices. Correlation between the 
diagonal elements of A22 and G, A Γ4

22 and G Γ4 
A Γ24

22 and G Γ24, A Γ32
22 and G Γ32 were 0.18, 

0.64, 0.28, and 0.29, respectively. In the same 
way, the correlation between the off-diagonal 
elements of A22 and G, A Γ4

22 and G Γ4 A Γ24
22 

and G Γ24, A Γ32
22 and G Γ32 were 0.39, 0.66, 0.46, 

and 0.47 respectively. In all scenarios, using the 
Γ4 resulted in higher-than-average diagonals 
and off-diagonals in the elements of A and G. 
These results were expected as including MF 
has been shown to improve the similarity 
between the pedigree and genomic relationship 
matrices compared to the traditional ssGBLUP 
model (Legarra et al., 2015).  

Furthermore, the off-diagonal elements in a 
pedigree relationship matrix containing MF are 
expected to be higher than those of a pedigree 
without MF (Junqueira et al., 2020; Kudinov et 
al., 2020), as shown in table 2. 
 
Table 2: mean, minimum, and maximum element 
values of A22, A Γ4

22 , A Γ24
22 , A Γ32

22, G,  G Γ4,G 

Γ24 ,G Γ32
 from diagonal and off-diagonal1. 

Element Matri
x 

Mea
n 

Minimu
m 

Maximu
m 

Diagon
al 

*A22 1.00
4 

1.000 1.286 

G 1.00
4 

0.779 1.453 

A Γ4
22 1.32

4 
1.266 1.551 

G Γ4 1.32
0 

1.121 1.568 

A 

Γ24
22 

1.30
6 

1.008 1.504 

G Γ24 1.31
9 

1.120 1.568 

A 

Γ32
22 

1.30
6 

1.163 1.504 

G Γ32 1.31
9 

1.120 1.568 

Off-
diagona
l 

A22 0.01
6 

0.000 0.666 

G 0.01
6 

-0.216 1.015 

A Γ4
22 0.61

3 
0.532 1.154 

G Γ4 0.63
2 

0.397 1.386 

A 

Γ24
22 

0.60
4 

0.385 1.073 

G Γ24 0.63
1 

0.395 1.380 

A 

Γ32
22 

0.60
4 

0.413 1.073 

G Γ32 0.63
1 

0.396 1.380 

*A22 is the pedigree relationship matrix of the 
genotyped animals; G Γ4, G Γ24 , and G Γ32 are the 
genomic relationship matrices with allele 
frequencies equal to 0.5 augmented by the Γ4, Γ24, 
and Γ32, respectively; G is the genomic relationship 
matrix obtained using the VanRaden (2008) method 
1; A Γ4

22, A Γ24
22, A Γ32

22,  are the pedigree relationship 
matrices of genotyped animals augmented by  Γ4, 
Γ24, Γ32 respectively. 
 
Inflation 
The slope (b₁) of the regression of adjusted 
phenotypes on GEBV from reduced datasets 
measures the dispersion of predictions. A slope 
close to one indicates no inflation or deflation 
in GEBV (Mäntysaari et al., 2010). According 
to Interbull guidelines, b₁ should range from 
0.90 to 1.10 for large populations, or be within 
statistical significance of 1.0 for smaller 
populations. Table 3 summarizes slopes across 
traits (DPR, FY, MY, PY, SCS), methods 
(NO_MF, 4MF, 24MF, 32MF), and groups 
(CROSS, HO, JE). 

In CROSS, NO_MF exhibited severe 
overdispersion, with slopes well below one for 
MY (0.52 ± 0.08), PY (0.42 ± 0.09), and FY 
(0.37 ± 0.09). Introducing 4MF improved 
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dispersion (e.g., MY: 0.63 ± 0.06; PY: 0.51 ± 
0.07). However, finer partitions (24MF, 32MF) 
did not consistently improve slopes and, for 
MY, slopes declined to 0.45 ± 0.04 (24MF) and 
0.54 ± 0.05 (32MF), suggesting potential 
reintroduction of bias. For low-heritability traits 
(DPR, SCS), slopes remained far from one and 
highly variable across scenarios. 

In HO and JE, slopes were closer to one 
across models. HO slopes ranged narrowly 
(0.68–0.77). For JE, 4MF slightly improved 
MY slope (0.67 ± 0.03 [NO_MF] → 0.87 ± 0.02 
[4MF]), with minimal differences between 
4MF, 24MF, and 32MF. These results suggest 
that coarser MF groupings can reduce 
overdispersion in CROSS, but finer granularity 
does not guarantee further improvement and 
may exacerbate bias. 

Overall, slopes were significantly different 
from 1.0 (*P < 0.05), indicating general 
inflation in predictions. However, less biased 
results for evaluations with MF were observed 
as shown in other studies (e.g., Garcia-Baccino 
et al., 2017). A potential factor is variance 
scaling in MF base populations. While Legarra 
et al. (2015) described theoretical scaling, its 
practical implementation has been inconsistent 
(Macedo et al., 2020; Meyer, 2021). 
Himmelbauer et al. (2024) reported that scaled 
variances tend to slightly overestimate GEBV. 
In this study, scaling factors (k) for base animals 
were 1.002 (4MF), 1.011 (24MF), and 1.015 
(32MF), suggesting variance scaling did not 
contribute to inflation. Breed-specific 
contributions to the base population, as noted by 
Kudinov et al. (2022), may explain slope 
differences across groups. 

Suboptimal reference populations and 
limited crossbred genotypes that did not 
represent this group in the APY core likely 
contributed to the overdispersions observed in 
our study, as shown in Khansefid et al. (2020) 
and van den Berg et al. (2020).  
 
 
 
 

Table 3: Regression coefficients (b1) and SE of cow-
adjusted phenotypes on genomic estimated breeding 
value from different single-step genomic BLUP 
(ssGBLUP) scenarios for validation cows. 

1Scenar
io 

Group
2 

Tra
it 

M
Y 

PY FY SC
S 

DP
R 

NO_M
F 

HO 0.7
7 

0.5
5 

0.6
2 

0.6
5 

0.2
0 

JE 0.6
7 

0.6 0.5
5 

0.4
5 

0.1
9 

CRO
SS 

0.5
2 

0.4
2 

0.3
7 

0.1
0 

0.3
6 

4MF HO 0.7
7 

0.5
5 

0.7
0 

0.7
9 

0.2
7 

JE 0.8
7 

0.7
6 

0.6
9 

0.6
7 

0.2
2 

CRO
SS 

0.6
3 

0.5
1 

0.4
9 

0.2
9 

0.3
5 

24MF HO 0.6
8 

0.4
8 

0.6
1 

0.7
8 

0.2
4 

JE 0.8
9 

0.7
7 

0.6
9 

0.6
5 

0.2
2 

CRO
SS 

0.4
5 

0.3
7 

0.3
9 

0.2
9 

0.2
8 

32MF HO 0.6
8 

0.4
9 

0.6
7 

0.7
8 

0.2
4 

JE 0.8
7 

0.7
6 

0.6
9 

0.6
7 

0.2
2 

CRO
SS 

0.5
4 

0.4
3 

0.4
4 

0.2
8 

0.3
0 

Scenario1: NO_MF model (single-step genomic 
BLUP without metafounders); 4MF (single-step 
genomic BLUP with four metafounders); 24MF 
(single-step genomic BLUP with 24 metafounders); 
32MF (single-step genomic BLUP with 32 
metafounders). Group2 = HO; Holstein (n = 96,295 
animal); JE; Jersey (n = 26,436 animals); CROSS (n 
= 5,099). MF = Metafounder; 2SE: HO ≤0.02 for all 
traits and scenarios; JE: ≤ 0.06 for all traits and 
scenarios; CROSS: ≤ 0.18 for all traits and scenarios; 
MY = milk yield; FY = fat yield; PY = protein yield; 
SCS = somatic cell score; DPR = daughter 
pregnancy rate 
 
Predictabilities 
Table 4 summarizes predictabilities for MY, 
PY, FY, SCS, and DPR across models 
(NO_MF, 4MF, 24MF, 32MF) and groups 
(CROSS, HO, JE). For MY, HO and JE cows 
showed moderate, stable predictabilities across 
all models (HO: 0.41–0.44; JE: 0.40–0.50). In 
contrast, CROSS animals demonstrated notable 
gains with MF inclusion, increasing from 0.33 
under NO_MF to 0.44 with 4MF, and further to 
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0.48–0.49 under 24MF and 32MF. Incremental 
gains beyond 4MF were modest, suggesting 
diminishing returns with finer metafounder 
definitions. 

For PY and FY, similar trends were 
observed. JE cows exhibited higher baseline 
predictabilities (PY: 0.31 NO_MF → 0.37–0.38 
MF), while HO showed smaller changes. 
CROSS animals had the largest improvements, 
especially under 4MF (e.g., FY: 0.19 NO_MF 
→ 0.26 4MF). Gains under 24MF and 32MF 
were limited. 

For SCS and DPR, purebred predictabilities 
remained high and stable across all models, 
while CROSS animals showed improvements 
from low baselines (e.g., SCS: 0.04 NO_MF → 
0.12 4MF → 0.14 24MF/32MF). 
These results highlight that MF effects on 
predictability are trait- and breed-dependent. 
Coarser MF groupings (4MF) improve CROSS 
predictions, while finer partitions do not 
guarantee further accuracy and may introduce 
unnecessary complexity.  

Our findings differ from Cesarani et al. 
(2023), who reported higher CROSS 
predictabilities than purebreds using UPG in 
ssGBLUP. They attributed this to genetic 
divergence between HO and JE and dense 
genotype panels (imputed 79K SNPs). In 
contrast, our study used a 45K SNP panel and a 
random APY core including only 678 
crossbreds (<3%). These factors likely reduced 
CROSS prediction accuracy despite the 
inclusion of MF. 
A more balanced APY core design, like the 
breed-stratified approach of Tabet et al. (2025), 
could better capture genetic variation in small 
groups like CROSS while maintaining 
computational efficiency. Combining variance-
based core selection with breed stratification 
may offer a promising strategy for future multi-
breed evaluations. 
 
 
 

Table 4: Predictive ability (Pearson correlation 
between genomic estimated breeding values and 
adjusted phenotype) for the validation cows. 

Scenario1 Group2 
Trait 

MY PY FY SCS DPR 

NO_MF HO 0.41 0.30 0.33 0.21 0.07 

JE 0.40 0.31 0.26 0.17 0.05 

CROSS 0.33 0.24 0.19 0.04 0.08 

4MF HO 0.44 0.31 0.37 0.25 0.08 

JE 0.50 0.38 0.34 0.22 0.06 

CROSS 0.44 0.33 0.26 0.12 0.10 

24MF HO 0.41 0.28 0.35 0.25 0.08 

JE 0.50 0.37 0.34 0.21 0.06 

CROSS 0.48 0.39 0.29 0.14 0.09 

32MF HO 0.41 0.28 0.36 0.25 0.08 

JE 0.50 0.38 0.34 0.22 0.06 

CROSS 0.49 0.39 0.30 0.14 0.09 

Scenario1: NO_MF model (single-step genomic 
BLUP without metafounders); 4MF (single-step 
genomic BLUP with four metafounders); 24MF 
(single-step genomic BLUP with 24 metafounders); 
32MF (single-step genomic BLUP with 32 
metafounders). Group2 = HO; Holstein (n = 96,295 
animal); JE; Jersey (n = 26,436 animals); CROSS; 
HOxJE animals (n = 5,099). MF = Metafounder; 
2SE: HO ≤0.003 for all traits and scenarios; JE: ≤ 
0.005 for all traits and scenarios; CROSS: ≤ 0.013 
for all traits and scenarios; MY = milk yield; FY = fat 
yield; PY = protein yield; SCS = somatic cell score; DPR 
= daughter pregnancy rate 
 
Stabilities 
In HO, stability was high under NO_MF (≥0.87 
for all traits) as shown in Table 5, reflecting 
strong agreement between reduced and 
complete datasets. Including 4MF slightly 
reduced stability for production traits such as 
PY (0.87 → 0.77) and MY (0.87 → 0.80), while 
traits with low heritability (SCS, DPR) 
remained highly stable (≥0.93). Increasing MF 
resolution to 24MF and 32MF had negligible 
additional effects, with correlations for MY and 
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PY ranging from 0.76 to 0.80 and SCS/DPR 
remaining ≥0.93. These findings suggest that, 
for HO, finer MF groupings increased model 
complexity without enhancing stability and 
may have even slightly destabilized predictions 
for certain traits. 

In JE, stability was similarly high across all 
traits in NO_MF (e.g., MY and FY = 0.93) and 
remained largely unchanged with MF inclusion. 
Minor improvements in MY stability (0.93 → 
0.94 under 4MF) were observed, but finer MF 
resolutions (24MF, 32MF) did not yield further 
gains, indicating limited impact of MF on 
stability in this breed. 
In contrast, CROSS animals showed lower 
stability under NO_MF (e.g., MY = 0.59, PY = 
0.52, FY = 0.69) compared to purebreds. MF 
inclusion modestly improved stability (e.g., 
MY: 0.59 → 0.61 under 4MF), with larger gains 
observed under 24MF (MY: 0.73) and 32MF 
(MY: 0.74). Similar trends were noted for other 
traits, suggesting that finer MF groupings may 
better account for heterogeneity in crossbred 
populations. 

These results highlight potential trade-offs. 
In purebreds, finer MF schemes increased 
model complexity without clear benefits and 
may have introduced overparameterization 
relative to the data. In CROSS, finer MF 
improved stability but did not consistently 
translate to higher predictive ability or slopes 
closer to one. This decoupling suggests that 
stability alone cannot fully evaluate model 
performance and must be interpreted alongside 
other validation metrics and trait architecture. 

As Legarra and Reverter (2018) emphasized, 
high stability does not necessarily reflect 
improved accuracy. For traits like MY and PY 
in purebreds, high stability may partly reflect 
that most genetic variance was captured by 
earlier data, limiting the impact of new 
phenotypes. Conversely, in traits with lower 
heritability (e.g., DPR, SCS), MF inclusion 
improved stability, indicating that such traits 
may benefit more from additional information 
introduced by metafounders. 

Stability should therefore be interpreted 
cautiously. While desirable for routine 
evaluations, it primarily measures agreement 
between evaluations and does not indicate 
which evaluation is more accurate. For traits 
with low h², high stability may reflect 
unresponsiveness to new data, which could 
limit genetic progress. 
 
Table 5: stability (correlation between genomic 
estimated breeding values estimated in the complete 
and reduced datasets) for validation cows. 

Scenario1 Group2 
Trait 

MY PY FY SCS DPR 

NO_MF HO 0.87 0.87 0.89 0.95 0.91 

JE 0.93 0.92 0.93 0.92 0.89 

CROSS 0.59 0.52 0.69 0.79 0.88 

4MF HO 0.80 0.77 0.83 0.94 0.93 

JE 0.94 0.92 0.92 0.92 0.92 

CROSS 0.61 0.50 0.54 0.76 0.88 

24MF HO 0.76 0.72 0.78 0.93 0.93 

JE 0.92 0.9 0.91 0.92 0.94 

CROSS 0.73 0.65 0.62 0.82 0.91 

32MF HO 0.80 0.73 0.80 0.93 0.93 

JE 0.92 0.90 0.91 0.92 0.93 

CROSS 0.74 0.65 0.64 0.83 0.91 

Scenario1: NO_MF model (single-step genomic BLUP 
without metafounders); 4MF (single-step genomic BLUP 
with four metafounders); 24MF (single-step genomic 
BLUP with 24 metafounders); 32MF (single-step genomic 
BLUP with 32 metafounders). Group2 = HO (n = 96,295 
animal); JE (n = 26,436 animals); CROSS (n = 5,099). MF 
= Metafounder; 2SE: HO ≤0.001 for all traits and 
scenarios; JE: ≤ 0.001 for all traits and scenarios; CROSS: 
≤ 0.011 for all traits and scenarios; MY = milk yield; FY 
= fat yield; PY = protein yield; SCS = somatic cell score; 
DPR = daughter pregnancy rate 
 
Conclusions  
 
This study demonstrated that incorporating 
metafounders (MF) into genomic evaluation 
models for Holstein and Jersey cattle, as well as 
their crossbreds, can result in differences in 
prediction metrics, with the effects varying by 
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trait, breed, and metafounder configuration. 
While certain MF classifications (eg, 4MF) 
reduced bias and improved regression slopes in 
crossbreds for some traits, others had minimal 
effects, especially for purebred Holstein. 
However, the added model complexity slightly 
reduced stability for traits with higher 
heritability, such as milk yield and protein yield. 
Overall, while MF provides a promising 
approach to address pedigree missingness in 
multibreed evaluations, its application should 
be tailored to the trait heritability and 
population composition to avoid potential 
overfitting and ensure accurate genetic 
predictions. 
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