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Abstract

Breeding programs rely on selection of individuals through their breeding values to simultaneously
improve multiple traits of commercial value. In order to adequately select candidates to breed for a next
generation, the genetic relationships between traits are considered in the selection index that summarizes
all the traits for each selection candidate. The methods deployed in genetic evaluations rely strongly in
gaussian distributions describing the data, and consider the genetic relationships between traits in the
form of genetic correlations determining the joint distribution of breeding values from different traits.
In this manner, genetic correlations are treated as parameters, estimated on a base population for
reference. However, genetic correlations depend on the involved traits’ architecture, thus depending on
the genotype presented by each individual, and therefore, different individuals may present different
potential for genetic correlations. Moreover, different potential for genetic correlations may partially
represent a latent physiological trait responsible to balance the phenotypic expression of the measurable
production traits. In practice, individual-specific genetic correlations (iISGC) can be obtained for
individuals with many phenotyped descendants, as the expressed genetic correlation between the
estimated breeding values among their offspring. Since the expressed iISGC depends on the involved
traits’ genetic architecture, part of an individual’s iISGC can be transmitted to the offspring. In order to
study the heritability of iSGC, two-trait genetic evaluations were performed on every pairwise
combination of five traits from a French Holstein dairy cattle population: milk and protein yield (MY
and PY), milking speed (MSPD), somatic cell score (SCS), and conception rate (CR). The iISGC between
every pair of the five traits were obtained for ~1200 bulls with more than 500 phenotyped daughters in
this population, and these iISGC were each evaluated as a phenotype with a single-trait model. This study
confirmed the hypothesis that genetic correlations, when expressed as iSGC, are heritable parameters,
with significant heritabilities ranging from 0.11 (iSGC between SCS and CR) to 0.51 (iSGC between
PY and SCS).
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Introduction 2006). Therefore, in order to avoid that
selection for one trait is detrimental to the other
Breeding programs aim to select for multiple (Hazel et al., 1994), selection must account for
commercial traits, in order to achieve genetic these negative correlations. This is typically
progress for all of them. Many of these traits are done through a selection index, i.e., a linear
genetically correlated, and a negative combination of traits, whose weights are
correlation means that an antagonism between defined by, among other information, the
two traits exists. In dairy cattle, the genetic genetic correlations between the traits involved
trade-off often lies between production and (Hazel, 1943; Hazel et al., 1994; Miglior et al.,
either fertility or health traits (Boichard & 2017).
Manfredi, 1994; Pryce et al., 1997; Rauw et al., Genetic correlations between traits are
1998; Roxstrom et al., 2001; Windig et al., considered a populational parameter that
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defines the joint normal distribution imposed to
the breeding values in genetic evaluations.
However, in this manner, genetic correlations
are assumed equal to all individuals, an
assumption that ignores the fact that different
individuals may present different physiological
trade-off regulation between traits (Berry et al.,
2016; Cuyabano et al., 2024). This hypothesis
has been revisited by Cuyabano et al. (2024),
who, in a study of the trade-off between
production and fertility in the French
Montbéliarde population, have shown that
different sires could express different genetic
correlations through their daughters, between
these traits.

Because the study of Cuyabano et al. (2024)
had only 247 sires with enough daughters
evaluated so that reliable genetic correlations
could be obtained at the individual level (i.e. for
each sire), no further inferences could be drawn,
with respect to the genetic background of these
individual-specific genetic correlations (iISGC).

This current study hypothesized that if the
different genetic correlations expressed by
different sires are simply a feature of
recombination and different allele frequencies
in different family lines, then none or very weak
heritabilities are expected to be observed for the
iSGC. However, if the iSGC represent, even if
only partially, a latent physiological phenotype,
non-zero heritabilities should be observed for
the iISGC.

To support this hypothesis that non-zero
heritabilities associated to the iSGC may
suggest their representation of a latent
physiological phenotype,
deployed. Breeding values were simulated for
multiple traits, with their genetic correlations
solely due to pleiotropic QTL and linkage

simulations were

disequilibrium between non-pleiotropic sites, in
order to show that when no physiological trait
was involved in the differences between genetic
correlations, no heritability was captured by the
1ISGC.

For the real data analysis, this current study
up-scaled the work from Cuyabano et al.
(2024), by calculating iISGC for 1161 sires from
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a French Holstein dairy cattle population,
between each pair of five traits of commercial
interest (milk and protein yield, milking speed,
cow conception rate, and somatic cell score).
Heritabilities were then estimated for the iSGC,
under the hypothesis that non-zero estimates
suggest the representation of a latent
phenotyped through the iSGC.

Materials and Methods

Bi-variate genetic evaluation model
Two-trait animal models were deployed for the
genetic evaluations in this study, given by:

[ 1=l 4[5 ] m

in which y; and y, are the vectors of
phenotypes for traits 1 and 2 respectively; g; ~
N(0,Ac}) and g, ~N(0,Ac},) are the
vectors of breeding values for these two traits,
with Cov(gq, g;)=Aady,,, such that A is the

. . . . . 2 2
pedigree relationship matrix; o5, and o, are the
additive genetic variances, and o, , is the

genetic covariance between the two traits; &; ~
N (O, Inagzl) and & ~ N(O, Inagzz) are the
random residuals, with Cov (e, £,)=I,0;,; 0821
and 0522 are the residual variances, and g , is
the residual covariance.

The genetic evaluation model in equation (1)
was implemented under a Bayesian framework,
using the GIBBS3F90 module from the
BLUPF90 family of (Misztal et al., 2018), with
the software’s default prior distributions for the
breeding values and (co)variance parameters. A
total of 300,000 samples were generated, with
the first 100,000 discarded as burn-in. On the
remaining 200,000 samples, a thinning
parameter of 200 iterations was applied,
resulting in 1000 effective samples used to
compute the estimated breeding values (EBV)
and (co)variance parameters. To assist
convergence of the (co)variance parameters,
initial values were provided, using the current
genetic (co)variances used for these five traits



INTERBULL BULLETIN NO. 61. 21-22 June 2025, Louisville, Kentucky, USA

in the French national genetic evaluation.
Convergence was assessed visually through
plots of the 1000 effective samples for the
genetic (co)variances.

Heritabilities (h? and h%) and genetic
correlations (p;,) between the traits were
obtained from the estimated (co)variance
parameters, as:

2 6§ 2 63
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Real data

The dairy cattle data used for the present study
was from the French Holstein population. The
bi-variate genetic evaluations were
implemented for every pair of the following five
traits: milk and protein yield (MY and PY),
milking speed (MSPD), somatic cell score
(SCS), and cow conception rate (CR), measured
as artificial insemination’s success/failure on
lactating cows (i.e. heifers excluded). The
phenotypes entered for the
performed in this study were in the form of yield
deviations (YD), issued from the French

evaluations

national genetic evaluation, which evaluates
MY, PY, SCS as 305-day phenotypes corrected
for the duration; performance records comprise
all lactations records per cow, and the model
accounts for the repeatability (i.e., for the
permanent environment of the cow). A total of
4,501,624 cows born between 1991-2020 had
YD deviations available for all five traits, with
a pedigree file containing a total of 8,275,018
animals that traced back three generations from
the cows with performances.

Simulated data

The simulated data consisted of ten replicates of
populations with a founder population followed
by 30 generations under selection. Generations
non-overlapping, each with 1000
individuals, among them 200 males and 800

WwWere

females. Selection was performed at each
generation for the top 20% males, based on a
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selection index build from their true simulated
breeding values, assuming equal weights for all
simulated traits. Pedigree information was kept
for the simulated populations.

Five traits were simulated with additive
effects associated to them, and genetic
correlations were solely due to pleiotropic QTL
and linkage disequilibrium (LD) between non-
pleiotropic sites. To simulate these traits, 1675
SNP genotypes, already in LD from the founder

in this
serve as

population (average LD of 0.15
population), were simulated to
quantitative trait loci (QTL). At each population
replicate, a random subset of 75 SNPs were
assigned as pleiotropic QTL across all five
traits, five random subsets of 25 SNPs each
were assigned as pleiotropic QTL across four
traits, ten random subsets of 50 SNPs each were
assigned as pleiotropic QTL across three traits,
and ten random subsets of 90 SNPs each were
assigned as pleiotropic QTL across two traits.
The remaining 75 SNPs were finally split in five
groups of 15, to be assigned as QTL exclusive
to each one of the five traits. This distribution
of the QTL per trait is presented in the Venn
diagram in Figure 1.

Figure 1. Venn Diagram describing the number of
QTL shared among the five simulated traits.

Finally, QTL-effects simulated,
correlated between traits, so that the breeding

values at the founder population presented

WEre
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genetic correlations matching those obtained
for the traits studied in the French Holstein
dairy cattle population. The additive genetic
variances of the simulated breeding values were
set to 10 x h2, with the heritabilities being
those obtained for the real traits evaluated from
the French Holstein dairy cattle data.

Individual-specific genetic correlations and
their heritability estimates

For both the real and simulated data, individual-
specific genetic correlations (1ISGC) were
calculated for sires, in order to evaluate how
much differences in genetic correlations were
expressed by different sires.

For the real data, iSGCs were calculated for
all pairs of the five traits, evaluated with the bi-
variate genetic evaluations models given by
equation (1). Following the proposed by
Cuyabano et al. (2024), sires with more than
500 daughters evaluated were selected, so that
reliable genetic correlations could be obtained
at the individual level, based on the daughters’
EBVs. A minor change was made to calculate
the iISGC, compared to how it was done by
Cuyabano et al. (2024), who obtained the iSGC
per sire by correlating the EBVs from their
daughters. Here, prior to calculating the
correlations between the daughters’ EBVs from
different traits, half of the dam’s EBVs were
subtracted from their daughters, so that on
average, the iSGC comprised only sire
information. Thus, for each sire s and for any
pair of traits 1 and 2, their i-th daughter’s
breeding values were corrected as:

Q damofi
gli,s:gli'¥, 4)

9244 i
Q2i5=02i- 5L, (5)

for every i=1, ..., ng. Finally, for each sire s:

. Z?:S]_(gﬂ,s‘gl s) (QZi,S'gz S)

SGCy= : .

L S (ns‘l)o'gsl 0.g52 9 (6)

such that gl s:% and EZ = Zi:;gzm are

the mean daughters’ corrected EBVs, and their
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For the simulated data, 1SGCs were

calculated for all pairs of the five traits, only for
the selected sires in the simulation routine.
Since the simulations provided genotypes and
the true simulated QTL effects, instead of using
daughters’ information, for each sire s, 500
gametes were simulated, at which QTL effects
were applied. Thus, for each sire s and for any
pair of traits 1 and 2, the additive genetic values
of the i-th gamete was given by:

Viis= 201> X, (7
Vais= 201 Xittz), (3)

for every i=1, ...,500, such that a;;’s and a;;’s
are the QTL effects (set as zero if the j-th SNP
is not a QTL for each of the traits). Finally, for
each simulated sire s:

Ziszof(Yli,s‘?l_s)(VZi.S'72,s)

ISGCs= @99)8,.6,, ) )
L Vai — 500, .
such that y, s:% and 7, = Lfslo)(/)zl,s are

the mean additive genetic values of the gametes,

2
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and their variance are 872 =M

el 299 and
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Heritability estimates were obtained for the
iSGCs, by treating them as a phenotype in a
variance component estimation routine, using
the pedigree relationship matrix for both the real
and the simulated data, tracing back four
generations from the sires. For the simulated
data, heritability estimates were also obtained
using a genomic relationship  matrix
(VanRaden, 2008) built from the simulated
SNP-genotypes. The following model was used
to estimate variance components:
iSGC=1,utg+e, (10)
in which iSGC is the vector of iISGCs obtained
for the n sires, between any two traits; u is the
overall mean; g ~ N (O,Aagz(l-sac)) is the vector

of breeding values associated to the iSGC, A is
the pedigree relationship matrix (replaced by
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the genomic relationship matrix G, for the
simulated data), and ng(isc;c) is the additive
genetic variance associated to the iSGC; and
e~ N(O, Inaez(iscc)) is the vector of random

residuals, and aez(iSGC) is the residual variance.

Variance components for the iSGC were
estimated through the residual maximum
likelihood (REML; Patterson & Thompson,
1971), using the REMLF90 module from the
BLUPF90 family of programs (Misztal et al.,
2018). Finally, heritabilities of the iSGC were
given by:

62
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Results & Discussion

Genetic parameters on real data

Heritability and genetic correlation estimates
were obtained from the genetic parameters of
the bi-variate genetic evaluations, for every pair
of the five traits studied from the French
Holstein dairy cattle population, and their
values are presented in Table 1. These values
agreed with those used for the French national
genetic evaluation, as expected, and also agreed
with reported heritabilities and genetic
correlations between these traits. Finally, these
values presented in Table 1 were the ones used
as parameters to generate the breeding values
for the simulated data, with genetic variances
equal to 10 X h2.

Table 1: Estimated heritabilities (diagonal bold
values) and genetic correlations (upper triangle of
the table) between the five traits studied in the
French Holstein dairy cattle population. Values in
gray indicate an estimate that was not statistically
different from zero (significance level of 0.05).

MY PY MSP SCS CR
D

MY 022 0.78 -0.15
PY - 038 -0.20

MSP 024 031

D

SCS - 013 -0.26
CR -—- - - 0.01

Distribution of the individual-specific genetic
correlations on real and simulated data
Figures 2-5 present the distributions, in the form
of density curves, of the iISGC obtained between
the five traits studied, both on real and
simulated data, indicating that different sires
did present different potential for genetic
correlations, expressed through their offspring.
The mean iSGCs on the real data presented
bigger differences from the estimated genetic
correlations with the Gibbs sampler, presented
in Table 1 and indicated with dots at the x-axes
of the plots, than the mean iSGCs on the
simulated data. This could be due to the fact
that, on real data, iISGCs were obtained for a
subset of sires that had at least 500 daughters
evaluated, rather than for all sires, potentially
indicating a different mean iSGC for these elite
sires, with respect to the whole population.

°  Pains

- — iSGC on simulated data

|—— iSGC on real dala
MY x PY

20

— MY xMSPD
= PYxMSPD

15

T T T
0z 04 06 08

iSGC

Figure 2. Distribution of the iSGC obtained across
the pairs of the three production traits (MY, PY, and
MSPD), on both real and simulated data.

0 Pars
— — iSGC on simulated fata

T T T
-0.2 00 02 0.4

iSGC
Figure 3. Distribution of the iISGC obtained between
the production traits (MY, PY, and MSPD) and the
health trait (SCS), on both real and simulated data.
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Interestingly, on the real data, the overall
iSGC between MY and CR and between PY and
CR were less negative for the elite sires than the
estimated genetic correlations between these
traits, as shown in Figure 4. Conversely, the
overall iSGC between MY and SCS and
between PY and SCS were rather more negative
(i.e. a stronger trade-off between these traits) for
these elite sires than the estimated genetic
correlations between these traits, as shown in
Figure 3. If the hypothesis that iSGCs express a
latent physiological trait holds, even if at least
partially, these results suggest that selection is
favoring a physiological trait that allows a better
trade-off between
in the
detriment of the trade-off between production
and health indicators. Nonetheless, it is
important to note that a strengthening of the
trade-off between traits does not mean that the

management of the

production and fertility, however

©  Pbes
- — iSGC on simulated data
[— iSGC on real data
— MY xCR
— PYxCR
MSPD x CR

— 7 ——
-03 -0.2 -01 00 0.4 0z
iSGC

Figure 4. Distribution of the iSGC obtained between

the production traits (MY, PY, and MSPD) and the
fertility trait (CR), on both real and simulated data.

SCSxCR
® o
o _|-= ISGC on simulated data
[— iSGC on real data

iSGC

Figure 5. Distribution of the iSGC obtained between
the health and fertility traits (SCS and CR), on both
real and simulated data.
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traits themselves are not achieving genetic
progress.

Heritabilities of the individual-specific genetic
correlations on real and simulated data
Heritabilities were estimated for the iISGC, by
treating them as a phenotype, as in the model
presented in equation (10). These heritabilities
were estimated for the iISGC obtained for both
the real and simulated data. The goal of
comparing these heritabilities of the iSGC on
real data, to those of the iISGC on simulated data
with the same genetic parameters, was to show
that when no latent trait was associated to the
differences between genetic correlations in a
population, no heritabilities would be captured.

The estimated heritabilities are presented in
Table 2, being the presented values for the
heritabilities of iISGCs obtained on simulated
data (lower triangle of Table 2), the obtained
using the pedigree relationship matrix, since
their values were not statistically different from
the obtained with the genomic relationship
matrix (significance level of 0.05). All these
heritabilities of the iSGC on simulated data
were not statistically different from zero
(significance level of 0.05), indicating that
neither family relationships, nor allele
frequencies and LD patterns were enough to
outline a genetic determinism for the different
iSGC expressed by different sires.

With respect to the heritabilities of the iSGC
on real data (upper triangle of Table 2), their
values were significantly different from zero
(significance level of 0.05), with the exception
of the heritability of iISGC between MSPD and
CR. Particularly, heritabilities of the iSGC
between the two main production traits (MY
and PY), between these main production traits
and the health trait (SCS), and between these
main production traits and the fertility trait
(CR), were moderately high for dairy cattle
traits, ranging from 0.38 to 0.51. These
heritabilities suggest a reasonable level of
genetic determinism associated to the different
iSGC expressed by different sires, and these
heritabilities could be due to the genetic
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correlations at the individual level expressing,
at least partially, a latent physiological trait.

Table 2: Heritability estimates for the iSGC obtained
on the real data (upper triangle of the table), and for
the iSGC obtained on the simulated data (lower
triangle of the table). Values in gray indicate an
estimate that was not statistically different from zero
(significance level of 0.05).

MY PY MSP SCS CR
D

MY - 045 0.16 045 046
PY -— 0.17 0.51 0.38

MSP -— 023

D
SCS - 0.11
CR -
Conclusions

Genetic correlations, while treated as a
parameter common to all individuals in genetic
evaluations and selection indexes, may present
different values across individuals in a
population. By obtaining individual-specific
genetic correlations for sires from a French
Holstein dairy cattle population, this study has
shown that indeed, different individuals present
different patterns in their genetic correlations
between five traits of interest. Moreover,
individual-specific genetic correlations are
heritable, suggesting that these parameters may
be part of the expressions of a non-measurable
(or latent) physiological trait. When it comes to
traits that present a negative genetic correlation,
the findings from this study may assist to select
individuals better apt to manage the trade-off
between traits. However, it remains a question
of research, how to adequately and optimally
use individual-specific genetic correlations and

their heritability in a breeding program.
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