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Abstract 

Breeding programs rely on selection of individuals through their breeding values to simultaneously 
improve multiple traits of commercial value. In order to adequately select candidates to breed for a next 
generation, the genetic relationships between traits are considered in the selection index that summarizes 
all the traits for each selection candidate. The methods deployed in genetic evaluations rely strongly in 
gaussian distributions describing the data, and consider the genetic relationships between traits in the 
form of genetic correlations determining the joint distribution of breeding values from different traits. 
In this manner, genetic correlations are treated as parameters, estimated on a base population for 
reference. However, genetic correlations depend on the involved traits’ architecture, thus depending on 
the genotype presented by each individual, and therefore, different individuals may present different 
potential for genetic correlations. Moreover, different potential for genetic correlations may partially 
represent a latent physiological trait responsible to balance the phenotypic expression of the measurable 
production traits. In practice, individual-specific genetic correlations (iSGC) can be obtained for 
individuals with many phenotyped descendants, as the expressed genetic correlation between the 
estimated breeding values among their offspring. Since the expressed iSGC depends on the involved 
traits’ genetic architecture, part of an individual’s iSGC can be transmitted to the offspring. In order to 
study the heritability of iSGC, two-trait genetic evaluations were performed on every pairwise 
combination of five traits from a French Holstein dairy cattle population: milk and protein yield (MY 
and PY), milking speed (MSPD), somatic cell score (SCS), and conception rate (CR). The iSGC between 
every pair of the five traits were obtained for ~1200 bulls with more than 500 phenotyped daughters in 
this population, and these iSGC were each evaluated as a phenotype with a single-trait model. This study 
confirmed the hypothesis that genetic correlations, when expressed as iSGC, are heritable parameters, 
with significant heritabilities ranging from 0.11 (iSGC between SCS and CR) to 0.51 (iSGC between 
PY and SCS). 
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Introduction 

Breeding programs aim to select for multiple 
commercial traits, in order to achieve genetic 
progress for all of them. Many of these traits are 
genetically correlated, and a negative 
correlation means that an antagonism between 
two traits exists. In dairy cattle, the genetic 
trade-off often lies between production and 
either fertility or health traits (Boichard & 
Manfredi, 1994; Pryce et al., 1997; Rauw et al., 
1998; Roxström et al., 2001; Windig et al., 

2006). Therefore, in order to avoid that 
selection for one trait is detrimental to the other 
(Hazel et al., 1994), selection must account for 
these negative correlations. This is typically 
done through a selection index, i.e., a linear 
combination of traits, whose weights are 
defined by, among other information, the 
genetic correlations between the traits involved 
(Hazel, 1943; Hazel et al., 1994; Miglior et al., 
2017). 

Genetic correlations between traits are 
considered a populational parameter that 
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defines the joint normal distribution imposed to 
the breeding values in genetic evaluations. 
However, in this manner, genetic correlations 
are assumed equal to all individuals, an 
assumption that ignores the fact that different 
individuals may present different physiological 
trade-off regulation between traits (Berry et al., 
2016; Cuyabano et al., 2024). This hypothesis 
has been revisited by Cuyabano et al. (2024), 
who, in a study of the trade-off between 
production and fertility in the French 
Montbéliarde population, have shown that 
different sires could express different genetic 
correlations through their daughters, between 
these traits. 

Because the study of Cuyabano et al. (2024) 
had only 247 sires with enough daughters 
evaluated so that reliable genetic correlations 
could be obtained at the individual level (i.e. for 
each sire), no further inferences could be drawn, 
with respect to the genetic background of these 
individual-specific genetic correlations (iSGC). 

This current study hypothesized that if the 
different genetic correlations expressed by 
different sires are simply a feature of 
recombination and different allele frequencies 
in different family lines, then none or very weak 
heritabilities are expected to be observed for the 
iSGC. However, if the iSGC represent, even if 
only partially, a latent physiological phenotype, 
non-zero heritabilities should be observed for 
the iSGC. 

To support this hypothesis that non-zero 
heritabilities associated to the iSGC may 
suggest their representation of a latent 
physiological phenotype, simulations were 
deployed. Breeding values were simulated for 
multiple traits, with their genetic correlations 
solely due to pleiotropic QTL and linkage 
disequilibrium between non-pleiotropic sites, in 
order to show that when no physiological trait 
was involved in the differences between genetic 
correlations, no heritability was captured by the 
iSGC. 

For the real data analysis, this current study 
up-scaled the work from Cuyabano et al. 
(2024),  by calculating iSGC for 1161 sires from 

a French Holstein dairy cattle population, 
between each pair of five traits of commercial 
interest (milk and protein yield, milking speed, 
cow conception rate, and somatic cell score). 
Heritabilities were then estimated for the iSGC, 
under the hypothesis that non-zero estimates 
suggest the representation of a latent 
phenotyped through the iSGC. 
 
Materials and Methods 
 
Bi-variate genetic evaluation model 
Two-trait animal models were deployed for the 
genetic evaluations in this study, given by: 
 

� 
𝑦𝑦1
𝑦𝑦2 �= � 

𝑔𝑔1
𝑔𝑔2 �+ � 

𝜀𝜀1
𝜀𝜀2 �,      (1) 

 
in which 𝑦𝑦1 and 𝑦𝑦2 are the vectors of 
phenotypes for traits 1 and 2 respectively; 𝑔𝑔1 ∼
𝑁𝑁(0,𝐴𝐴𝜎𝜎𝑔𝑔1

2 ) and 𝑔𝑔2 ∼ 𝑁𝑁(0,𝐴𝐴𝜎𝜎𝑔𝑔2
2 ) are the 

vectors of breeding values for these two traits, 
with 𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔1,𝑔𝑔2)=𝐴𝐴𝜎𝜎𝑔𝑔12, such that 𝐴𝐴 is the 
pedigree relationship matrix; 𝜎𝜎𝑔𝑔1

2  and 𝜎𝜎𝑔𝑔2
2  are the 

additive genetic variances, and 𝜎𝜎𝑔𝑔12 is the 
genetic covariance between the two traits; 𝜀𝜀1 ∼
𝑁𝑁(0, 𝐼𝐼𝑛𝑛𝜎𝜎𝜀𝜀1

2 ) and 𝜀𝜀2 ∼ 𝑁𝑁(0, 𝐼𝐼𝑛𝑛𝜎𝜎𝜀𝜀2
2 ) are the 

random residuals, with 𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀1, 𝜀𝜀2)=𝐼𝐼𝑛𝑛𝜎𝜎𝜀𝜀12; 𝜎𝜎𝜀𝜀1
2  

and 𝜎𝜎𝜀𝜀2
2  are the residual variances, and 𝜎𝜎𝜀𝜀12 is 

the residual covariance. 
The genetic evaluation model in equation (1) 

was implemented under a Bayesian framework, 
using the GIBBS3F90 module from the 
BLUPF90 family of (Misztal et al., 2018), with 
the software’s default prior distributions for the 
breeding values and (co)variance parameters. A 
total of 300,000 samples were generated, with 
the first 100,000 discarded as burn-in. On the 
remaining 200,000 samples, a thinning 
parameter of 200 iterations was applied, 
resulting in 1000 effective samples used to 
compute the estimated breeding values (EBV) 
and (co)variance parameters. To assist 
convergence of the (co)variance parameters, 
initial values were provided, using the current 
genetic (co)variances used for these five traits 
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in the French national genetic evaluation. 
Convergence was assessed visually through 
plots of the 1000 effective samples for the 
genetic (co)variances. 

Heritabilities (ℎ12 and ℎ22) and genetic 
correlations (𝜌𝜌12) between the traits were 
obtained from the estimated (co)variance 
parameters, as: 

 

ℎ̂12=
𝜎̂𝜎𝑔𝑔1
2

𝜎̂𝜎𝑔𝑔1
2 +𝜎̂𝜎𝜀𝜀1

2  and ℎ̂22=
𝜎̂𝜎𝑔𝑔2
2

𝜎̂𝜎𝑔𝑔2
2 +𝜎̂𝜎𝜀𝜀2

2 ,    (2) 

𝜌𝜌12=
𝜎̂𝜎𝑔𝑔12
𝜎̂𝜎𝑔𝑔1𝜎̂𝜎𝑔𝑔2

.         (3) 

 
Real data 
The dairy cattle data used for the present study 
was from the French Holstein population. The 
bi-variate genetic evaluations were 
implemented for every pair of the following five 
traits: milk and protein yield (MY and PY), 
milking speed (MSPD), somatic cell score 
(SCS), and cow conception rate (CR), measured 
as artificial insemination’s success/failure on 
lactating cows (i.e. heifers excluded). The 
phenotypes entered for the evaluations 
performed in this study were in the form of yield 
deviations (YD), issued from the French 
national genetic evaluation, which evaluates 
MY, PY, SCS as 305-day phenotypes corrected 
for the duration; performance records comprise 
all lactations records per cow, and the model 
accounts for the repeatability (i.e., for the 
permanent environment of the cow). A total of 
4,501,624 cows born between 1991-2020 had 
YD deviations available for all five traits, with 
a pedigree file containing a total of 8,275,018 
animals that traced back three generations from 
the cows with performances. 
 
Simulated data 
The simulated data consisted of ten replicates of 
populations with a founder population followed 
by 30 generations under selection. Generations 
were non-overlapping, each with 1000 
individuals, among them 200 males and 800 
females. Selection was performed at each 
generation for the top 20% males, based on a 

selection index build from their true simulated 
breeding values, assuming equal weights for all 
simulated traits. Pedigree information was kept 
for the simulated populations. 

Five traits were simulated with additive 
effects associated to them, and genetic 
correlations were solely due to pleiotropic QTL 
and linkage disequilibrium (LD) between non-
pleiotropic sites. To simulate these traits, 1675 
SNP genotypes, already in LD from the founder 
population (average LD of 0.15 in this 
population), were simulated to serve as 
quantitative trait loci (QTL). At each population 
replicate, a random subset of 75 SNPs were 
assigned as pleiotropic QTL across all five 
traits, five random subsets of 25 SNPs each 
were assigned as pleiotropic QTL across four 
traits, ten random subsets of 50 SNPs each were 
assigned as pleiotropic QTL across three traits, 
and ten random subsets of 90 SNPs each were 
assigned as pleiotropic QTL across two traits. 
The remaining 75 SNPs were finally split in five 
groups of 15, to be assigned as QTL exclusive 
to each one of the five traits. This distribution 
of the QTL per trait is presented in the Venn 
diagram in Figure 1. 
 

 
Figure 1. Venn Diagram describing the number of 
QTL shared among the five simulated traits. 
 

Finally, QTL-effects were simulated, 
correlated between traits, so that the breeding 
values at the founder population presented 
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genetic correlations matching those obtained 
for the traits studied in the French Holstein 
dairy cattle population. The additive genetic 
variances of the simulated breeding values were 
set to 10 × ℎ2, with the heritabilities being 
those obtained for the real traits evaluated from 
the French Holstein dairy cattle data. 
 
Individual-specific genetic correlations and 
their heritability estimates 
For both the real and simulated data, individual-
specific genetic correlations (iSGC) were 
calculated for sires, in order to evaluate how 
much differences in genetic correlations were 
expressed by different sires. 

For the real data, iSGCs were calculated for 
all pairs of the five traits, evaluated with the bi-
variate genetic evaluations models given by 
equation (1). Following the proposed by 
Cuyabano et al. (2024), sires with more than 
500 daughters evaluated were selected, so that 
reliable genetic correlations could be obtained 
at the individual level, based on the daughters’ 
EBVs. A minor change was made to calculate 
the iSGC, compared to how it was done by 
Cuyabano et al. (2024), who obtained the iSGC 
per sire by correlating the EBVs from their 
daughters. Here, prior to calculating the 
correlations between the daughters’ EBVs from 
different traits, half of the dam’s EBVs were 
subtracted from their daughters, so that on 
average, the iSGC comprised only sire 
information. Thus, for each sire 𝑠𝑠 and for any 
pair of traits 1 and 2, their 𝑖𝑖-𝑡𝑡ℎ daughter’s 
breeding values were corrected as: 

𝑔𝑔1𝑖𝑖,𝑠𝑠=𝑔𝑔1𝑖𝑖-
𝑔𝑔1{𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑖𝑖}

2
,      (4) 

𝑔𝑔2𝑖𝑖,𝑠𝑠=𝑔𝑔2𝑖𝑖-
𝑔𝑔2{𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑖𝑖}

2
,      (5) 

for every 𝑖𝑖=1, … ,𝑛𝑛𝑠𝑠. Finally, for each sire 𝑠𝑠: 

𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝑠𝑠=
∑ �𝑔𝑔1𝑖𝑖,𝑠𝑠-𝑔𝑔1,𝑠𝑠��𝑔𝑔2𝑖𝑖,𝑠𝑠-𝑔𝑔2,𝑠𝑠�
𝑛𝑛𝑠𝑠
𝑖𝑖=1

(𝑛𝑛𝑠𝑠-1)𝜎̂𝜎𝑔𝑔𝑠𝑠1𝜎̂𝜎𝑔𝑔𝑠𝑠2
,   (6) 

such that 𝑔𝑔1,𝑠𝑠=
∑ 𝑔𝑔1𝑖𝑖,𝑠𝑠
𝑛𝑛𝑠𝑠
𝑖𝑖=1
𝑛𝑛𝑠𝑠

 and 𝑔𝑔2,𝑠𝑠=
∑ 𝑔𝑔2𝑖𝑖,𝑠𝑠
𝑛𝑛𝑠𝑠
𝑖𝑖=1
𝑛𝑛𝑠𝑠

 are 

the mean daughters’ corrected EBVs, and their 

variance are 𝜎𝜎𝑔𝑔𝑠𝑠1
2 =

∑ �𝑔𝑔1𝑖𝑖,𝑠𝑠-𝑔𝑔1,𝑠𝑠�
2𝑛𝑛𝑠𝑠

𝑖𝑖=1

𝑛𝑛𝑠𝑠-1
 and 

𝜎𝜎𝑔𝑔𝑠𝑠2
2 =

∑ �𝑔𝑔2𝑖𝑖,𝑠𝑠-𝑔𝑔2,𝑠𝑠�
2𝑛𝑛𝑠𝑠

𝑖𝑖=1

𝑛𝑛𝑠𝑠-1
. 

For the simulated data, iSGCs were 
calculated for all pairs of the five traits, only for 
the selected sires in the simulation routine. 
Since the simulations provided genotypes and 
the true simulated QTL effects, instead of using 
daughters’ information, for each sire 𝑠𝑠, 500 
gametes were simulated, at which QTL effects 
were applied. Thus, for each sire 𝑠𝑠 and for any 
pair of traits 1 and 2, the additive genetic values 
of the 𝑖𝑖-𝑡𝑡ℎ gamete was given by: 
𝛾𝛾1𝑖𝑖,𝑠𝑠=∑ 𝑋𝑋𝑖𝑖𝛼𝛼1𝑗𝑗1675

𝑗𝑗=1 ,       (7) 
𝛾𝛾2𝑖𝑖,𝑠𝑠=∑ 𝑋𝑋𝑖𝑖𝛼𝛼2𝑗𝑗1675

𝑗𝑗=1 ,       (8) 
for every 𝑖𝑖=1, … ,500, such that 𝛼𝛼1𝑗𝑗’s and 𝛼𝛼2𝑗𝑗’s 
are the QTL effects (set as zero if the 𝑗𝑗-𝑡𝑡ℎ SNP 
is not a QTL for each of the traits). Finally, for 
each simulated sire 𝑠𝑠: 

𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝑠𝑠(∼)=
∑ �𝛾𝛾1𝑖𝑖,𝑠𝑠-𝛾𝛾1,𝑠𝑠��𝛾𝛾2𝑖𝑖,𝑠𝑠-𝛾𝛾2,𝑠𝑠�
500
𝑖𝑖=1

(499)𝜎̂𝜎𝛾𝛾𝑠𝑠1𝜎̂𝜎𝛾𝛾𝑠𝑠2
,  (9) 

such that 𝛾𝛾1,𝑠𝑠=
∑ 𝛾𝛾1𝑖𝑖,𝑠𝑠500
𝑖𝑖=1
500

 and 𝛾𝛾2,𝑠𝑠=
∑ 𝛾𝛾2𝑖𝑖,𝑠𝑠500
𝑖𝑖=1
500

 are 
the mean additive genetic values of the gametes, 

and their variance are 𝜎𝜎𝑔𝑔𝑠𝑠1
2 =

∑ �𝛾𝛾1𝑖𝑖,𝑠𝑠-𝛾𝛾1,𝑠𝑠�
2500

𝑖𝑖=1

499
 and 

𝜎𝜎𝑔𝑔𝑠𝑠2
2 =

∑ �𝛾𝛾2𝑖𝑖,𝑠𝑠-𝛾𝛾2,𝑠𝑠�
2500

𝑖𝑖=1

499
. 

Heritability estimates were obtained for the 
iSGCs, by treating them as a phenotype in a 
variance component estimation routine, using 
the pedigree relationship matrix for both the real 
and the simulated data, tracing back four 
generations from the sires. For the simulated 
data, heritability estimates were also obtained 
using a genomic relationship matrix 
(VanRaden, 2008) built from the simulated 
SNP-genotypes. The following model was used 
to estimate variance components: 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=1𝑛𝑛𝜇𝜇+𝑔𝑔+𝑒𝑒,      (10) 
in which 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the vector of iSGCs obtained 
for the 𝑛𝑛 sires, between any two traits; 𝜇𝜇 is the 
overall mean; 𝑔𝑔 ∼ 𝑁𝑁(0,𝐴𝐴𝜎𝜎𝑔𝑔(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

2 ) is the vector 
of breeding values associated to the iSGC, 𝐴𝐴 is 
the pedigree relationship matrix (replaced by 
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the genomic relationship matrix 𝐺𝐺, for the 
simulated data), and 𝜎𝜎𝑔𝑔(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

2  is the additive 
genetic variance associated to the iSGC; and 
𝑒𝑒 ∼ 𝑁𝑁(0, 𝐼𝐼𝑛𝑛𝜎𝜎𝑒𝑒(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

2 ) is the vector of random 
residuals, and 𝜎𝜎𝑒𝑒(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

2  is the residual variance. 
Variance components for the iSGC were 

estimated through the residual maximum 
likelihood (REML; Patterson & Thompson, 
1971), using the REMLF90 module from the 
BLUPF90 family of programs (Misztal et al., 
2018). Finally, heritabilities of the iSGC were 
given by: 

ℎ̂2=
𝜎̂𝜎𝑔𝑔(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
2

𝜎̂𝜎𝑔𝑔(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
2 +𝜎̂𝜎𝑒𝑒(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

2 .       (11) 

 
Results & Discussion 
 
Genetic parameters on real data 
Heritability and genetic correlation estimates 
were obtained from the genetic parameters of 
the bi-variate genetic evaluations, for every pair 
of the five traits studied from the French 
Holstein dairy cattle population, and their 
values are presented in Table 1. These values 
agreed with those used for the French national 
genetic evaluation, as expected, and also agreed 
with reported heritabilities and genetic 
correlations between these traits. Finally, these 
values presented in Table 1 were the ones used 
as parameters to generate the breeding values 
for the simulated data, with genetic variances 
equal to 10 × ℎ2. 
 
Table 1: Estimated heritabilities (diagonal bold 
values) and genetic correlations (upper triangle of 
the table) between the five traits studied in the 
French Holstein dairy cattle population. Values in 
gray indicate an estimate that was not statistically 
different from zero (significance level of 0.05). 

 MY PY MSP
D 

SCS CR 

MY 0.22 0.78 -0.06 -0.04 -0.15 
PY --- 0.38 -0.07 -0.01 -0.20 

MSP
D 

--- --- 0.24 0.31 -0.04 

SCS --- --- --- 0.13 -0.26 
CR --- --- --- --- 0.01 

 
 

Distribution of the individual-specific genetic 
correlations on real and simulated data 
Figures 2-5 present the distributions, in the form 
of density curves, of the iSGC obtained between 
the five traits studied, both on real and 
simulated data, indicating that different sires 
did present different potential for genetic 
correlations, expressed through their offspring. 

The mean iSGCs on the real data presented 
bigger differences from the estimated genetic 
correlations with the Gibbs sampler, presented 
in Table 1 and indicated with dots at the x-axes 
of the plots, than the mean iSGCs on the 
simulated data. This could be due to the fact 
that, on real data, iSGCs were obtained for a 
subset of sires that had at least 500 daughters 
evaluated, rather than for all sires, potentially 
indicating a different mean iSGC for these elite 
sires, with respect to the whole population. 
 

 
Figure 2. Distribution of the iSGC obtained across 
the pairs of the three production traits (MY, PY, and 
MSPD), on both real and simulated data. 
 

 
Figure 3. Distribution of the iSGC obtained between 
the production traits (MY, PY, and MSPD) and the 
health trait (SCS), on both real and simulated data. 
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Interestingly, on the real data, the overall 
iSGC between MY and CR and between PY and 
CR were less negative for the elite sires than the 
estimated genetic correlations between these 
traits, as shown in Figure 4. Conversely, the 
overall iSGC between MY and SCS and 
between PY and SCS were rather more negative 
(i.e. a stronger trade-off between these traits) for 
these elite sires than the estimated genetic 
correlations between these traits, as shown in 
Figure 3. If the hypothesis that iSGCs express a 
latent physiological trait holds, even if at least 
partially, these results suggest that selection is 
favoring a physiological trait that allows a better 
management of the trade-off between 
production and fertility, however in the 
detriment of the trade-off between production 
and health indicators. Nonetheless, it is 
important to note that a strengthening of the 
trade-off between traits does not mean that the  

 
Figure 4. Distribution of the iSGC obtained between 
the production traits (MY, PY, and MSPD) and the 
fertility trait (CR), on both real and simulated data. 

 
Figure 5. Distribution of the iSGC obtained between 
the health and fertility traits (SCS and CR), on both 
real and simulated data. 
 
 

traits themselves are not achieving genetic 
progress. 
 
Heritabilities of the individual-specific genetic 
correlations on real and simulated data 
Heritabilities were estimated for the iSGC, by 
treating them as a phenotype, as in the model 
presented in equation (10). These heritabilities 
were estimated for the iSGC obtained for both 
the real and simulated data. The goal of 
comparing these heritabilities of the iSGC on 
real data, to those of the iSGC on simulated data 
with the same genetic parameters, was to show 
that when no latent trait was associated to the 
differences between genetic correlations in a 
population, no heritabilities would be captured. 

The estimated heritabilities are presented in 
Table 2, being the presented values for the 
heritabilities of iSGCs obtained on simulated 
data (lower triangle of Table 2), the obtained 
using the pedigree relationship matrix, since 
their values were not statistically different from 
the obtained with the genomic relationship 
matrix (significance level of 0.05). All these 
heritabilities of the iSGC on simulated data 
were not statistically different from zero 
(significance level of 0.05), indicating that 
neither family relationships, nor allele 
frequencies and LD patterns were enough to 
outline a genetic determinism for the different 
iSGC expressed by different sires. 

With respect to the heritabilities of the iSGC 
on real data (upper triangle of Table 2), their 
values were significantly different from zero 
(significance level of 0.05), with the exception 
of the heritability of iSGC between MSPD and 
CR. Particularly, heritabilities of the iSGC 
between the two main production traits (MY 
and PY), between these main production traits 
and the health trait (SCS), and between these 
main production traits and the fertility trait 
(CR), were moderately high for dairy cattle 
traits, ranging from 0.38 to 0.51. These 
heritabilities suggest a reasonable level of 
genetic determinism associated to the different 
iSGC expressed by different sires, and these 
heritabilities could be due to the genetic 
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correlations at the individual level expressing, 
at least partially, a latent physiological trait. 
 
Table 2: Heritability estimates for the iSGC obtained 
on the real data (upper triangle of the table), and for 
the iSGC obtained on the simulated data (lower 
triangle of the table). Values in gray indicate an 
estimate that was not statistically different from zero 
(significance level of 0.05). 

 MY PY MSP
D 

SCS CR 

MY --- 0.45 0.16 0.45 0.46 
PY 0.03 --- 0.17 0.51 0.38 

MSP
D 

0.02 0.02 --- 0.23 0.05 

SCS 0.02 0.02 0.02 --- 0.11 
CR 0.02 0.03 0.03 0.02 --- 

 
Conclusions 
 
Genetic correlations, while treated as a 
parameter common to all individuals in genetic 
evaluations and selection indexes, may present 
different values across individuals in a 
population. By obtaining individual-specific 
genetic correlations for sires from a French 
Holstein dairy cattle population, this study has 
shown that indeed, different individuals present 
different patterns in their genetic correlations 
between five traits of interest. Moreover, 
individual-specific genetic correlations are 
heritable, suggesting that these parameters may 
be part of the expressions of a non-measurable 
(or latent) physiological trait. When it comes to 
traits that present a negative genetic correlation, 
the findings from this study may assist to select 
individuals better apt to manage the trade-off 
between traits. However, it remains a question 
of research, how to adequately and optimally 
use individual-specific genetic correlations and 
their heritability in a breeding program. 
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