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Abstract

Reducing methane emissions from dairy cows has been a key area of research in recent decades. This
study aimed to identify genomic regions associated with methane intensity (Mel) in Chinese Holstein
cattle. Mel phenotype was either predicted by mid-infrared spectra (MIRS, R2cv= 0.66) or directly
measured by sniffer. Data were collected from eight commercial farms in Beijing between 2017-2020
and 2024. A weighted single-step genome-wide association study (WssGWAS) was performed based
on 1,120 genotypes, 4,995 phenotypic records, and pedigree of 10 911 individuals.

The mean Mel was 7.67 £+ 1.52 (g/kg milk yield). The estimated heritability of Mel was 0.15+0.04, and
the repeatability was 0.42+0.02. Eleven 10-SNP windows harboring 19 protein encoding genes
explained 2.17% of the genomic variance, with genomic regions on BTAI, 5, 8, 15, 19, 20, 24, 26, and
27. Five of the windows were also associated with milk production or milk component traits, while one
window contained the QTL linked to metabolic body weight. The region explaining the highest
proportion of variance (0.34%) was located on BTA15, which included five protein encoding genes.
Among them, SCN4B and MPZL3 are proposed as candidate genes.

In total, the preliminary results show that Mel is a heritable, repeatable, and polygenic trait in Chinese
Holstein population. The identified Mel-related genomic regions provide an insight for breeding dairy
cows with lower methane emissions.
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Introduction difficult to measure, and only few methods can

costly generate large amount of data, such as
Methane emissions from ruminants are a sniffer and milk mid-infrared spectra (MIRS).
significant contributor to greenhouse gas With sniffer, individual cows can be recorded
emissions  in  agriculture. In  China, on a wide scale and at a reasonable cost
approximately 24% of total methane emissions (Garnsworthy et al., 2019). Using sniffers
come from the production of livestock (Wang et placed in the feed bin of automatic milking
al., 2024). In the past 30 years, the contribution systems (AMS), this method measures the
of dairy cattle has notably increased, rising from concentrations of gases. The present study also
1.9% to 7% of the total emissions (Wang et al., employed MIRS to predict the methane
2024). Reducing methane emissions from cows intensity of dairy cows. It is simple, high-
is an issue that requires worldwide attention. throughput, and shows a great deal of
As we all know, animal breeding is a helpful potential for predicting methane emissions
method to reach this goal. To apply breeding from dairy animals. The ability of MIRS to
techniques, large-scale recording of individual predict methane emissions has been widely
enteric methane emissions is essential (de Haas reported (Coppa et al., 2022, Dehareng et al.,
et al., 2017). However, methane emission is 2012).
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Among the various methane emission traits,
the definition if methane intensity (Mel) is
methane output relative to output such as milk
production (de Haas et al., 2017). Specifically,
Mel measures the amount of methane (CHa4)
emitted per kilogram of output product, such as
milk (g/kg), and is strongly influenced by both
the milk production levels and the energy
required for this process.

The main objective of this study is to 1)
measure sniffer-based methane intensity and
predict methane intensity based on MIRS in
Chinese Holstein population; 2) estimate
genetic parameters for methane intensity and, 3)
identify candidate genomic regions for methane
intensity.

Materials and Methods

Data and Sampling

Animals

Data were collected from July 2024 to
November 2024 at two commercial farms in
Beijing. A total of 208 cows were recorded
during experiment.

Breath Sampling
All cows had access to an AMS (DeLaval

International AB, Tumba, Sweden) for milking.
Each barn was equipped with two AMS, but
only one of them was installed with a sniffer.
Cows were free to enter either AMS, with or
without the sniffer (Guardian NG/Gascard,
Edinburgh Instruments Ltd, Livingston, UK).
Data segments with no record of a cow
entering the AMS within 5 minutes before or
after were classified as ambient values. The
ambient values recorded on a given day were
averaged and used as the daily ambient mean.
While cows were inside the AMS, their heads
could approach the gas collector positioned in
the feed bin, as shown in Figure 1. Records of
cows spending less than 2 minutes inside the
AMS were excluded from the analysis. The raw
data were preprocessed in four steps: (1)
matching data from the AMS and sniffer to

match a sniffer measurement with an
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identification number; (2) removing the first
minute of each record; (3) using the ‘findpeaks’
function in R v4.3.2 to identify belching peaks.
At least one peak must be found (exceed the
mean ambient CHa concentration for the day by
200 ppm); (4) deleting consecutive when CO:
concentration dropped below the lower 25%

collector

Figure 1. Gas collector in the feed bin

quartile of the mean CO: concentration for more
than 10 seconds, indicating that the cow’s head
had left.

After processing, ambient-corrected gas
concentrations for CHs and CO: were obtained
by subtracting the ambient mean from the
measured concentrations. The mean values of
the gas concentrations and their ratio were
calculated for each measurement. Subsequently,
a three-step data quality control process was
employed: (1) daily averages for the ambient-
corrected gas concentrations were calculated
after collecting all records for a single day. A
twofold standard deviation quality control was
used to eliminate records with excessively high
or low gas contents; (2) records for
measurement days with fewer than 10 cows
were removed to avoid potential machine errors;
(3) records with concentration ratios greater
than the mean + standard deviation of the
concentration ratios for the same cow were
removed.

Milk Yield, Body Weight, and Feed

For milk yield, the 3-day average was used as
the daily milk yield (DMY). Milk composition
data, including milk fat percentage, lactose
percentage, and protein percentage, were
collected from DHI. The closest DHI record to
the methane measurement date (within 15 days)

was selected for subsequent calculation.
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Records with milk fat >7% or <2%, milk
protein >5% or <2%, and daily milk yield <5 kg
or >100 kg were excluded. Additionally,
records with days in milk (DIM) <15 or >300
were removed. Energy-corrected milk was
calculated using the formula from Sjaunja et al.
(1990).

Body weight was expressed as weekly

averages after a two-step quality control process:

(1) cows whose body weight exceeded the
upper or lower limits were removed (first parity:
450-750 kg; 2+ parities: 500-900 kg); (2)
measurements within a single parity that
differed by >50 kg from the mean were
removed. After this, weekly averages of body
weight were calculated. Since first-parity cows
have greater weight variability, their weekly
body weight average only represented the
current week's weight. In contrast, body weight
data from cows of later parities can represent
the averages of the current, previous, and next
week’s body weight.

Feed data was provided by farm. Descriptive
statistics of individual information, daily milk
yield, body weight and diet crude fat for dairy
cows is shown in Table 1.

Table 1: Descriptive statistics of individual
information, daily milk yield, body weight and
diet crude fat in Chinese Holstein cattle.

Trait mean SD min max
parity 2.46 1.33 1 7
days in milk 132.81 77.81 15 299
daily milk
yield (kg) 42.85 9.03 17.14  66.48
bodyweight  ¢9y 53 g781 481 888
(kg)
diet crude fat

(%DM) 5.58 0.42 491 6.42

Methane Intensity

Following the ‘Model 2’ developed by Kjeldsen
et al. (2024), CO: production (CO:P) was
calculated. Subsequently, the methane and CO-
concentrations from each measurement were
averaged. Since the gases originated from the
breath, their
multiplied by their molecular weights before

same concentrations were
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calculating the ratio to obtain the mass ratio
(CH4:CO2). Methane
calculated as:

intensity (Mel) was

CH4:CO; X COLP

Mel = DMY

Given the variability in methane emissions
at different times of day, a single measurement
cannot accurately reflect an animal’s true
methane emission level. Therefore, weekly
averages were used as the methane emission
traits in this study. Weekly averages were
calculated by retaining records from weeks with
more than 4 measurements. Finally, 758 weekly
averages were retained for subsequent analyses.

MIRS Prediction

Most of the milk spectral data were collected by
the farm for DHI testing. In addition to the DHI
sample collections, we also collected milk
samples between two DHI samplings. All milk
samples were analyzed using the
spectrometer (Banteley), which generates a

same

spectrum of 899 wavelength transmittance
values in the mid-infrared (MIR) region. The
following spectral regions were retained for
analysis, including 968.1-1 577.5 cm™, 1
731.8-1762.6 cm™, 1 781.9-1 808.9 cm™, and
2 831.0-2 966.0 cm™ followed Grelet et al.
(2021), leaving a total of 215 wavenumbers.
The spectra were preprocessed using Savitzky-
Golay second-order derivatives, with spectral
quality control conducted using pcout
(Filzmoser et al., 2008). In addition to the MIRS
data, individual information (parity, DIM, and
DMY) were also included in the dataset for
prediction. The data were processed to match a
total of 227 records from 120 cows, which
formed the training set (Dataset A).

Prediction Equation Development

Partial least squares regression (PLSR) was
used to develop the prediction equation. Under
10-fold cross-validation, the model achieved an
R? (coefficient of determination) of 0.66 and a
Root mean square error of prediction (RMSE)
of 1.25.
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Then the prediction formula was employed
in the dataset B (21 772 records with MIRS and
individual information) to obtain phenotypes
for a larger population. Dataset A was contained
by dataset B. To ensure the usability of the
prediction equations, the Mahalanobis distance
(Mahalanobis, 1936) was calculated for MIRS
in dataset B. Only data with Mahalanobis
distance within that of dataset A were retained.
Predictive equations for methane emission traits
were built based on the training set and applied
to dataset B for quality control of predicted
methane emission phenotypes. When the
records within the same individual parity was
less than 3, all values for that parity were
deleted. Subsequently, the coefficient of
variation (CV) was calculated for each cow in

single parity. Records with a CV greater than 25%

were removed, leaving a total of 4 995 records
from 1 187 cows.

Pedigree and Genotype

The pedigree of the cows with phenotypic
records were traced back as many generations
as possible. The final pedigree included 10 911
COWS.

A total of 1,120 cows were genotyped using
the [llumina 150K Bovine Bead Chip (Illumina
Inc.). Genomic quality control was performed
using PLINK v1.90 software (Purcell et al.,
2007). Single nucleotide polymorphisms (SNPs)
with minor allele frequencies lower than 0.1 or
those with extreme deviations from Hardy—
Weinberg equilibrium (P-value < 107°) were
excluded. After quality control, a total of 109
619 SNPs were used in the study.

WssGWAS
The (co)variance components were estimated
using AI-REML and EM-REML procedure
implemented in the AIREMLF90 package from
BLUPF90 (Misztal et al., 2014).

The variance components and genetic
parameters was estimated based on the model:

y=Xp+X,p+Za+ Wpe+e

y was the vectors of methane intensity. f was
the vector of fixed effects for colostrum quality
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traits, including farm-season-year of calving
(45 levels), parity (3 levels); ¢ was the
regression coefficient of days in milk. a was
the vector of random additive genetic effects,
following a~N (0, Ho2); pe was the permanent
environment effect following pe~N (0, Jzz,e); e
was the vectors of random residual effects
following e~N(0,162); X1, X5, Z , and W,
were the corresponding incidence matrices; H
was the matrix of additive genetic relationships
constructed from the pedigree and genotype; 2
was the additive genetic variance; / was an
identity matrix, apze was the permanent
environment variance, and o2 was the residual
variance. The inverse of the A matrix (H ') was
calculated as follows:

Bt =4+ [0 0

0 G '—Az
where A™1 is the inverse of the pedigree-based
relationship matrix; Ay is the A~ for the
genotyped animals; and G ~lis the inverse of the
genomic relationship matrix. The G matrix was
calculated according to(VanRaden, 2008):

o ZDZ'

231 P(1-P)

where Z is the matrix of genotypes adjusted for
allele frequencies (0, 1, or 2 for aa, Aa, and AA,
respectively); D is a diagonal matrix of weights
for SNP variances (initially D = 1); M is the
number of SNPs, and P; is the minor allele
frequency of the i” SNP.

The estimates of SNP effects and weights for
the WssGWAS analyses (four iterations) for
colostrum quality traits were obtained
according to (Wang et al., 2014). The weight for

[a;]
each SNP was calculated as: d; = 1.125%4@)
(VanRaden, 2008), where i is the i” SNP. The
percentage of the total addictive genetic
variance explained by the " region was
calculated as:

Var(a; Var(332, Za;
@D 1000 = Y121 5%)
a Oq

where a; is genetic value of the i region that

consists of contiguous 10 SNPs, ¢ is the total

additive genetic variance, Z; is a vector of gene

content of the j SNP for all individuals, and ;

is the marker effect of the jth SNP within the i

region.

X 100%
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Non-overlapping
windows that explained 0.15% or more of the
total additive genetic variance were considered

contiguous  genomic

to be associated with the trait. Candidate genes
were identified by examining genomic
windows based on the ARS-UCDI1.2. The
biological functions of these genes, Gene
Ontology (GO) terms (Ashburner et al., 2000)
enrichment were identified using the R package
“BiomaRt” (Durinck et al, 2009) and
“clusterProfiler” (Wu et al, 2021). The
genomic regions were compared to cattle QTL
database (Hu et al., 2022).

Results & Discussion

As presented in Table 2, the average Mel was
7.22 £ 1.99 g/kg in the current population. The
predicted methane intensity closely followed
the observed values, with a predicted Mel of
7.67 £ 1.52 g/kg.

Table 2: Descriptive statistics of methane intensity
(Mel) and predicted methane intensity (PMel) in
Chinese Holstein cattle.

Trait mean SD min max
Mel

7.22 1.99 3.11 15.04
(g/kg)
PMel

7.67 1.52 3.14 13.62
(g/kg)

Different Mel values have been recorded in
earlier studies. In a mixed cow herd, Mel ranged
from 3.0 to 36.0 g/kg, with an average of 13.5 +
3.92 g/kg reported by Niu et al. (2018).
Similarly, in a population of French Holstein
cattle, Fresco et al. (2023) reported a Mel of
11.7 + 2.6 g/kg. In this study, Mel was lower
than those found in these studies, but it was
closer to 8.61 + 1.15 g/kg in dairy cattle
reported by Lassen and Levendahl's (2016).

PMel heritability
according to our research. The results indicate
that the heritability estimate for PMel was
0.15+0.04 and the repeatability was 0.42+0.02.
In previous study, Mel or PMel heritability
ranged from 0.04 to 0.35. In a population of 1
091 Brown Bittante

showed  moderate

Swiss COWS, and
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Cecchinato et al. (2020) observed a heritability
of 0.12 £ 0.06, which is similar to our study.
While Fresco et al. (2024) reported a heritability
of 0.35 + 0.04 using a very large dataset (n =
167 514), Lassen and Levendahl (2016)
estimated a heritability of 0.21 + 0.06 using a
population of 3 121 cows. Higher heritability
values than those obtained in our study were
found in both of these studies. However, our
result was lower such as the heritability of 0.04
+ 0.03 estimated by Manzanilla-Pech et al.
(2022) using of 1 962 Danish Holstein cows.
The breed, gas measurement techniques and
equipment, and raising conditions of dairy cows
are some of the variables that affect the
heritability estimate of Mel or PMel in various
populations. The heritability estimates in the
current population are in the medium range
when compared to the findings of other studies.

In this study, we identified eleven genomic
regions on Bos taurus autosome (BTA) 1, 5, 8,
15, 19, 20, 24, 26, and 27 that explained more
than 0.15% of the genetic variance as Figure 2.
These regions, which harbor a total of 19
protein-coding genes, accounted for 2.17% of
The window that
explained the highest genetic variance was
located on BTA15, which explained 0.34% of
additive genetic variance and contained five
genes, including JAML, SCN2B, TMPRSS4,
SCN4B, and MPZL3. Two of these genes were
enriched by the significant GO terms, which
were SCN2B and MPZL3.

the genomic variance.

e e e

Figure 2. Proportion of the total additive genetic
variance of 10-SNP genomic windows based on the
weighted single-step genome association study for
predicted methane intensity. Red points represent the
windows exceed the 0.15% threshold of the total
additive genetic variance.
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Table 3: Quantitative trait loci reported for Bos
taurus associated with genomic regions that
explained more than 0.15% of the additive genetic
variance for predicted Methane intensity

Regions Exp 1a}ned Associated
Chr genetic .

(Mb) . o trait

variance, %

1 20.03-20.29  0.20 MP
5 44.96-4520  0.15 MF, MY
24 47.10-47.32  0.16 MF
24 56.77-56.93  0.22 MP, BW
26 19.74-20.23  0.19 MF, MP

MP: milk protein, MF: milk fat, MY: milk yield, BW:
body weight

Additionally, we referred to the Cattle QTL
database to examine potential QTL overlaps
with genomic regions that explained more than
0.15% of the additive genetic variance. Table 3
shows five genomic regions containing QTLs
associated with milk protein, milk fat, milk
yield, and body weight. the
relationships of Mel with these traits still needs
to be further explored.

However,

Conclusions

Methane
predicted by milk mid-infrared spectra. It is a
moderate heritable, polygenic trait in Chinese
Holstein population. these are
relatively preliminary findings, and further
research is still necessary.

intensity can be measured and

However,
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