
INTERBULL BULLETIN NO. 61. 21-22 June 2025, Louisville, Kentucky, USA 

Weighted single-step genome-wide association studies for methane 
intensity in Chinese Holstein cattle 
Y. Ma1, H. Zhang1, A. Wang1, G. Guo2and Y. Wang1

1 State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, 
Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, China 

Agricultural University, Beijing, 100193, China 
2 Beijing Sunlon Livestock Development Company Limited, Beijing, 100029 China 

Corresponding author: wangyachun@cau.edu.cn 

Abstract 

Reducing methane emissions from dairy cows has been a key area of research in recent decades. This 
study aimed to identify genomic regions associated with methane intensity (MeI) in Chinese Holstein 
cattle. MeI phenotype was either predicted by mid-infrared spectra (MIRS, R2cv= 0.66) or directly 
measured by sniffer. Data were collected from eight commercial farms in Beijing between 2017–2020 
and 2024. A weighted single-step genome-wide association study (WssGWAS) was performed based 
on 1,120 genotypes, 4,995 phenotypic records, and pedigree of 10 911 individuals. 
The mean MeI was 7.67 ± 1.52 (g/kg milk yield). The estimated heritability of MeI was 0.15±0.04, and 
the repeatability was 0.42±0.02. Eleven 10-SNP windows harboring 19 protein encoding genes 
explained 2.17% of the genomic variance, with genomic regions on BTA1, 5, 8, 15, 19, 20, 24, 26, and 
27. Five of the windows were also associated with milk production or milk component traits, while one
window contained the QTL linked to metabolic body weight. The region explaining the highest
proportion of variance (0.34%) was located on BTA15, which included five protein encoding genes.
Among them, SCN4B and MPZL3 are proposed as candidate genes.
In total, the preliminary results show that MeI is a heritable, repeatable, and polygenic trait in Chinese
Holstein population. The identified MeI-related genomic regions provide an insight for breeding dairy
cows with lower methane emissions.
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Introduction 

Methane emissions from ruminants are a 
significant contributor to greenhouse gas 
emissions in agriculture. In China, 
approximately 24% of total methane emissions 
come from the production of livestock (Wang et 
al., 2024). In the past 30 years, the contribution 
of dairy cattle has notably increased, rising from 
1.9% to 7% of the total emissions (Wang et al., 
2024). Reducing methane emissions from cows 
is an issue that requires worldwide attention. 
As we all know, animal breeding is a helpful 
method to reach this goal. To apply breeding 
techniques, large-scale recording of individual 
enteric methane emissions is essential (de Haas 
et al., 2017). However, methane emission is 

difficult to measure, and only few methods can 
costly generate large amount of data, such as 
sniffer and milk mid-infrared spectra (MIRS). 
With sniffer, individual cows can be recorded 
on a wide scale and at a reasonable cost 
(Garnsworthy et al., 2019). Using sniffers 
placed in the feed bin of automatic milking 
systems (AMS), this method measures the 
concentrations of gases. The present study also 
employed MIRS to predict the methane 
intensity of dairy cows.  It is simple, high-
throughput, and shows a great deal of 
potential for predicting methane emissions 
from dairy animals. The ability of MIRS to 
predict methane emissions has been widely 
reported (Coppa et al., 2022, Dehareng et al., 
2012). 
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Among the various methane emission traits, 
the definition if methane intensity (MeI) is 
methane output relative to output such as milk 
production (de Haas et al., 2017). Specifically, 
MeI measures the amount of methane (CH₄) 
emitted per kilogram of output product, such as 
milk (g/kg), and is strongly influenced by both 
the milk production levels and the energy 
required for this process. 

The main objective of this study is to 1) 
measure sniffer-based methane intensity and 
predict methane intensity based on MIRS in 
Chinese Holstein population; 2) estimate 
genetic parameters for methane intensity and, 3) 
identify candidate genomic regions for methane 
intensity. 

 
Materials and Methods  
 
Data and Sampling  
Animals 
Data were collected from July 2024 to 
November 2024 at two commercial farms in 
Beijing. A total of 208 cows were recorded 
during experiment.  
 
Breath Sampling  
All cows had access to an AMS (DeLaval 
International AB, Tumba, Sweden) for milking. 
Each barn was equipped with two AMS, but 
only one of them was installed with a sniffer. 
Cows were free to enter either AMS, with or 
without the sniffer (Guardian NG/Gascard, 
Edinburgh Instruments Ltd, Livingston, UK). 

Data segments with no record of a cow 
entering the AMS within 5 minutes before or 
after were classified as ambient values. The 
ambient values recorded on a given day were 
averaged and used as the daily ambient mean. 
While cows were inside the AMS, their heads 
could approach the gas collector positioned in 
the feed bin, as shown in Figure 1. Records of 
cows spending less than 2 minutes inside the 
AMS were excluded from the analysis. The raw 
data were preprocessed in four steps: (1) 
matching data from the AMS and sniffer to 
match a sniffer measurement with an 

identification number; (2) removing the first 
minute of each record; (3) using the ‘findpeaks’ 
function in R v4.3.2 to identify belching peaks. 
At least one peak must be found (exceed the 
mean ambient CH₄ concentration for the day by 
200 ppm); (4) deleting consecutive when CO₂ 
concentration dropped below the lower 25%  

Figure 1.  Gas collector in the feed bin 
 

quartile of the mean CO₂ concentration for more 
than 10 seconds, indicating that the cow’s head 
had left. 

After processing, ambient-corrected gas 
concentrations for CH₄ and CO₂ were obtained 
by subtracting the ambient mean from the 
measured concentrations. The mean values of 
the gas concentrations and their ratio were 
calculated for each measurement. Subsequently, 
a three-step data quality control process was 
employed: (1) daily averages for the ambient-
corrected gas concentrations were calculated 
after collecting all records for a single day. A 
twofold standard deviation quality control was 
used to eliminate records with excessively high 
or low gas contents; (2) records for 
measurement days with fewer than 10 cows 
were removed to avoid potential machine errors; 
(3) records with concentration ratios greater 
than the mean ± standard deviation of the 
concentration ratios for the same cow were 
removed.  

 
Milk Yield, Body Weight, and Feed 
For milk yield, the 3-day average was used as 
the daily milk yield (DMY). Milk composition 
data, including milk fat percentage, lactose 
percentage, and protein percentage, were 
collected from DHI. The closest DHI record to 
the methane measurement date (within 15 days) 
was selected for subsequent calculation. 

190



INTERBULL BULLETIN NO. 61. 21-22 June 2025, Louisville, Kentucky, USA 

 

 

Records with milk fat >7% or <2%, milk 
protein >5% or <2%, and daily milk yield <5 kg 
or >100 kg were excluded. Additionally, 
records with days in milk (DIM) <15 or >300 
were removed. Energy-corrected milk was 
calculated using the formula from Sjaunja et al. 
(1990). 

Body weight was expressed as weekly 
averages after a two-step quality control process: 
(1) cows whose body weight exceeded the 
upper or lower limits were removed (first parity: 
450–750 kg; 2+ parities: 500–900 kg); (2) 
measurements within a single parity that 
differed by >50 kg from the mean were 
removed. After this, weekly averages of body 
weight were calculated. Since first-parity cows 
have greater weight variability, their weekly 
body weight average only represented the 
current week's weight. In contrast, body weight 
data from cows of later parities can represent 
the averages of the current, previous, and next 
week’s body weight. 

Feed data was provided by farm. Descriptive 
statistics of individual information, daily milk 
yield, body weight and diet crude fat for dairy 
cows is shown in Table 1. 

 
Table 1: Descriptive statistics of individual 
information, daily milk yield, body weight and 
diet crude fat in Chinese Holstein cattle. 

Trait mean SD min max 

parity 2.46 1.33 1 7 

days in milk 132.81 77.81 15 299 
daily milk 
yield (kg) 42.85 9.03 17.14 66.48 

body weight 
(kg) 690.53 87.81 481 888 

diet crude fat 
(%DM) 5.58 0.42 4.91 6.42 

 
Methane Intensity 
Following the ‘Model 2’ developed by Kjeldsen 
et al. (2024), CO₂ production (CO₂P) was 
calculated. Subsequently, the methane and CO₂ 
concentrations from each measurement were 
averaged. Since the gases originated from the 
same breath, their concentrations were 
multiplied by their molecular weights before 

calculating the ratio to obtain the mass ratio 
(CH₄:CO₂). Methane intensity (MeI) was 
calculated as: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝐶𝐶𝐶𝐶₄:𝐶𝐶𝐶𝐶₂ × 𝐶𝐶𝐶𝐶₂𝑃𝑃

𝐷𝐷𝐷𝐷𝐷𝐷
 

 
Given the variability in methane emissions 

at different times of day, a single measurement 
cannot accurately reflect an animal’s true 
methane emission level. Therefore, weekly 
averages were used as the methane emission 
traits in this study. Weekly averages were 
calculated by retaining records from weeks with 
more than 4 measurements. Finally, 758 weekly 
averages were retained for subsequent analyses. 
 
MIRS Prediction 
Most of the milk spectral data were collected by 
the farm for DHI testing. In addition to the DHI 
sample collections, we also collected milk 
samples between two DHI samplings. All milk 
samples were analyzed using the same 
spectrometer (Banteley), which generates a 
spectrum of 899 wavelength transmittance 
values in the mid-infrared (MIR) region. The 
following spectral regions were retained for 
analysis, including 968.1–1 577.5 cm⁻¹, 1 
731.8–1 762.6 cm⁻¹, 1 781.9–1 808.9 cm⁻¹, and 
2 831.0–2 966.0 cm⁻¹ followed Grelet et al. 
(2021), leaving a total of 215 wavenumbers. 
The spectra were preprocessed using Savitzky-
Golay second-order derivatives, with spectral 
quality control conducted using pcout 
(Filzmoser et al., 2008). In addition to the MIRS 
data, individual information (parity, DIM, and 
DMY) were also included in the dataset for 
prediction. The data were processed to match a 
total of 227 records from 120 cows, which 
formed the training set (Dataset A).  
 
Prediction Equation Development 
Partial least squares regression (PLSR) was 
used to develop the prediction equation. Under 
10-fold cross-validation, the model achieved an 
R² (coefficient of determination) of 0.66 and a 
Root mean square error of prediction (RMSE) 
of 1.25. 
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Then the prediction formula was employed 
in the dataset B (21 772 records with MIRS and 
individual information) to obtain phenotypes 
for a larger population. Dataset A was contained 
by dataset B. To ensure the usability of the 
prediction equations, the Mahalanobis distance 
(Mahalanobis, 1936) was calculated for MIRS 
in dataset B. Only data with Mahalanobis 
distance within that of dataset A were retained. 
Predictive equations for methane emission traits 
were built based on the training set and applied 
to dataset B for quality control of predicted 
methane emission phenotypes. When the 
records within the same individual parity was 
less than 3, all values for that parity were 
deleted. Subsequently, the coefficient of 
variation (CV) was calculated for each cow in 
single parity. Records with a CV greater than 25% 
were removed, leaving a total of 4 995 records 
from 1 187 cows. 

 
Pedigree and Genotype 
The pedigree of the cows with phenotypic 
records were traced back as many generations 
as possible. The final pedigree included 10 911 
cows. 

A total of 1,120 cows were genotyped using 
the Illumina 150K Bovine Bead Chip (Illumina 
Inc.). Genomic quality control was performed 
using PLINK v1.90 software (Purcell et al., 
2007). Single nucleotide polymorphisms (SNPs) 
with minor allele frequencies lower than 0.1 or 
those with extreme deviations from Hardy–
Weinberg equilibrium (P-value < 10⁻⁶) were 
excluded. After quality control, a total of 109 
619 SNPs were used in the study. 

 
WssGWAS 
The (co)variance components were estimated 
using AI-REML and EM-REML procedure 
implemented in the AIREMLF90 package from 
BLUPF90 (Misztal et al., 2014). 

The variance components and genetic 
parameters was estimated based on the model: 

𝑦𝑦 = 𝑋𝑋1β+ 𝑋𝑋2𝜙𝜙 + 𝑍𝑍𝑍𝑍 + 𝑊𝑊𝑊𝑊𝑊𝑊 + e 
y was the vectors of methane intensity. 𝛽𝛽 was 
the vector of fixed effects for colostrum quality 

traits, including farm-season-year of calving 
(45 levels), parity (3 levels); 𝜙𝜙 was the 
regression coefficient of days in milk.  𝛼𝛼 was 
the vector of random additive genetic effects, 
following 𝛼𝛼~𝑁𝑁(0,𝐻𝐻𝜎𝜎𝑎𝑎2); 𝑝𝑝𝑝𝑝 was the permanent 
environment effect following 𝑝𝑝𝑝𝑝~𝑁𝑁(0, 𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝2 ); 𝑒𝑒 
was the vectors of random residual effects 
following 𝑒𝑒~𝑁𝑁(0, 𝐼𝐼𝐼𝐼𝑒𝑒2) ; 𝑋𝑋1 , 𝑋𝑋2 , Z , and 𝑊𝑊 , 
were the corresponding incidence matrices; 𝐻𝐻 
was the matrix of additive genetic relationships 
constructed from the pedigree and genotype; 𝜎𝜎𝑎𝑎2 
was the additive genetic variance; I was an 
identity matrix,  𝜎𝜎𝑝𝑝𝑝𝑝2  was the permanent 
environment variance, and 𝜎𝜎𝑒𝑒2 was the residual 
variance. The inverse of the H matrix (H−1) was 
calculated as follows: 

𝐻𝐻−1 = 𝐴𝐴−1 + �0 0
0 𝐺𝐺−1 − 𝐴𝐴22−1

� 

where 𝐴𝐴−1 is the inverse of the pedigree-based 
relationship matrix; 𝐴𝐴22−1  is the 𝐴𝐴−1  for the 
genotyped animals; and 𝐺𝐺−1is the inverse of the 
genomic relationship matrix. The G matrix was 
calculated according to(VanRaden, 2008): 

𝐺𝐺 =
𝑍𝑍𝑍𝑍𝑍𝑍′

2∑ 𝑃𝑃𝑖𝑖(1 − 𝑃𝑃𝑖𝑖)𝑀𝑀
𝑖𝑖=1

 

where 𝑍𝑍 is the matrix of genotypes adjusted for 
allele frequencies (0, 1, or 2 for aa, Aa, and AA, 
respectively); 𝐷𝐷 is a diagonal matrix of weights 
for SNP variances (initially 𝐷𝐷 = 𝐼𝐼 ); 𝑀𝑀  is the 
number of SNPs, and 𝑃𝑃𝑖𝑖  is the minor allele 
frequency of the ith SNP.  

The estimates of SNP effects and weights for 
the WssGWAS analyses (four iterations) for 
colostrum quality traits were obtained 
according to (Wang et al., 2014). The weight for 

each SNP was calculated as: 𝑑𝑑𝑖𝑖 = 1.125
�𝑎𝑎�𝑖𝑖�

𝑠𝑠𝑠𝑠(𝑎𝑎�𝑖𝑖)
−2

 
(VanRaden, 2008), where i is the ith SNP. The 
percentage of the total addictive genetic 
variance explained by the ith region was 
calculated as:  
𝑉𝑉𝑉𝑉𝑉𝑉(𝑎𝑎𝑖𝑖)
𝜎𝜎𝑎𝑎2

× 100% =  
𝑉𝑉𝑉𝑉𝑉𝑉�∑ 𝑍𝑍𝑗𝑗𝑢𝑢�𝑗𝑗10

𝑗𝑗=1 �
𝜎𝜎𝑎𝑎2

× 100% 

where 𝑎𝑎𝑖𝑖 is genetic value of the ith region that 
consists of contiguous 10 SNPs, 𝜎𝜎𝑎𝑎2 is the total 
additive genetic variance, 𝑍𝑍𝑗𝑗 is a vector of gene 
content of the jth SNP for all individuals, and 𝑢𝑢�𝑗𝑗 
is the marker effect of the jth SNP within the ith 
region. 
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Non-overlapping contiguous genomic 
windows that explained 0.15% or more of the 
total additive genetic variance were considered 
to be associated with the trait. Candidate genes 
were identified by examining genomic 
windows based on the ARS-UCD1.2. The 
biological functions of these genes, Gene 
Ontology (GO) terms (Ashburner et al., 2000) 
enrichment were identified using the R package 
“BiomaRt” (Durinck et al., 2009) and 
“clusterProfiler” (Wu et al., 2021). The 
genomic regions were compared to cattle QTL 
database (Hu et al., 2022).  

 
Results & Discussion  
 
As presented in Table 2, the average MeI was 
7.22 ± 1.99 g/kg in the current population. The 
predicted methane intensity closely followed 
the observed values, with a predicted MeI of 
7.67 ± 1.52 g/kg. 
 
Table 2: Descriptive statistics of methane intensity 
(MeI) and predicted methane intensity (PMeI) in 
Chinese Holstein cattle. 

Trait mean SD min max 
MeI 
(g/kg) 7.22 1.99 3.11 15.04 

PMeI 
(g/kg) 7.67 1.52 3.14 13.62 

 
Different MeI values have been recorded in 

earlier studies. In a mixed cow herd, MeI ranged 
from 3.0 to 36.0 g/kg, with an average of 13.5 ± 
3.92 g/kg reported by Niu et al. (2018). 
Similarly, in a population of French Holstein 
cattle, Fresco et al. (2023) reported a MeI of 
11.7 ± 2.6 g/kg. In this study, MeI was lower 
than those found in these studies, but it was 
closer to 8.61 ± 1.15 g/kg in dairy cattle 
reported by Lassen and Løvendahl's (2016). 

PMeI showed moderate heritability 
according to our research. The results indicate 
that the heritability estimate for PMeI was 
0.15±0.04 and the repeatability was 0.42±0.02. 
In previous study, MeI or PMeI heritability 
ranged from 0.04 to 0.35. In a population of 1 
091 Swiss Brown cows, Bittante and 

Cecchinato et al. (2020) observed a heritability 
of 0.12 ± 0.06, which is similar to our study. 
While Fresco et al. (2024) reported a heritability 
of 0.35 ± 0.04 using a very large dataset (n = 
167 514), Lassen and Løvendahl (2016) 
estimated a heritability of 0.21 ± 0.06 using a 
population of 3 121 cows. Higher heritability 
values than those obtained in our study were 
found in both of these studies. However, our 
result was lower such as the heritability of 0.04 
± 0.03 estimated by Manzanilla-Pech et al. 
(2022) using of 1 962 Danish Holstein cows. 
The breed, gas measurement techniques and 
equipment, and raising conditions of dairy cows 
are some of the variables that affect the 
heritability estimate of MeI or PMeI in various 
populations. The heritability estimates in the 
current population are in the medium range 
when compared to the findings of other studies.   

In this study, we identified eleven genomic 
regions on Bos taurus autosome (BTA) 1, 5, 8, 
15, 19, 20, 24, 26, and 27 that explained more 
than 0.15% of the genetic variance as Figure 2. 
These regions, which harbor a total of 19 
protein-coding genes, accounted for 2.17% of 
the genomic variance. The window that 
explained the highest genetic variance was 
located on BTA15, which explained 0.34% of 
additive genetic variance and contained five 
genes, including JAML, SCN2B, TMPRSS4, 
SCN4B, and MPZL3. Two of these genes were 
enriched by the significant GO terms, which 
were SCN2B and MPZL3. 

 

 
Figure 2. Proportion of the total additive genetic 
variance of 10-SNP genomic windows based on the 
weighted single-step genome association study for 
predicted methane intensity. Red points represent the 
windows exceed the 0.15% threshold of the total 
additive genetic variance. 
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Table 3: Quantitative trait loci reported for Bos 
taurus associated with genomic regions that 
explained more than 0.15% of the additive genetic 
variance for predicted Methane intensity 

Chr Regions 
(Mb) 

Explained 
genetic 
variance, % 

Associated 
trait  

1 20.03-20.29 0.20 MP 
5 44.96-45.20 0.15 MF, MY 
24 47.10-47.32 0.16 MF 
24 56.77-56.93 0.22 MP, BW 
26 19.74-20.23 0.19 MF, MP 

MP: milk protein, MF: milk fat, MY: milk yield, BW: 
body weight 
 
Additionally, we referred to the Cattle QTL 
database to examine potential QTL overlaps 
with genomic regions that explained more than 
0.15% of the additive genetic variance. Table 3 
shows five genomic regions containing QTLs 
associated with milk protein, milk fat, milk 
yield, and body weight. However, the 
relationships of MeI with these traits still needs 
to be further explored. 
 
Conclusions  
 
Methane intensity can be measured and 
predicted by milk mid-infrared spectra. It is a 
moderate heritable, polygenic trait in Chinese 
Holstein population. However, these are 
relatively preliminary findings, and further 
research is still necessary. 
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