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ABSTRACT

A breeding value evaluation method that corrects for phenotypic
heterogeneous variances is presented. The method is computationally simple
and feasible for large scale data sets. It involves iteration on the common
animal model equations corrected for heterogeneity and estimation of
heterogeneity factors from a set of mixed model equations.

Variance correction factors are determined with full account of fixed
effects, e.g., breeds, which can increase within herd-year-parity
variances. Further, they account for all selection, which mainly affects

variances of records of later parities.

INTRODUCTION

Numercus studies indicate heterogeneity of within herd wvariances of milk
production data (Everett et al., 1982; Hill et al., 1983; Lofgren et al.,
1985; Meinert et al., 1988). Breeding value evaluation methods that account
for this heterogeneity of variances seem therefore pertinent. Although not
accounting for heterogeneity of variances decreases rates of genetic gain
only marginally (Meuwissen and Van der Werf, 1993), a simple correction
method reduced biases of breeding values by about 25% (Van der Werf et al.,
1994} .

Hill (1984) suggested scaling of records by a posterior estimate of the
phenotypic variance, which involved regression of the estimated standard
deviation towards a mean value. This scaling with phenotypic variances
assumed homogeneity of heritability. A similar procedure could be applied
to account for heterogeneity of heritability, but sampling errors of
estimates of within herd heritability are so large that regressed estimates

will differ little from the mean heritability (Visscher and Hill, 1992).



2

Wiggans and VanRaden (1991) implemented a heterogeneity of variance
correction in the US dairy cattle breeding value evaluation system. Because
of the large size of the data set, phenotypic variances were simply
estimated by: (y,'y;-(1'y:)%/n;)/(n;-1), where y; = vector of records in
herd-year-parity i, 1 = vector of ones, and n; = number of records. These
estimates were regressed towards a year-region-parity mean, where also
information of adjacent years of the herd were used. They neglected
variance due to breeds (or phantom groups), covariances due to genetic
relationships and variance reduction due to selection.

If the estimation of within herd-year-parity variances neglects breed
effects, these will inflate the estimate of the variance. Subsequent
correction for heterogeneous variances will thus unjustly reduce
differences between breeds. Hence, superior breeds will be underestimated
and inferior ones overestimated. This results in reduced selection of
animals from superior breeds, which may decrease rates of gain
substantially.

A substantial proportion of the cows will be culled on first lactation
records, such that cows with later lactations will show reduced variance.
Hence, in herd-years-parity classes of later parities, variances are
expected to be reduced by selection. However, simple methods, that correct
for heterogeneity, will inflate the variance within later herd-year-
parities to that of unselected records. Accounting for variance reduction
due to selection seems therefore pertinent.

The aim of this paper is to present a heterogeneity of phenotypic
variances correction method, that accounts for breed or genetic group
effects and variance reduction due to selection, and that can be
implemented in large scale breeding value evaluation methods., We intend to

implement the method in the Dutch breeding value evaluation system.
METHODS

Models
The data are modeled for herd-year-parity i by:

¥y, = (X3b + Zju + ey) exp (}y,) [1]
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where : b = fixed effect vector (genetic groups and herd-year-seasons); u =
vector of breeding values; e; = vector of environmental effects; X; and Z;
are design matrices for fixed effects and breeding values within herd-year-

parity i. Var(u) = Ac,%, where A is the additive genetic relationship
2

matrix and ¢,2 is the additive genetic variance. Var(e;) = Ic.,%2, where o,
the residual variance. The values of o, and 0,2 are assumed known, which
implies a constant heritability across herd-year-parities.

The fixed plus random effects within herd-year-parity i are scaled by a
factor exp(¥vy;) to obtain the records, which resembles the multiplicative
mixed model of Kachman and Everett (1993). The variance of a record in
herd-year-parity i is (g,2+0,2)*exp(y;). The exponential of 7y, is taken to
ensure that this variance is positive for every estimate of 1v,.
Furthermore, variances of estimates of variance tend to increase with their
size, i.e. Var(8?) = 2¢%/(n-1), where n = the number of records. A log
transformation renders this variance approximately constant: Var(ln(s?)) =
2/(n-1). Hence, 1n(g%) = ln(exp(y;)) = 7, has approximately constant error
variance, which is desirable when y; analysed by a statistical model.

The following linear model for v, is assumed:

Y1 = 548,
where g8 = vector with effects on 7;; S,' = design vector.

In the following section, the effects § are assumed fixed for simplicity.
After this, it will be indicated that g should be analyzed as random and
the analysis will be extended to random §. The actual effects that are
involved in g are not important for the fixed g section and will be

explained in the section with random §.

Estimation of «; with fixed 8

The derivation of the estimators of 7y, follows that of Foulley et al.
{1992) and San Cristobal et al. (1993). We want to maximize the log
likelihood of the data for §:

In p(y,u|8) = const - ¥%Zn;S,8 - bYe;'e,, [2]
where const does not depend on 8, e; = yiexp(-%S,8) - X;b - Z,u) (see [1]),
n; = the number of records in herd-year-parity i, and summation is over
herd-year-parities. The derivative of [2] to £ is:

-3, S; + My, 'e;exp(-%8;6)8; = £S;2, = Sz, [3]
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where z; = [y,'e;exp(-%8,8)-n;]/2. Since, e and, equivalently, u are
unknown, we have to take expectations over u|y,ﬂ of [3] to cobtain the
derivative of 1ln p(y|ﬂ) (see Foulley et al., 1992):
d 1n p(y|8) /d8 = s%, [4]
where £; = [y;’'€&;exp(-%5;8)-n;]/2.

In order to apply the Newton-Raphson algorithm to find the maximum of the
likelihood, we need to take second derivatives of [3]:
d@® 1n p(y,u|8) /dB% = -My;'yiexp(-8;8)S;'S; + 4y;' (X;b+Z u)exp(-}5,8)8,'S,

= S'W;S, [5]
where W, = diagiky;’' (X;b+Zju)exp(-%S;8)-2y,'y,exp(-5,8)). The derivative of
[4] is (Foulley et al., 1992):
d? 1n p(y|8) /dB? = Ey|y,p(d? 1n p(y,u|B) /dB?) + Varyy s(d In p(y,u|8) /dg)
= S'W,S + S'W,S = -S'WS,

where W, = diag{ky,’ (X;b+Z,4)exp(-%8;8) -4y, 'yiexp(-8;8))
W, = diagl¥%y,;’'T;CT, y;exp(-S,8)),
with T; = [X;72;']’ and C = the inverse of the coefficient matrix of the
animal model equations (see [7]); and W = -(W; + W;), which is diagonal.
Note that the term CT;'y, equals the solution of the animal model equations
if only data of herd-year-parity i are available. In large data sets with
many herd-year-parities, computation of every CT;'y; may not be feasible,
but it can be approximated by ignoring genetic relationships across herds.

The Newton-Raphson algorithm becomes mnow:
srysglatll = gr(z + Wsgld), [6]
where q denotes the iteration number. Note that equations [6] are similar
to generalized linear model equations. Each iteration on [6] requires

solutions of b and u of the animal model equations:

. - — 1 - ™
| X'X X'2 | ] 86 | X'yl
| Z'X 2'Z +AA71 | | € | - [27y.|
L - - J o, [7]

where y, = y exp(-%8,8(9),

In this section, all effects on vy,, i.e. §, were assumed fixed. Burt,
since herd-year-parities may be small, there may be little information on
8. in particular, if the model is vy, = 8;, i.e. there is a fixed effect for
every ;. More reliable estimates of § can be obtained by regressing every

v, back to a mean, i.e. § is assumed random (Hill, 1984). Further, by

imposing a correlation structure on the random effects §, information on



5

adjacent herd-year-parity classes could increase the accuracy of the
estimate of B;,. This correlation structure will be imposed by a

autoregressive model, as explained in the next section.

An_autoregressive model for vy; with random 8

OQur derivation is again similar to that of Foulley et al. (1992) and San
Cristobal et al. (1993), which used a Bayesian approach. g contains fixed
effects §,, i.e. the mean towards the 7y, are regressed, and random effects
B, i.e. the individual effect of herd-year-parity i on y;. As fixed
effects on y; we have chosen the overal mean and the regression factor of
¥; on the average production level in herd-year-parity i, which adds up to
the mean towards v; is regressed. There is one random effect f§,; for every
7;. Hence,

Yi = Sufy + Szb2
where 8,; = [1, p;], with p; = mean production of herd-year-parity i; and
8;; = has a one at position i and zeros elsewhere.

Herd-year-parity effects are assumed to be correlated within herd-
parities according to an autoregressive model, i.e., if a herd-parity
contains 4 herd-year-parities, the variance of the herd-year-parity effects

pertaining to that herd is (Wade and Quaas, 1993):

ahYPz * ~ -
{1 a aZ ab
|a 1 a a? |
| a a 1 a |
| a® a* a 1
L. -, (8]

where a = the correlation between consecutive years within a herd. Let H
denote the block diagonal variance-covariance of all herd-year-parity
effects, which contains a block as [8] for each herd-parity.

Since the variance of the herd-year-parity effects is finite, there is a
prior distribution for these effects. As we shall see later, only the first
two moments of this prior distribution will enter the estimating equatiomns,
hence, we may use the normal distribution as a prior:

In p(f) = const - MH8'AS8, [9]
where A = [§31]. The inverse of H is easily obtained from Wade and Quaas
(1993).

A Bayesian approach maximizes the log of the posterior density, which is

the sum of [2] and [2]. The derivative of [%] to £ is: -Af, and the
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derivative of the log posterior density is thus: Sz - AS. The second
derivative of [9] to B8 is -A, hence, the second derivative of the log

posterior density is: -S'WS - A. The Newton-Raphson algorithm becomes now:
[s'9s + A)(ple-plT) = 572 - AglT, [10]

which replaces [6]. These equations [l0] are used in combination with [7]
to obtain estimates of breeding values u, which are from [7].

Note that [10] resembles a mixed model, with H being the variance of the
fixed effects. Hence, estimation of breeding values requires iteration on
the common animal model with correction for heterogeneity [7] and a mixzed
model for the estimation heterogeity factors [10]. The estimation of the
parameters of the auto-regressive model, a and ahnf, can be estimated as

Wade et al. (1993).
DISCUSSION AND CONCLUSIONS

The multiplicative mixed model that was used here was proposed by Kachman
and Everett (1993). Mostly, heterogeneity of variance models only scale the
random effects (animal and error), but fixed effects are also scaled in
multiplicative models. Fixed effects that are across homogeneous variance
classes, e.g., breed effects, will have a different effect depending on the
estimate of the scaling factor. Hence, an assumption underlying these
multiplicative models is that the best breed performs better in the more
variable herd.

The present model differs only slightly from that of Kachman and Everett
(1993). They modeled the scaling factor directly instead of 7; and used an
inverted chi-squared prior distribution for the scaling factors. These
slight differences resulted in equations that did not resemble mixed model
equations and seemed more complicated.

The computationally most demanding step is the calculation of breeding
values for each herd-year-parity given the data of that herd-year-parity:
CT;’'y;. Strictly, this should account for all genetic relationships.
Fortunately, only breeding values for the animals within herd-year-parity i
are needed, since the term y;'T; in y;'T;CT;'y; has only non-zero elements
for these animals. The latter is in contrast with the method of Everett and

Kachman (1993), which needs these breeding value estimates for all animals.
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Neglection of more distant genetic relationships, e.g., those across herds,
results probably in minor biases of phenotypic variances, because the
product of the heritability and the genetic relationship will be small.
Therefore, we will implement an C;, that accounts for relationships within
a herd, including those through the sires of the cows in that herd, but
more distant relationships will be neglected.

Weigel and Gianola (1993) propose a computationally simple Bayesian
method, which could be applied to national evaluations. But, as in the
approach of Wiggans and VanRaden (1991), herd-year-parities are assumed
independent. Problems with breed effects across herd-year-parities and
variance reductions due to selection are ignored.

A model that corrects for phenotypic heterogeneity of variances is
presented. When covariances due to distant penetic relationships are
neglected in estimating within herd-year-parity variances, the model could
be included in national breeding wvalue estimation procedures. The main
advantages of the presented model are that estimates of within herd-year-
parity variances account for genetic group effects and are corrected for
variance reductions due to selection. The derivation of the method followed
Bayesian ideas, but the resulting sets of mixed model equations [7] and
[10] suggests that a frequentists interpretation is possible (see Gianola
et al., 1992).
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