Presented at the INTERBULL Open Meeting, Prague, Czech Republic, September 7, 1995.

MACE as an Alternative to Conversion Formulae for Linear Type Evaluation of US and Foreign Bulls Kent A. Weigel University of Wisconsin, USA

<u>Objective</u>: The objective of this study was to examine the potential of MACE methodology as an alternative to regression-based conversion procedures for type evaluation of European and Canadian bulls in the USA.

<u>Data</u>: Data for the current study were obtained from five countries. Bulls born in 1980 or later were considered. Genetic correlations were calculated using all bulls with proofs in both the importing (USA) and exporting countries. Bulls with \geq 15 daughters in 10 herds were included in the MACE analyses, and bulls with \geq 75% reliability in both the importing and exporting countries were used in Wilmink conversions. Bulls with \geq 90% reliability in the home country were used to develop conversion formulae from MACE solutions.

Country		Number of Bulls						
	Date	MACE	Correlation estim.	Wilmink conv	MACE conv			
USA	Jan. 1995	8834						
Canada	Jan. 1995	2999	293	254	367			
Germany	Dec. 1994	1479	83	75	1/3			
Italy	Jan. 1995	1639	162	161	357			
Holland	Mar. 1995	3139	174	155	578			

Methods: MACE analyses were conducted in a pairwise manner; i.e., USA and Canadian bulls, USA and German bulls, etc., so four analyses were done for each trait. Genetic correlations between countries were estimated as the correlation between sire solutions for bulls with evaluations in both countries divided by the product of the square root of average reliability within each country (Calo method). Variances of sire transmitting abilities for each trait within each country were estimated using the simple iterative procedure of Schaeffer et al. (1995 ADSA Symposium). Conversion formulae were calculated using the Wilmink procedure with bulls having at least 75% reliability in both countries. MACE conversion formulae were calculated by regression of MACE breeding values in the importing country on those in the exporting country for bulls with \geq 90% reliability in the exporting country (b values were inflated if bulls proven in USA only were included).

Results and Summary: Estimated genetic correlations between USA traits and corresponding traits in other countries ranged from .47 to .99 due to differences in trait definitions among countries. Estimated correlations between the USA and Germany were lowest, most likely due to the smaller number of bulls with proofs in both countries. Correlations estimated using the Calo method were 4% to 15% larger than estimates obtained from Wilmink conversion analyses, although differences were slightly smaller if minimum reliability limits were used with the Calo method. Rank correlations between MACE evaluations in the home country and those in the USA were from .71 to .99, which indicates that the ability of MACE to accomodate re-ranking among countries is more important for type traits than for production traits. This also indicates the importance of using MACE solutions, rather than the MACE conversion formulae, for type traits. Means and standard deviations of MACE and (Wilmink) converted evaluations were similar for most traits, and Wilmink and MACE conversion formulae did not differ substantially. It is important to consider possible biases in international evaluations of economically important secondary traits due to differences in trait definition. For example, type traits may be scored subjectively taking into account level of milk production. Correlations between EBV milk and EBV final type score in each country were as follows: USA .15, CAN .08, DEU .22, ITA .33, and NLD .41. MACE should provide more accurate international breeding values for extreme bulls than regression-based conversion formulae; conversions for extreme bulls have up to 15% higher standard error than for average bulls for production traits under intense selection, but this may be less important for type traits.

TABLE 1. Trait definition (line 1), estimated variance of sire transmitting ability (line 2), and correlation with USA trait (line 3). In line 3: left value = estimated genetic correlation between foreign trait and USA trait using Calo procedure, middle value = estimated genetic correlation between foreign trait and USA trait using Wilmink conversion procedure, right value = rank correlation between USA MACE evaluation and home-country MACE evaluation.

USA	CANADA	GERMANY	ITALY	HOLLAND
STATURE	STATURE	STATURE	STATURE	STATURE
1.22	26.2	200	1.72	30.6
	.99 .90 .99	.93 .78 .94	.97 .90 .99	.97 .89 .93
STRENGTH	CHEST WIDTH	CHEST WIDTH	STRENGTH	BODY DEPTH
1.16	30.1	202	1.75	26.1
	.93 .84 .97	.95 .81 .93	.96 .89 .99	.81 .75 .92
טייקקר ארוספ	FDAME /CADACTTV	BODY DEPTH	DEPTH	BODY DEPTH
	27 9	202	1.65	26.1
2.00	.97 .87 .97	.86 .74 .92	.97 .90 .99	.88 .81 .94
DATEV FORM	DATEV CHADACTED	ANGINARTTY	ANGULARITY	MUSCULARITY
JAIRI FURM	21 4	217	1.35	27.3
1.00	.90.79.94	.75 .67 .90	.85 .79 .97	585373
			DIMP ANGLE	RUMP ANGLE
KUMP ANGLE	PIN SETTING	218	2.36	30.2
1.02	94.4 86 80 98	. 92 . 82 . 97	.99 .91 .99	.94 .89 .98
	.00 .00 .70		שיירודע מאוזק	RIMP WIDTH
THURL WIDTH	PIN WIDTH	KOWP WIDTH	1 76	30.3
1.22	∡0./ 00 01 05	107 20 77 QA	87 81 96	.81 .75 .90
	.30.02.30		1800 0100	דדת מגזם
REAR LEG SET	REAR LEG SET	REAR LEG SET	JEGS SIDE	REAR DEG DEI
2.22	36.5	240 00 75 04	4.73 90 91 94	.81 75 94
	.86 .76 .98	.5	. 30 . 04 . 30	
FOOT ANGLE	FOOT ANGLE	FOOT ANGLE	FOOT ANGLE	CLAW DIAGONAL
1.95	34.1	256	2.52 80 74 85	50.7 63 58 76
	.78 .72 .96	.4/.42./1	.00 ./1 .73	
FORE UDDER	FORE ATTACHMENT	FORE UDDER	FORE UDDER	FORE UDDER
1.57	31.1	294	2,70	32.7 DA 77 01
	.89 .81 .97	.58 .48 .80	.90 .83 .96	.04 .// .91
UDDER HEIGHT	UDDER HEIGHT	UDDER HEIGHT	UDDER HEIGHT	UDDER HEIGHT
1.69	26.2	253	2.32	29.1
	.83 .78 .97	.77 .67 .86	.75 .71 .92	.83,76.92
UDDER WIDTH	UDDER WIDTH	UDDER HEIGHT	UDDER WIDTH	UDDER HEIGHT
1.72	34.1	253	1.79	29.1
	.80 .74 .97	.62 .55 .77	.70 .66 .90	.73 .65 .83
UDDER CLEFT	MEDIAN SUSPENS.	CENTRAL LIGAMENT	LIGAMENT	UDDER SUPPORT
1.73	25.0	219	2.70	27.3
	.86 .77 .98	.68 .56 .86	.86 .80 .96	.87 .80 .95
UDDER DEPTH	FORE UDDER BKDN.	UDDER DEPTH	UDDER DEPTH	UDDER DEPTH
2.06	29.0	239	2.06	30.7
	.72 .68 .83	.76 .66 .93	.96 .89 .99	.99 .91 .97
TEAT DLACEMENT	FORE TEAT PLACE	TEAT PLACE.	TEAT POSITION	TEAT PLACE.
1 72	27.8	231	2.11	28.8
1	.96 .86 .98	.81 .69 .95	.83 .77 .95	.90 .80 .96
TATALA COORD	FTNAL CODE	FINAL SCORE	FINAL SCORE	FINAL SCORE
CINAL SCORE	25 A	174	. 54	26.9
0.73	- 86 - 78 - 96	.73 .62 .79	.84 .79 .90	.87 .79 .86
1				

TED & TOT	USA	CANADA	GERMANY	ITALY	HOLLAND	
	ACTUAL	CONV MACE	CONV MACE	CONV MACE	CONV MACE	
STATURE	MEAN .15	.88 .84	.09 .22	0104	0718	
	SD . 96	1.03 .92	1.07 .90	1.00 1.00	1.19 .93	
STRENGTH	. 09	.56 .68	.44 .11	0613	- 02 - 27	
	1.03	1.03 .89	.97 .90	1.02 1.06	1.06 .92	
BODY DEPTH	.20	.66 .74	.40 .22	0211	- 01 - 21	
·	1.03	.99 .95	.97 .90	1.07 1.06	1.13 .97	
DAIRY FORM	. 94	.08 .27	.02 .29	.33 .48	44 61	
	1.08	1.05 1.09	1.08 .91	.83 .92	.83 .69	
RUMP ANGLE	. 02	4140	1606	.05 .07	.12 .09	
	1.27	1.13 1.11	1.27 1.10	1.23 1.26	1.20 1.02	
THURL WIDTH	.06	.60 .70	.18 .08	3021	0530	
	1.06	1.10 1.01	.94 .94	1.08 1.11	1.01 .87	
REAR LEG SET	14	.04 .07	.0308	2524	0724	
	1.23	1.05 1.07	1.04 .94	1.09 1.16	1.16 1.16	
FOOT ANGLE	.14	.0102	.25 .20	11 .02	.20 .03	
	1.12	.86 .86	.50 .78	1.09 1.07	.79 .90	
FORE UDDER	.24	.79 .62	.12 .11	05 .00	0527	
	1.03	.85 .90	.63 .79	.78 .95	.90 .78	
UDDER HEIGHT	.30	.72 .67	.21 .05	.00 .05	.04 - 10	
	1.02	.90 .94	.73 .80	.77 .88	.98 .82	
UDDER WIDTH	. 41	.57 .65	.28 .13	.06 .16	.1901	
	1.01	.86 .98	.58 .70	.75 .87	.79 .76	
UDDER CLEFT	. 22	.20 .21	.43 .11	.13 .06	.0403	
	1.07	.84 .91	.68 .75	.77 .92	1.01 .82	
UDDER DEPTH	02	.66 .52	.36 .14	0801	- 59 - 40	
	1.24	.92 .89	.91 .95	1.19 1.31	1,28 1.05	
TEAT PLACEMENT	.09	.0702	.36 .12	.00 .05	- 22 - 18	
	1.19	1.13 1.12	1.02 .91	1.06 1.00	1.10 .93	
FINAL SCORE	.39	.57 .58	.30 .24	.05 .13	02 - 07	
	.75	.62 .64	.54 .57	.47 .58	.72 63	
					116 100	

TABLE 2. Means and standard deviations of actual evaluations for USA bulls and converted (using Wilmink procedure) and MACE evaluations (on USA scale) for bulls from five countries born in 1988 and 1989.

TABLE 3. Estimated "a" and "b" coefficients for converting type evaluations from each of four countries to the USA using the Wilmink (WILMK) procedure or regression of USA MACE evaluations on home country MACE evaluations.

		CANADA		GERMA	GERMANY		ITALY		HOLLAND	
		а	b	a	b	a	b	a	d	
STATURE	WILMK	.24	.245	-9.48	.095	20	.832	-28.9	.283	
	MACE	.26	.224	-8.51	.086	22	.835	-21.5	.212	
STRENGTH		.38	.217	-7.59	.084	. 04	. 796	-24.7	.246	
		.41	.202	-7.74	.082	.01	.826	-18.8	.188	
BODY DEPTH		.31	.206	-7.64	.082	15	.820	-26.4	.263	
		.31	.198	-8.17	.085	19	.803	-20.1	.201	
DAIRY FORM		96	.267	-9.82	.096	55	.852	21.7	216	
		89	.262	-9.40	.092	76	. 993	19.4	197	
RUMP ANGLE	<u>_</u>	.03	.221	-10.28	.099	02	.812	-28.0	.280	
		05	.210	-8.93	.086	. 02	.835	-23.1	.231	
THURL WIDTH	<u> </u>	.40	.220	-7.72	.082	28	.840	-24.2	.241	
		.42	.217	-8.64	.089	14	.834	-19.4	.194	
REAR LEG SET	<u>г</u>	.07	.212	-9.58	.096	34	.760	-26.6	.264	
		.06	.224	-9.48	.094	29	.809	-24.8	. 246	
FOOT ANGLE		10	.188	-4.38	.046	12	.817	-20.8	.210	
		22	.208	-9.50	.094	07	.865	-19.8	.199	
FORE UDDER		.36	.187	-4.79	.048	18	.567	-22.5	.226	
		.20	.208	-6.89	.067	÷.25	.674	-20.7	.206	
UDDER HEIGHT		.11	.211	-6.49	.068	36	.645	-26.7	.265	
		02	.226	-8.74	.088	43	.702	-22.9	.227	
UDDER WIDTH		.26	.158	-5.04	.054	51	.681	-21.4	.214	
		.10	.188	~8.18	.082	58	.746	-20.6	.205	
UDDER CLEFT		37	.219	-6.35	.066	25	.575	-29.2	.289	
		47	.235	-9.18	.090	46	.677	-25.0	.247	
UDDER DEPTH		.13	.209	-7.73	.080	. 00	.892	-33.2	.328	
		. 05	.223	-10.18	.101	.01	. 974	-26.4	.260	
TEAT PLACEM	ENT	25	.253	-8.41	.087	32	.836	-28.7	.287	
		35	.249	-9.73	.097	41	.862	-24.9	.249	
FINAL SCORE		.12	.153	-5.98	.062	33	.837	-18.6	.184	
		.04	.158	-7.83	.078	36	. 939	-16.0	.159	