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Abstract

Linear selection index assumes that the objective function is a linear function of the trait values. In actual
commercial breeding populations this is rarely the case. For non-linear profit functions there is no
uniformly "best" solutions. Maximum genetic progress will always be achieved by a linear index, but for
a non-linear profit function, the index that results in maximum genetic gain in the future will be a function
of the selection intensity. For traits which are non-linear in the objective function, it should be possible to
increase the mean value of the objective function in the progeny by planned matings. The advantage of
planned matings will be greatest for traits with high heritability and population mean close to the
economic optimum. Results of a simulation based on 1006 cows and 20 sires in the Israeli population
showed that planned matings increased the mean profit value of the progeny by only 0.4% even though

the population was close to the optimum value for somatic cell score, and heritability was 0.135.

1. Introduction

In nearly all animal breeding situations, the
objective function consists of several traits, each
with its own economic value. Hazel (1943)
defined the aggregate genotype, H, for a given
individual as a’y where a is the vector of
economic values of the traits included in the
objective function, and y is the vector breeding
values for these traits for the individual
considered. The elements of a are the partial
derivatives of the objective function with respect
to each trait included in this function.
Generally, only the vector a can be directly
observed, while y can be estimated from
phenotypic values on the individual and his
relatives on the traits included in the objective
function and for additional correlated traits. In
the most general terms, the goal of breeding is to
increase the population mean of H in future
generations, by selecting the "best” individuals
as parents for the next generation. However, as
will be seen below, "The devil is in the details!”

If the objective function is a linear function
of all traits, then a will be a vector of constants.
In this case, linear selection index first derived
by Hazel (1943) is clearly the optimum solution.
In linear selection index all candidates for
selection are ranked on an index, I = b’x, where
b is a vector of index values and x is a vector of
records for the traits included in b.

Under the condition that a is a vector of
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constants equal for all individuals, linear
selection index as formulated by Hazel (1943)
also has several desirable properties in addition
to being the optimum criteria for ranking
candidates. However, in the "real world® the
conditions assumed by linear selection index for
a are never completely met, and for all other
situations there is no uniformly "best” solution,
although numerous alternatives have been
proposed.  Linear selection index is least
appropriate when the objective function is
maximum at an intermediate trait value, close to
the population mean.

To explain why no uniformly "best” solution
is possible for nonlinear objective functions, we
will first summarize the important properties of
linear selection index. In the interest of brevity,
these properties will be presented without proof,
although references will be provided. We will
then explain why & is generally not a function of
constants, and the different types of functions
that can be encountered in this vector. Finally,
we will consider the different solutions that have
been proposed for nonlinear objective functions,
and discuss the strengths and weaknesses of each
alternative, Within this context we will consider
the specific questions of mate selection within
the context of breeding for an optimum. An
example will be given based on milk production
traits and somatic cell concentration in the Israeli
Holstein population. Notation throughout will be
consistent with Weller (1994).




2. Properties of linear selection index

If the candidates for selection are also those
animals recorded for the traits included in the
objective function, then b, the vector of index
weights for the optimum selection index is
computed as follows:

b = P'Ga [1]
where P is the phenotypic variance-covariance
matrix, G is the genetic variance-covariance
matrix, and the other terms are as_defined
previously,. P'G’x will be the estimated
breeding values for the individual traits, with x
measured relative to the trait means. If a is a
vector of constants then the selection index has
the following important properties, summarized
by Henderson (1973) and Brascamp (1984).

1. Define H, = mean for the aggregate
genotype of the selected individuals. If
individuals are selected by ranking on I = b'x,
then E(H,) will be maximum as compared to any
other group of individuals of equal number.

2. Of all possible linear functions of x, I =
b’x gives the maximum correlation with H
computed over all individuals used to compute P
and G.

3. Of all possible linear functions of x, I
minimizes E(H-1)?, where I, is any alternative
linear function of x.

4, Of all possible functions of x, ranking
individuals on I maximizes the probability of
correct pairwise ranking on H.

5. Define f(x) = the objective function.
For a given selection intensity, f(E(x)) of the
progeny will be greatest if their parents are
selected based on 1.

6. E(f(x)) of the progeny will also be
greatest with selection of parents on I. Although
properties 5 and 6 appear very similar they are
not the same, as noted by Itoh and Yamada
(1988). In property 5 the objective function is
maximized for the population mean in the next
generation. In property 6 the mean of the
objective function for each individual s
maximized,

7. The optimum selection index s
independent of the selection intensity. Thus the
same selection index will result in optimum gain
over the short- and long-term.

8. If the breeding values are computed by
selection index with known trait means, or by
Best Linear Unbiased Prediction (BLUP)
methodology for unknown trait means, then the
optimum selection index can be computed as g’a,
where g is the vector of estimated breeding
values.

9. If BLUP genetic evaluations are
computed for all candidate for selection for all
traits, then the optimum index will be g’a for all
individuals, even if selection intensities and
accuracies are different for different groups of

animals, for example males and females.

As will be seen below, if a is not a vector of
constants, no single criteria will have all these
properties. As noted by Itoh and Yamada (1988)
the main objective of selection is to maximize
E(f(x)) in future generations. However, property
7 holds only for linear objective functions. It
will be demonstrated that for non-linear profit
functions, the index that maximizes E(f(x)) will
be a function of the selection intensity.

3. Non-linear objective functions

Various criteria have been suggested to
determine objective functions for agricultural
breeding. - The most widely considered criteria
are maximum outputs less inputs (profit),
minimum inputs per unit outputs (efficiency),
maximum outputs per unit inputs (return on
investment) on either an economic or biological
basis (Harris, 1970). The relative merits of
these criteria were discussed in detail by Groen
(1989). In the remainder of this study it will be
assumed that profit, defined as income less
expenses is the objective function for agricultural
breeding, although nearly all of the following
also holds for alternative objective functions.
Nearly all multitrait profit functions are non-
linear. Three type of non-linearity will be
defined:

Type 1: Traits with different economic
importance for different groups of animals. For
example, dystocia is generally only a serious
problem for heifer calvings, while growth traits
are generally important only for male calves and
surplus females calves that are sold for beef.

Type 2: The profit function is maximum at
an intermediate trait value. In dairy cattle some
conformation traits are of this type, as is somatic
cell concentration, for which either too low or
too high a value is desirable (Coffey et al.,
1986).

Type 3: Traits for which profit is a
monotonic function, but not a linear function.
The situation that comes first to mind is payment
as joint function of two traits, for example
payment for milk with a price differential for fat
or protein percent. However, even for traits
which seem to be linear in profit, this will
generally not be the case over the long-term.
Consider the following simple situation based on
Moav (1973). Farmers are paid a constant price
per kg milk. A simple function of profit per
cow can be written as follows:

f(x.) = x(ip - ¢a) - ¢ (2]
where f(x)) is profit per cow, x is milk
production per cow, i, is income per kg milk, c,
is costs of production per kg milk, chiefly food,
milking costs, storage, transport and
refrigeration, and ¢, is fixed costs per cow not
related to the quantity of milk produced. The
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derivative of this profit function with respect to x
is iy - ¢,, which is a constant. Now assume that
the farmer has a milk quota, and that rather than
computing profit per cow, he is interested in
profit per kg milk. Profit per kg milk, f(x,) is
derived by division of equation [2] by x as

follows:

f(xa) = iy - Ca - ofX "Bl
Now the derivative of f(x,) with respect to x is
c/x3. As long as x is positive, profit is still a
monotonic function of x, but no longer linear,
and the economic value of x is a function of x.
Since production quotas is apparently the natural
state of pature, economic values will not be
constants even for production traits. (However,
as noted by Brascamp et al. (1985) in the
‘situation of “zero profit”, the economic value of
x will again be a constant).

4. Non-linear profit functions, linear vs. non-
linear indices

If the objective function is non-linear, then
question arises as to which criteria should be
used to rank candidates for selection? Several
alternatives have been considered, and these
were summarized by Goddard (1983). The first
alternative he considered was to compute the
derivatives of objective function setting the traits
values at the current population means. By
definition the economic values will then be
constants, This will work reasonably well if
changes in the population mean due to selection
are small relative to the value of the derivative,
and are frequently updated (Groen et al., 1994;
Dekkers et al, 1995). However, this wili not be
the case if the population is close to optimum for
some of the traits. Consider the following
theoretical profit function:

f(x) = -(x-ay’ (4]
The derivative of f(x) with respect to x is -2(x-
a), and f(x) will be maximum when x = a. If
x < a then the derivative is positive and profit is
increased by increasing x, while if x>a then the
derivative is negative and profit is increased by
decreasing x. If selection intensity is high, and
the population is close to optimum, ranking
individuals on a selection index computed using
the current mean trait value can result in a
decreased mean profit value in the next
generation. A somewhat realistic example was
presented by Dekkers et al. (1995) for poultry
egg production with an economic optimum egg
weight. Once the population is close to the
optimum, an index based on the differentials
computed at the current population mean in each
generation will result in oscillation of mean egg
weight around the optimum.

Probably the most intuitive answer would be
to maximize E(H,), the expected mean aggregate
genotype of the selected individuals. If the
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objective function is non-linear, then the index
that maximizes E(H,) will also be non-linear.
There is no general analytical solution for all

‘possible objective functions, but solutions have

been derived for the case of quadratic and cubic
objective functions (Wilton et al., 1968;
Ronningen, 1971). Although this solution is
intuitively appealing, neither f(E(x)) or E(f(x)) of
the progeny will be maximized if their parents
are selected by E(H,). This was explained by
Goddard (1983), who used the following
example. Assume that f(x) = x?, and that the
population mean for x = 0. Then the
individuals with the highest genetic merit will be
those with highly positive and negative values
for x. If these individuals are selected as parents
and mated randomly, there will be no genetic
progress for x. However progress could be
achieve by selection for either high or low x.

Another alternative that has been proposed is
restricted selection indices (Brascamp, 1984).
Although we often have only a vague idea of the
profit function, and over the long-term the
function will change; the breeder does know
that over the long-term certain results are
undesirable, for example a genetic reduction in
fertility. Thus, a linear index can be devised
that results in the desired change, or no change,
in certain traits and maximum increase in others.
However, as noted previously (Gibson, and -
Kennedy, 1990; Groen et al., 1994), restricted
indices  will generally not be economically
optimal for any criteria.

We will now consider properties 5, 6, and 7
in detail. Goddard (1983) following Moav and
Hill (1966) assumed that property 5, maximizing
f(E(x)) of the progeny should be primary criteria
for selection. In this case, as Goddard (1983)
noted, a linear selection index will always be
optimum. Genetic progress with a linear index
for a given selection intensity is defined by a
multidimensional ellipse. For a given selection
intensity and any direction of genetic progress,
this ellipse defines the maximum genetic change
possible for the population mean, and will
always be greater than genetic progress with a
non-linear selection index. This is analogous to
the shortest distance between two points being a
straight line.  Goddard also considered the
possibility that there is a optimum value for f(x)
within the selection ellipse (Type 2 non-
linearity). In this case he argued that since
selection costs money, the optimum solutior
would be to decrease the selection intensity anc
thus reach the optimum population mean with &
linear index and a lower selection intensity.

Moav and Hill (1966) derived a graphic
method to determine the vector of index
coefficients, b, that maximize f(E(x)) for two
traits and a given selection intensity. If the
profit function is non-linear, then b will be a
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function of the selection intensity. For more
than two trait, b, can be derived from the vector
of expected genetic gains, ¢, which is also a
function of the selection intensity. ¢ can be
computed iteratively (Itoh and Yamada, 1988;
Pasternak and Weller, 1993) as follows:

GP'G{5[f(x + $%))/6e}i

= (5]
(Blf(x + ¢9))/3¢}’ GP'G{3If(x + #)/oe})"*

where ¢**! is the vector of genetic gains at the
k+1 iteration, S[f(x + ¢*)]/6¢ is the vector of
partial derivatives of the objective function with
respect to the individual traits with the
population mean set at x + ¢* for all traits
included in the index, i is the selection intensity,
and the other terms are as defined above. The
vector of index coefficients can then be derived
as follows.

b = (0/D)G"¢* [6]
where o is the standard deviation of the index,
and ¢* is the solution for ¢ at convergence.
Note that both ¢* and b are functions of the
selection intensity.

Although both Moav and Hill (1966) and
Goddard (1983) considered this solution to be
the optimum solution for nonlinear objective
functions, several recent studies disagree. The
reasons are as follows:

1. This solution maximizes the objective for
a specific vector of genetic gains determined by
the population mean prior to selection and the
selection intensity. Thus, the optimum selection
index will be different for each generation, and
different from the selection index that would
maximize the gain in the objective function over
several generations, Dekkers, Birke, and Gibson
(1995) suggested maximizing total profit up to
the profit horizon, discounting expected profit in
each subsequent generation relative to the time
until the expected gain is realized. They also
developed numerical methods to solve for the
index coefficients. They found that the net
present value of profit could be significantly
lower for an index that maximizes f(E(x)) after
ten generations of selection as compared to an
index that maximizes net present value of profit
over ten generations. The problems with this
solution are first, that both the profit horizon and
the discounting rate are generally arbitrary.
Second, the solution presented is only valid for a
situation of discrete generations, which is
definitely not the case for dairy cattle. Third,
past experience shows that objective functions
tend to change over time. Fourth, as noted by
Groen et al. (1994) genetic and phenotypic
variance matrices will change over time due to
selection and other factors. Finally, economic
values tend to change over time. Thus, selection
for maximum f(E(x), or maximum net present

value, for several generations into the future for
dairy cattle, under the assumption that the
objective function remains constant, would seem
to bé rather fool-hardy.

2. As noted by Itoh and Yamada (1988)
with a non-linear profit function, maximization
for f(E(x)) is not the same as maximization for
E(f(x)). Equations [§] maximize the profit of
the expected mean trait values for the progeny,
while the objective of selection is to maximize
the expected mean profit of the progeny. Itoh
and Yamada (1988) were not able to analytically
derive the b vector that maximizes E(f(x)) for
any function, but did derive approximate
methods. However, they also note that for
quadratic as well as linear profit functions
maximizing f(E(x) is equivalent to maximizing
E(f(x)). Since a wide range of profit functions
can be approximated by either linear or quadratic
functions, this problem is probably not serious
under realistic situations.

3. As first noted by Moav (1973) for animal
breeding in general and by Allaire (1977) for the
specific case of dairy cattle, with a non-linear
profit function, E(f(x)) will also depend on the
specific mating combinations.  Generally for
profit functions with an optimum value with
respect to certain traits, disassortative mating
will result in greater mean profit than assortative
mating. We will now consider in detail the
question of mate selection within the context of
non-linear profit functions.

5, Mate selection for non-linear profit
functions

Moav (1966) first noted that one of the
causes of heterosis for profit is that profit is not
linear on the additive genetic scale. Once the
parents for the next generation have been
selected, in theory it should be possible with a
non-linear profit function to plan matings so that
the expected mean value of the objective function
in the next generation is greater than the
expectation by random mating. The following
example was given by Moav (1966) for the case
of swine, and corresponds to Type 3 non-
linearity defined above.

P, = K, - Kx; - Ky/x, (7]
Where P, is profit per pig marketed, x, is
number of pigs weaned per sow per year, X, is
age to a fixed market weight, K, is income less
costs independent of x, and x,, K, is costs
dependent on x,, and K, are fixed costs (feed and
non-feed) per sow. Assuming complete
heritability, the parental mean for profitability,
P,.. can be computed as follows:

P = (P, + PY2 = K, - Ky, +x5)/2 -
Ky(x1+%,0/(2%,,X1) (8]
Where the subscripts "s" and "d" refer to the
sire and dam values, respectively. Assuming
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additivity of the scale of measurement, the profit
value of the offspring, P, will be:

P, = K, - Ky(xa+%)/2 - 2Ky/(x,+%,0)  [9]
The difference between P, and P, is a measure
of the "non-linearity heterosis™, H,, and can be
computed as follows:

Ky(Xy %30
Hy=P,-P,,. = [10]
. 2%, Xu(X1s + X10)

Heterosis due to non-linearity was simulated
for dairy cattle by Allaire (1973), and
summarized recently by Allaire (1993). Thus,
by mate selection it should be possible to
increase E(f(x)) in the next generation over the
expectation with random mating. However, it is
very difficult to achieve this objective for dairy
cattle. The reasons are as follows:

1. We generally only have a vague idea of
the actual profit function, especially with respect
to those traits with maximum profit at
intermediate values, such as conformation traits.

2. If the mean of the population is not near
the optimum, profit will generally be close to a
linear function of the trait value, and the
“heterotic” gain possible by planed matings will
be minimal.

3. Heritability of nearly all economic traits
in dairy cattle is low to moderate. The expected
value from a specific mating will be the mean of
the parental breeding values. The female
breeding value, based chiefly on her own
phenotype, will have low reliability, and is
therefore highly regressed. Thus, even if the
putative dam is phenotypically extreme for a
particular trait, the expectation for the progeny
will be close to the mean with a prediction error
variance only marginally less than the phenotypic
variance. This is not the case for Type 1 non-
linearity defined above. If either the objective
function or the mean trait values are significantly
different for different groups of animals, then it
is analogous to a situation of complete
heritability.

4. The number of possible matings in a
population of any reasonable size is enormous
and constantly in flux. It is therefore not
generally practical to test all combinations to
determine the “economically best" mating
strategy. Several techniques have been proposed
to minimize this problem, such as linear
programming (Jansen and Wilton, 1985) and
Bayesian methods (Smith and Allaire, 1985).

In addition, as noted by Weller (1994),
unlike selection, any gain obtained by planned
matings is not permanent and cumulative.
Planned mating among a given group of putative
parents does not change the gene pool of the
population, and specific advantageous genetic
combinations, if achieved, "break down" each
generation. Thus, over the long-term, any gain

210

obtained by a specific mating strategy is worth
much less then the same nominal gain obtained *
by index selection. With a discount rate of 0.03, '’
- ¢orrected for inflation, and an infinite profit
horizon, the "nominal gain" from planned

matings is only worth 3% of the same nominal
annual gain from selection (Weller, 1994). It
should also be noted that disassortative mating
will decrease genetic variances, but under
realistic conditions, the effect will be
insignificant.

Despite these considerations, there is
considerable interest in planned matings. On the
positive side, it should be note that the cost of a
planned matings program is insignificant, unless
additional traits are measured specifically for the
program. Second, it is not necessary to achieve
the "economically best" strategy, just a strategy
better than the alternative of random mating.
Furthermore, if the strategy is based on only one
or two traits that are strongly nonlinear in profit,
it is not necessary to test all possible
combinations, but only to consider gradients.

In general, planned mating in dairy cattle has
been phrased in terms of finding the "best” sire
for each dam. This solves the problem of
evaluating all possible matings, but will
generally not produce an optimum solution,
Even if a single sire is best for all dams, several
sires will be used even in a relatively small
population, if for no other reason than to
minimize inbreeding. Thus, semen from the best
sires can be considered a limited resource, and,
in theory, systems analysis techniques can be
used to optimize allocation of this resource,
subject to the qualifications given above, and
considerations of inbreeding (Jansen and Wilton,
1985).

In the final section we will use the example
of somatic cell score (SCS) in the Israeli
Holstein population to estimate the expected gain
from planned matings relative to random mating
with respect to this trait. This example was
chosen because the profit function is nonlinear
with respect to this trait, heritability is about
15%, which is intermediate for most secondary
traits in dairy cattle, and evaluations are
available for all individuals.

6. Mate selection relative to scs, an example
with Israeli Holsteins

SCS is defined as the log base 2 of
cells/(0.01 pl) plus 3. Thus, the SCS of 100,000
cells/ml = 3. LSCS, a lactation measure of SCS
was defined as the mean SCS of all records
during the lactation corrected for parity, days in
milk, and month of test (Weller et al., 1992).
LSCS was computed only for cows with at least
four valid SCS records during the lactation.
Means, phenotypic standard deviations, and
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heritabilities for LSCS and milk, fat, and protein
production, are given in Table 1. Genetic and

: environmental correlations are given in Table 2.

. The genetic

correlation between SCS and
protein, the main criteria for selection, was
positive. Thus, selection for protein will
increase SCS. Since farmers in Israel have a
milk production quota, the objective function
was profit per kg milk in Israeli Shekels (IS),
P, computed as follows.

P, = [D, - 0.18)}M + 42F + 22.9P -
c)/M [11]
where D, is the milk price differential for
somatic cell concentration; M, F, and P are kg
milk, fat, and protein production per cow, and ¢,
is fixed costs per cow. ¢, was set at 5540 IS.
The following function, based on the payment
scheme for somatic cell concentration was used
to approximate P,.

D, = [0.031 - 0.06(SCS)** + 0.039SCS -
0.003828CS? [12]
D, will be maximum with SCS = 2.7, which is
only slightly less than the population mean. D,
and the actual payment scheme are plotted as
functions of SCS in Figure 1. Although miik
price does not decrease with SCS < 2.7 it is
assumed that SCS below this level is not
desirable (Coffey et al., 1986). Thus, at the
population mean P, was positive, which reflects
the current situation.

One thousand and six cows born during 1991
with evaluations for SCS and production traits
for two parities were considered for sire
selection. The means and standard deviations
for the evaluations of these cows are given in
Table 3. The base for the evaluations was cows
born in 1990. Since there has been positive
selection of all of these traits, the means of the
evaluations are positive. Twenty sires with the
highest evaluations for the index of production
traits with P, set at zero were considered as
mating candidates for these cows.

Two mating schemes were evaluated. In
both schemes, it was assumed that a single
female progeny was produced from each cow,
and that each sire was restricted to mating no
more than 20% of the cows. In scheme 1, the
five best sires were selected by evaluating the
expected mean progeny for P, by mating all
1006 cows to each sire and producing a single
female calf. The expected profit in the next
generation was estimated from equation {11]
using the expected mean trait values, assuming
additivity on the scale of the individual traits.
That is, the population mean for each trait plus
the mean of the sire and dam evaluations. The
mean genetic value for the next generation for
each trait was estimated as the mean of the
progeny evaluations obtained by mating the 1006
cows to the five sires with the highest
evaluations. In scheme 2, a linear programing

"transportation” algorithm (Taha, 1976) was
used to determine the optimum mating strategy
based on the expected progeny profit for each
possible mating as computed from equation [11],
subject to the restrictions given above.

The same five sires were selected by both
schemes. The mean genetic evaluations of these
five sires for the four traits included in the index
and the profit function are given in Table 4.
The expected means of the progeny obtained by
mating these five sires each to 20% of the cows
are also given. The sire means are greater than
the cow means for all four traits, and for the
objective function. By definition, the mean
value of the progeny for each trait was the mean

" of the sire and dam means. However, since the

profit function is nonlinear, the mean profit
function of the progeny, E(f(x)) = 0.12296, was
greater than the means of the sire and dams,
0.12155. E(f(x)) in this case was also slightly
greater than P, of the expectation of progeny,
f(E(x)) = 0.12251, computed as P, for the mean
of the sire and dam evaluations for the
component traits. The additive gain due to
genetic selection of the sires can be computed as
f(E(x)) of the progeny, less f(E(x) of their dams,
or 0.12255 - 0.08071 = 0.04084 1S/kg. The
mean value of P, of the progeny obtain with
planned matings was 0.12311, about 0.00015
IS/kg greater than the expectation with random
mating, or 0.4% of the gain obtained by
selection. This result can be contrasted with the
values close to 10% presented by Allaire (1993)
for theoretical cases based on complete
heritability and extreme non-linearity of the
objective function. Since, as noted above this
gain is not cumulative and permanent,
implementation of a planned mating scheme will
be difficult to justify, even if costs will be
minimal.

7. Conclusions

For non-linear profit functions there is no
uniformly "best" selection index solution. The
index that maximizes the expectation of the
objective function in future generations will be a
function of the selection intensity. Although
rather large gains by mate selection have been
obtained in theoretical simulations, the results
presented indicate that economic gains will be
minimal for traits with moderate heritability,
even if the population mean is close to the
economic optimum.
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Table 1.

Means, phenotypic standard deviations, beritabilities and economic values for the traits

included in the index.

Trait Mean Heritability
SCS* 0.15
Milk (kg) 9581. 0.25
Fat (kg) 301. 0.28
Protein (kg) 289. 0.23

* Somatic cell score,
standard deviation and heritability are for LSCS, the lactation measure of SCS.

The mean for this trait is the uncorrected mean of all test records, while the

Table 2. Genetic correlations (above the diagonal) and phenotypic correlations (below the diagonal)
for the traits included in the index.

Trait LSCS Fat Protein

LSCS - 0.019 0.200

Milk (kg) -0.065 0.416 0.754

Fat (kg) 0.051 - 0.596

Protein (kg) -0.030 0.672 -

Table 3. Means and standard deviations of 1006 cow evaluations, and correlations among cow
evaluations for the trait included in the index, and the objective function.

Trait Mean Correlations

Milk fat protein P.

LSCS 0. -0.062 -0.115 0.130 0.119

Milk (kg) - 8.2 0.492 0.710 0.423

Fat (kg) 4.3 0.610 0.724

Protein (kg) 2.3 0.913

o 0.0
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Table 4.

Means and standard deviations of the five sires selected and expected means of the
progeny for the traits included in the index, and the objective function.

Trait Mean Standard Progeny
deviation mean
LSCS 0.102 0.229 0.071
Milk (kg) 3226 448.4 165.4
Fat (kg) 43.8 14.5 24.1
.Protei.n kg 33.8 6.5 18.1
P, 0.1623 0.0045 0.12296
Figure 1. D, (—) and the actual payment differential (— ) for somatic cell concentration as
functions of SCS. )
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