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Abstract

Linear selection index rsumes that the objective frrnction is a linear function of thE trait values. In ac-tual

commercial breeding populations this is 
-rarely 

the case. For non-linear profit futtctions there is no
uniformly 'best' sotutions. Maximum genetic brogress will always be achiwed by a linear index,-but for
a non-tin'ear profit function, the index td-at resul's ii maximum geietic gain in the hrture will be a function
of the selection inteosity. For trais which are non-linear in the objective function, it should be.possible to-

increase the nean vatu-e of the objective function in the progeny by planned matings. The advanoge of
planned matings will be greatesi for traits witb bigh heritability and population mean close !o the-economic 

optimum. Resuls of a sinulation based on 1006 cows and 20 sires in the Israeli population
showed thai planned matings increased the mean profit value of the progeny by only O.4%_even tbough
the population was close to the optimum vatue for somatic cell score, and heritability was 0.15.

l. Inroduction

In nearly all animal breeding siuations, the
objective function consiss of several traits, each
with its own eronomic value. Hazel (1943)
defined the aggregate genotype, H, for a given
bdividual as a'y wbere a is the vector of
economic values of the traits included in the
objective function, and y is the vector breeding
values for these traits for the individual
considered. The elements of a are the partial
derivatives of the objective function with respect
to eacb trait included in this function.
Generally, only the vector a can be directly
observed, while y can be estimated ftom
phenotypic vatues on the individual and his
relatives on dte traits included in the objective
function and for additional conelated traits. In
tle most general terms, the goal of breeding is o
ircrease the population mean of H in frrture
generatiorB, by selecting the "best' individuals
as parenB for the next generation. However, as
will be seen below, 'The devil is in fte details!"

If the objective function is a linear function
of all trai6, then a will be a vector of constants.
In this case. Iinear selection index first derived
by Hazel (19a3) is clearly the optimum solution.
ln linear selection index all candidates for
selection are ranked on an index, I = b'x, where
b is a vector of index values and x is a vector of
rerords for the traits included in b.

Under the condition that g is a vector of
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cot$ants equal for all individuals, linear
selection index as formulated by Hazel (19a3)
a.lso has several desirable propenies in addition
o being the optimum criteria for ranking
candidates. However. in the 'real world' the
conditions assumed by linsr selection index for
a iue never completely met, and for all other
situations there is no uniforrrly "best' solution,
although numerous alternatives have been

orooosed. Linear selection index is least
ippiopriate when the objective function is
maximum at an intermediate trait value, close to
the population meal.

To explain why no uniforn y "best" solution
is possible for nonlinear objective functions, we
wil first summarize the important properties of
linear selection index. In the interest of brevity,
these propenies will be presented without proof,
a.lthough ieferences will be provided. We will
then eiplain why a is generally not a function of
constants, and the different R?es of functions
that can be encountered in this vector. Finally,
we will consider the different solutions dlat have
been proposed for nonlinear objeaive funciiors,
and disculs the strengths and weaknesses of each

alternative. Within this context we will consider
the specific questions of mate selection within
the context of breeding for an optimum. An
example will be given based on milk production
trais-and somatic cell concentration in the Isrreli
Holstein population. Notation throughout will be

consistent with Weller (1994).



2. kopeties of linear seleclion index

If the candidates for selection are also those
animals recorded for the trais included in the
objective function, then b, the vector of index
weighs for the optimum selection index is
computed as follows:

b = P'Ga tu
where P is the phenotypic variancecovariance
ma6ir, G is tbe genetic variance-covariance
matrix, and the other terms are as.defined
previously. PrG'r will be the estimated
breeding values for the individual traits, with x
measured relative to the rait means. If a is a
vector of constants then the selectioo index has
the following important propertic, summarized
by Henderson (1973) and Brascanp (19E4).

l. Define H. = mean for the aggpegate
genoqpe of tbe selected individuals. If
individuals are selected by ranking ou I = b'x,
then EQI) will be maximum as compared to any
other group of individuals of equal nuDber.

2. Of all possible linear fuoclioas of x, I =
b'x gives the maximum correlation with H
computed over all individuals used to compute P
and G.

3. Of all possible linear firnctions of x, I
minimizes E(tl-D', where I is any alternative
linear function of x.

4. Of dl possible functiorx of x, ranking
individuals on I maximizes the probability of
correct pairwise ranking on H.

5. Define f(x) = the objective function.
For a given selection intensity, f(E(x)) of the
progeny will be greatest if their parens are
selected based on I.

6. E(f(x)) of the progeny will also be
greatest with selection of parens on I. Although
propenies 5 and 6 appear very similar they are
not the same, as noted by loh and Yamada
(1988). In property 5 dle objective function is
maximized for the population mean in the next
generation. In property 6 the mean of the
objective function for each individual is
maximized.

7. The optimum selection index is
independent of the selection intensity. Thus the
same selection index will result in optimum gain
over the short- and long-term.

8. If the breeding values are computed by
selection index widr known trait means, or by
Best Linear Unbiased Prediction (BLUP)
methodology for unknown trait means, then the
optimum selection index can be computed as g'a,
where g is the vector of estimated breeding
values.

9. If BLUP genetic evaluations are
computed for all candidate for selection for all
traits, then the optimum index will be g'a for all
individuals, even if selection intensities and
accuracies are different for different groups of

animats, for example males and females.
As will bc seetr below, if e is not a vector of

coDstanB, no single criteria will bave all these
orobenies. As noted by ltoh and Yamada (198E)
ihe-main objeaive of-selectiotr is o maximize
E(f(x) in future generations. However, property
7 bolds onty for linear objective fuDctions. It
will be demonsrated that for non-linear profit
functions, the index that maximizes E(f(x)) will
be a function of tbe selection intensity'

3. Non-linear objedive functions

Various criteria have been suggested to
deternhe objective functions for agricultural
breeding. The most widely considered criteria
are maximum outputs less inputs (profit),
minimum inputs per unit outpus (efficiency),
maximum outputs per unit inputs (reorrn on
investnent) on either an economic or biological
basis (Harris, 1970). The relative merits of
tiese criteria were discussed in detail by Groen
(1989). In the remainder of this sody it will be
assumed that profit, defined as income less
erpenses is the objective function for agricultural
breeding, although nearly all of the following
atso holds for alternative objective functions.
Nearly all multitrait profit functions are non-
linear. Three type of nonlinearity will be
defined:

Type 1: Trais with different economic
importance for different groups of animals. For
example, dystocia is generally only a serious
problem for heifer calvings, while growth traits
are generally imponant only for male calves and
surplus females calves that are sold for beef.

Type 2: The profit function is maximum at
an intermediate trait value, In dairy cattle some
conformation traits are of this type, as is somatic
cell concentration, for which either too low or
too high a value is desirable (Coffey et al.,
1986).

Type 3: Traits for which profit is a
monotonic function, but not a linear function.
The situation that comes first to mind is payment
as joint function of two traits, for example
payment for milk with a price differential for fat
or protein percent. However, even for traits
which seem to be linear in profit, t}is will
generally not be the case over the long-term.
Consider the following simple situation based on
Moav (1973). Farmers are paid a constant price
per kg milk. A simple function of profit per
cow can be written as ibllows:

f(x) = 111 - cJ - cr I2l
where f(x) is profit per cow, x is milk
production per cow, i. is income per kg milk, c.
is costs of production per kg milk, chiefly food,
nilking costs, storage, transport and
refrigeration, and g is fixed coss per cow not
related to dIe quantity of milk produced. The

.4-
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derivative of this profit function with respect to x
is i. - c., which is a constant. Now assume that
the-farner bas a milk quota, and that rdter than
comoutins profit oer cow, he is interested in
profit per- k! milk. Profit per kg milk, f(x-) is
derived by division of equation [2] by x as

follows:
f(xJ = r. - c. - q/x I3l

Now'the derivative of f(x-) with respect to x is
c,/xt. As long as x is positive, profrt is still a
nionoonic function of r, but m longcr linear,
and the economic value of x is a function of x.
Since production quottts is apparently tbe naord
state 6f nature. oconomic vdu6 will not be
constants erren for production trais. (llowever'
as noted by Brascamp et al' (1985) in the
situation of izero profii', the economic value of
x will again be a constant).

4. Non-linear prolit functiotlsr linear vs. non-
lin€ar indiccs

If the objective function is non-linear, then
question arises as to which criteria should be
rised to rank candidates for selection? Several
alternatives have been considered, and lhese
were summarized by Goddard (1983). The first
altemative he considered was to compute dle
derivatives of objedive function setting the traits
values at the cunent population mears. By
definition the economic values will then be
comtants. This will work reasonably well if
chanees in the population mean due to seleoion
rt" jmall relative 

-o 
the value of the derivative,

and are frequently updated (Groen et al., 1994;

Dekken et al, 199t. However, this will not be
the case if the population is close to optimum for
some of Oe 

-uiits. 
Consider the following

theoretical profi t fu nction:
g1*1 = -1x-a)2 t4I

The dirivative of f(r) with respecl to x is -2(x-
a). and f(x) will be maximum when x = a. If
rca then the derivative is positive ard profit is

increased bv increasing x, while if x > a then the
derivative ii negative 

-and profit is increased by
decreasing x. Il selection intensity is high'.and
the oooulation is close m optimum' ra (lng

indivi<luals on a selection index computed using
the current mean trait value can result in a

decreosd mean profit value in the next
generation, A somewhat realistic example was

iresented bY Dekkers et d' (1995) for poultry
Lee oroduciion with an economic optimum egg

i"]sht. Once the population is close to the

opti-mum, an index based on the differentials
cimouted at the current population mean in each

eeneration will result in oscillation of mean egg

ieisht around the optimum'
-Probablv the most intuitive answer would be

to maximizi EGJ, the expected mql agg:rggqte

genotype of tire- setected individuals' If the
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restricted selection indices (Brascamp' l98a).
Althoush we often bave only a vague idea of the
orofit -function, and over the long-term the

hrnction will change; the breeder does know
that over the long+erm certain results are

undesirable, for example a genetic reduction itr
fertilitv. 'ihus, a linear index can be devised

that results in the desired change, or no change'

in cenain traits and maximum increase in others'

However, as noted previously (Gibson' 
. 
and-

Kennedv. 1990: Groen et al-, 1994)' restricted
indices'will generally not be economically
oDtimal for anY criteria.' We will n6w consider properties 5, 6' and 7

in detail. Goddard (1983) following Moav and

Hill (1965) assumed that proPerty 5, maximizing
f(E(x)) of the progeny should be primary. crrte^fla

for's6ection. 
' In this case, as Goddard (1983)

noted, a linqr selection index will always te
oDtimum. Genetic progress with a linear index

i6r a siven selection intensity is defined by a

multidi-mensional ellipse. For a given selection

intensiw and any direction of genetic progress'

this ellipse defines the maximum genetic change
possible for the population mean' and 

- 
wul

i wavs be greater ihan genetic progtess with a

ooo-iinear silection index. This is analogous to

the shonest distance between two poins being a
straisht line. Goddard also considered the

*rt-iUitiw that there is a optimum value for f(x)
Litttin rlte selection ellipse (Iype 2 non-

linearitv). In this case he argued that since

selection costs money, the optimum solutior
would be to decrease the selection intensity anL

thus reach the optimum population mean with ;'

linear index and a lower selection intensity'
Moav and Hill (1965) derived a graphic

method to determine tle vector of index

mefftcients. b, that maximize f@(x)) for two
traits and a given selection intensity. If the

profit function is non-linear, then b will be a

j
*
fl

!

il
.r,lr

I

obiective function is non'linear, then the index

thit maximizes E(HJ witl also be non'linear.
Tbere is no general analytical solution for all
Dossible obiective functions, but solutions have

been derived for the case of quadratic and cubic
obiective functions (Wilton €t al.' l96E;
Ro-uninsen. l97l). Although this solution is
inoitivllv opeatire, neither f@(x)) or E(f(x)) of
the orosinv will 5e maximized if their parents

are ia&tea bv E(HJ' Tbis was explained by
Goddard (1983), who usod the following
exanole. AssuriiE that f(x) = *2, ald that the
oooulation mean for x = 0. Then the
individuals with the bighest genetic merit will be
those with higNy positive and negative values

for x. If thesC individuals are selected as paretrE

and mated randomly, there will be no genetic

oroqress for x, However progress could be

ichieve bv selection for either high or low x.
Anotlier alternative that has been proposed is

'a



function of the selection intensity. For more
than two trait, b, can be derived from tbe vector
of expected geoetis gaios, {, which is also a
funaion of the selection intensity. { can be
computed iteratively (Itoh and Yanada, 1988;
Pasternak and Weller, 1993) as follows:

GPrG{6F(x + C)l/6{}i
:t+l- _ l<l

(Dtf(r + 0)l/6+l'GPrc{6[f(x + 0r)]/6d])'r'

wbere {r*t is 6e vector of geoaic gainJ at the
k+l iteration, 6l(x + {)1/6+ is the veclor of
partial derivativG of the objective function with
respect to the individual faits with the
poputation meatr set at r + lr for all trais
included ir the index, i is the selection intenslty,
and the other tenns are as defined above. The
veclor of index coefficients can then be derived
as follows.

b = (q/i)Gr{r 161

where o is the sundard deviation of the index,
and C. is the solution for { at convergence.
Note that both d. and b are functions of the
selection intensity.

Although both Moav and Hill (1966) and
Goddard (1983) considered this solution to be
the optimum solution for nonlinear objec'tive
functions, several recent studies disagree. The
rstsons are as follows:

l. This solution maximizes the objective for
a specific vector of genetic gaiDs d*ermined by
the population mean prior to selection and the
selection intensity. Thus, the optimum seleclion
index will be different for each generation, and
different from the selection index that would
maximize the gain in the objective function over
several geoerations. Dekkers, Birke, and Gibson
(1995) suggested maximizing total profit up to
the profit horizon, discounting expected profit in
each subseguent generation relative to the time
until the expected gain is realized. They also
developed numerical melhods to solve for the
index coefficients. They found that tle net
present value of profrt could be significantly
lower for an index that maximizes f@(x) after
ten generations of selection as compared to an
index that maximizes net preseDt value of profit
over ten generations. The problems with this
solution are first, that both the profit horizon and
the discounting rate are generally arbirary.
Second, the solution presented is only valid for a
situation of discrete generations, which is
definitely not the case for dairy cattle. Third,
past experience sbows that objective functions
tend to change over time. Founh, as noted by
Groen et al. (1994) genetic and phenotypic
variance matrices will change over time due to
selection and other factors. Finally, economic
values tend to change over time. Thus, selection
for maximum f@(r), or maximum net present

value, for several generations into the funlre for
dairy cattle, under the assumption that the
objective function remains coostant, would seem

to b6 rather fool{ardY.
2. As noted bi ltoh attd Yacrada (1988)

with a non-linear profit fundion, nraximization
for f(E(x)) is not tbe same as maximization for
E(f(xi). Equations [5] naximize the profit of
the expected mean trait values for the progeny'
while ihe objec-tive of selection is o maximize
the expeded 

- 
meatr profit of the progeDy. Itoh

and Yo-a,la (1988) were not able to analytically
derive the b vector that maximizc E(f(x)) for
anv function; but did derive approximarc
mJtbods. However, they also note that for
quadratic as well as linear profit functions
iraxinizing f(E(x) is equivalent to marimizing
E(f(x)). Since a wide range of profit funclions
can be approximated by either linear or quadratic

functions, tlris problem is probably not serious
under realistic situations.

3. As first noted by Moav (1973) for animal
breeding in general and by Allaire (1977) for the
specific case of dairy cattle, with a non-linear
piofrt function, E(f(x)) will also depend on the
ipecific mating combinations. Generally for
piofit functions with an optimum value with
iesoect to certain traits, disassortative mating
wi result in gpeater mean profit tlan assortative
matins. We will now consider in detail the
questi-on of mate seleclion within tbe context of
non-linear profi t fu nctions.

5. Mate selection for non-linear profit
functions

Moav (1965) first noted that one of the
causes of heterosis for profit is that profit is not
linear on the additive genetic scale. Once the
parents for the next generation bave been
leleaed, in theory it should be possible with a

non-linear profit function to plan matings so that
the expected mean value of the objective function
in the next generation is greater than the
expectltion by random mating. The following
example was given by Moav (1965) for the case

of swine, and corresponds to Type 3 non-
I inearitv defi ned above.

P, 
-= 

K, - K2xt - Kr/x, l7l
Where P, is profit per pig marketed, xr is
number of pigs weaned per sow per year, x, is

age o a fixed market weight, K, is income less

6ss independent of x, and xr, Kt is costs
dependent on x2, and K are fixed costs (feed and
non-feed) per sow. Assuming complete
heritability, the parenul mean for profitability,
P"., can be computed as follows:' Pn = (P, + P)12 = Kr - Kz(xt*xz)D -
Kr(x,.+x,)/@x,.xt) lEl
Where the subscripts's' and 'd' refer to the
sire and dam values, respectively. Assuming

2@



additiviry of the scale of measurement, the profit
value of the oftpring, P. will be:

P. = K, - Kr(x"+xJ/2 - 2KJ(xb+rJ l9l
The difference b€tween P. and P. is a measure
of the 'nonlinearity het€rosis', H.t, and can be
computed as follows:

I(r(xt;rrJ
H1 = P"-P- = u0l"d '" ' -2xr.xr.1x,.+xr;

Hetemsis due to mn-linearity wasa$.simulated
1973), andfor dairy carde by Allaire (1973), and

summarizid recendy 5y Allaire (1993). Thus,
by mate selection it should be possible to
iicrease E(f(x)) in the next generation over the
exDec{ation witb rasdom mating' However, it is
ve-qr difficutt to achiwe tlris objective for dairy
cattle. The rsNons are as follows:

l. We generally only have a vague idea of
tlre acnrd profit functioa, especially with respecr
to those 

- traits witb maximum profit at
intermediate values, such as coDformatioD traits.

2. If the mean of the population is not near
the optimum, profit will generally be close to a
linear function of the trait value, and the
"heterotic' gain possible by planed matings will
be minimal.

3. Heritability of nearly all economic traits
in dairy cattle is low o moderate. The expected

value liom a specific mating will be the mean of
the parentat breeding values. The female
breeding value, based chiefly on her own
ohenowoe. will have low reliability, and is
itrerefoil 

'highly 
regressed. Thus, even if the

putative dam is phenotypically extreme for a

panicular trait, the expectation for the progeny
will be close to the mean with a prediction error
variance onty marginally less than the phenotypic
variance. This is not the c:se for Type I non'
lineariw defined above. If either dte objective
functioi or the mean trait vatues are significantly
difrerent for different groups of animals, then it
is analogous to a situation of complete
h eritab il itv.

4. fhe number of possible matings in a

oopulation of any reasonable size is enornous
ini constantly in flux. It is therefore not
qenerallv practicd to test all combinations to
ietermirie 

' the "economically best' mating
stratecv. Several techniques have been proposed

to riinimize this problem, such as linear
orosrammins (Janseo and Wilton, 1985) and

baylsian mdhobs (Smith and Atlaire, 1985).
- ln addition, as noted by Weller (1994)'

unlike selection, any gain obBined by planned

matings is not permanent and cumulative.
Planned mating among a given group of putative

Darents does not change the gene pool of the

booulation, a$d specific advantageous genetic
'coinbinations, if alhieved, 'break down" each

generation. Thus, over the long-term, any gain
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will decrease genetic variances, but. under
realistic conditions, the effect will be
insimificant.

besoite tbese considerations, th€re is
consideiabte i erest in planned 'netings. On the
oositive side. it should be note that the cost of a
'olanned natings program is insignificant' unless

iaaitiona traG are measured specifically for the
Drosram. Second, it is not necessary to achieve

ihe-'economicatly besf strategy, just a strategy
befier than the 

-alternative of random mating.
Furthermore, if the strategy is based on only ole
or two traits tbat are strongly nonlinear in profit'
it is not necessary to test all possible

combinations, but only o consider gradiens.
ln qeneral, planned mating in dairy catle has

been of,rased in terms of finding the "best" sire
for eich dam. This solves the problem of
evatuating all possible matings, but. will
seneralli not produce an optimum soludon.
Even if a single-sire is best for all dams, several

sires will be used even in a relatively small
oooulation, if for no other teason tban to
'miiti*ize inbreeding' Thus, semen from the best
sires can be considlred a limited resource, and,

in theorv. svstems analysis techniques can be

used to'optimize allocition of this resource,

subiect to'the qualifrcations given above, and

considerations of inbreeding (Jansen and Wilton'
r98t.

ti ttre frnat section we will use the example

of somatic cell score (SCS) in the Israeli
Holstein oopulation to estimate the expected gain

ftom plainid matings relative to mndom mating
with iespect to this trait. This example was

chosen because the profit function is nonlinear
with resDect to this trait, heritability is about

15%, wtiich is intermediate for most secondary

trais in dairy cattle, and evaluations are

available for all individuals.

6. Mate selection relative to scs, an example
with kraeli Holsteins

SCS is defined as the log base 2 of
cells/(O.01 pl) plus 3. Thus, the SCS of 100'000
cells/nrl = 

'3. LSCS, a lactation measure of SCS

was defined as the mean SCS of all records

durine the laclation conected for parity, days in

milk.-and month of test (Weller er d" 1992).

LSCS was computed only for cows with at least

four valid SCS records during the lacution'
Means, phenotypic standard deviations, and

I



heritabilities for ISCS and milk, fat, and proteitr
production, are given in Table l. Genetic and

invironmental correlations are given in Table 2.
The genetic correlation b€tweea SCS aod

Drotein, tbe main criteria fur selection, was

iositive. Thus, selection for protein will
increase SCS. Since farmers ia Israel have a
milk production guota, the objective function
was profit per kg milk in Israeli Shekels (IS),
P-, computed as follows.

P. = t@. - 0.lE)M + 4.2F + U.gP -
cJlM llU
where D. is the milk price differential for
somatic cell concentration; M, F, and P are kg
milk, fat, and proteia production per cow, ard g
is fixed costs per cow. ft w8s S€t at 554() $.
Tbe following function, based on the payment
scheme for somatic cell concentration was used
to approximate P..

D. -- 10.031 - 0.6(scsfr + 0.039scs -

'trarsportation' algorithm (Iaha, 19?6) was
used o daermine 6e optimum mating strategy
basS on tbe expected progeny profit for each
pbssible mating as computed from equation [ll],
iubject o the restrictions given above.

The same five sires were selected by both
schemes. The me€! geoetic evaluations of tiese
five sires for tbe four traits includd in the index
and the profit function are given in Table 4.
The expected means of the progeny obtained by
mating these five sires ellcj tD 20% of the cows
are also given. The sire means are greater thatr
tbe cow meaos for all four raits, and fur the
objective function. By definition, the mean
value of the progeny for each trait was the mean

of the sire and dan means. However, since the
profit function is nonlinear, the mean profit
hrnction of the progeny, E(f(x)) = 0.12296, was
greater than the means of the sire and dams,
0.12155. E(f(x) in this case was also slighdy
greater than P, of the exPectation of progeny,
f@(x)) = 0.12251, computed as P. for the mean
of the sire and dam evaluations for the
component traits. The additive gaitr due to
gen*ic selection of the sire.s can be mmputed as

f@(x)) of the progeny, less f(E(x) of their dams,
or 0.12255 - 0.08071 = 0.M)84 lS/kg. The
mean value of P. of dre progeny obtain with
planned matings was 0.12311, about 0.00015
IS/kg greater than the expectation with random
mating, or 0.4% of the gain obtained by
selection. This result can be contrasted with the
values close to 10% presented by Allaire (1993)
for theoretical ca.ses based on complete
heritability and exreme non-linearity of the
objective function. Since, as noted above this
gain is not cumulative and permanent,
implementation of a planned mating scheme will
be difficult to justify, even if costs will be
minimal.

7. Conclusions

For non-linear profit fttnctions there is no
uniformly "best" selection index solution. The
index that maximizes the expectation of the
objective function in frtture generations will be a

funaion of the selection intensity. Although
rather large gains by mate selection have been
obtained in theoretical simulations, the results
Dresented indicate that economic gains will be
hinimal for trais with moderate heritability,
even if the population mean is close to the
economic optimum.
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D. will be maximum with SCS = 2.7, which is
only slighdy less than the population msn. D.
and the actual payment scheme are plotted as
functions of SCS in Figure l. Although milk
price does not decrease with SCS < 2.7 it is-assumed 

that SCS below this level is not
desirable (Coffey et d., 1986). Thus, at the
population mean P. was positive, whicb reflects
the current situation.

One thousand and six cows born during l99l
with evaluations for SCS and production trais
for two parities were considered for sire
selection. The mears and standard deviations
for tle evaluations of these cows are given in
Table 3. The base for the evaluations was cows
born in 1990. Since there has been positive
selection of all of these trais, the means of the
evaluations are positive. Twenty sires with the
highest evaluations for the index of production
traits with P. set at zero were considered as
mating candidates for these cows.

Two mating schemes were evaluated. In
both schemes, it was assumed that a single
female progeny was produced from each cow,
and that each sire was restricted to mating no
more tlan 20% of the cows. In scheme I, tle
five best sires were selected by evaluating the
expected mean progeny for P. by mating all
1006 cows to each sire ald producing a single
female calf. The expected profit in the next
generation was estimated from equation [lU
using the expected mean trait values, assuming
additivity on the scale of the individual trais.
That is, the population mean for each trait plus
the mean of the sire and dam evaluations. The
mean genetic value for the next generation for
each trait was estimated as the mean of dle
progeny evaluations obtained by mating the 1006
cows to dle five sires with the highest
evaluations. In scheme 2, a linear programing

2Lr
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Table l. Meaos, pbenot]?ic standard deviations,
included in the index.

beritabilities and economic values for the traits

Trait Mean Standard
deviation

Heritability

scs.
Milk (kg)
Fat (kg)
Proteiu ftg)

t.L2
9581.

301.
289.

1.06
1226..,

4t.2
12.9

0.15
0.25
0.28
0.23

. Somatic cell score. Tbe mean for this trait is the unconected mean of all test records, while the
standard deviation and heritability are for ISCS, the lactatioo measure of SCS.

Table 2. Genetic correlations (above the diagonal) and phenotypic correlations (below the diagonal)
for the trais included in the index.

Trait LSCS FatMilk Protein

LSCS
Milk (ks) -0.065
Fat (ks) 4.051
Protein ftg) -0.030

0.182

0.603
0.877

0.019
0.416

o.672

0.200
0.754
0.596

Table 3. Means and standard deviations of lfi)6 cow evaluations, and correlations among cow
evaluations for the trait included in the index, and the objective function.

Trait Mean Standard
deviation

Correlations
fat protein P.Milk

LSCS
Milk (ke)
Fat (kg)
Protein (kg)
P,

0.039
8.2
4.3
2.3
0.08071

0.r97
414.5

15.3
9.7
0.0214

4.62 4.il5
0.492

0.130
0.710
0.6r0

0.1 19
0.423
0.724
0.913
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Table 4. Me^"r rnd srandard dcviatiols of the fivc sircs selected and expected means of the
progeny br the traits included in thc indcr,, and 6e objective function.

Progeay
Dean

Staodard
deviation

IJCS

Milk (ke)

Fat (tg)

Protein ftg)
P.

0.102

3X2.6

43.8

33.8

o.lc;23

t229
4/,8.4

14.5

6.5

o.oo45

0.(}71

165.4

u.l
l8.l
0.12296

Figure !. D. (-) and tbe actual payment differential (- ) for somatic cell concentration as

fuoctions of SCS.
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