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ABSTRACT

Survival analysis accommodate e.g. left truncation and right censoring, In this paper
concepts dealing with survival data are introduced and an animal moder for survivar data
is proposed. Its potential use in animal breeding is discussed briefly.

I.INTRODUCTION

The classical linear model cannot accommodate records that are Ieft funcated and./or
right censored. Often incompletc rccords are discarded or some derived quantity is
considered, thereby loosing information, or incomplete records are projected to obtain
predicted records, which are considered observed in the analysis. The purpose ofthis
paper is to introduce conceps dealing with anarysis ofsurvival data and to ilrustrate
different mixed moders for survival data. Section 2 gives an introduction to survivar data
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and classical ways to model thcse. Scction 3 deals with gamma frailty models, that are

mixed modcls for survival data. Section 4 deals.with log normal frailty models, another

type of mixed models for suwival data, that from a gcnetic point of view seems

appealing. For Bayesian inference about the parameters in this model a Gibbs sampling

approach is outlined. Section 5 briefly comments potential uses in animal breeding.

2. INTRODUCTION TO SI.JRVIVAL ANALY$S

Survival analysis deals with survival data. These data are characterised by special

pattems of incomplcteness of data, of which right censoring and left truncation are two

important examples.

Example l. Assume that it is decided to study time from birth until first calving in a five

year period from January l'st, 1996 until January I'st,2001. It is assumed that date of

birth is recorded but date offirst calving is recorded from January l'st, 1996 only. Heifer

calves that arc born and have their first calving during this five year period have records.

Heifer calves bom in thc five ycar period, but having their first calf after January I'st,

2001 have right censored records. Conceming these animals, it is only known that age at

first calving is greater than age at January I 'st, 2001, i.e. age at (right) censoring. Heifer

calves, bom beforc January I'st 1996 and having their first calf in the five year period,

have left truncated records, i,e. these animals belong to the dataset conditional that they

were alive on January I'st 1996.

Example 2. Nielsen et al (1992) and Korsgaard and Andersen (1995) analysed length of

life of Danish adopted children and of their biological parents. Only families, where the

child was born between 1924 and 1926 and where the child was alive at his or her

sixteenth birthday, were included. Individuals, that did not die beforc analysing data'

have right censored records. Beyond being right censored, data are lcft truncated, because

individuals are not at risk ofbeing observed to die from age zero: childrcn belong to the

dataset conditional on being alive al their l6'th birthday and are considered to be at }:isk

from that age. Mothers are considered to be at risk from delivery and fathers from

conception assumed to take place 280 days before delivery.
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In many examples only right censoring is prcsent and the rcst of this papcr deals with

right censoring only.

Assume that data arc right censored, i.e. for some individuals it is only known that

lifetime I is greater than age. at censoring C,. Data of individual i is (1,6,) , i=I,...,n,

where \ = -i"{I,C'} and 6, is an indicator random variable equal to I if a lifetime is

observed (X = I) and 6, is equal to 0 if a censoring time is observed (V, = C,).

The distribution of lifetime can be uniquely determined by each of the following

intenelated quantities (Kalbfleisch and Prentice, 1980): the density function {(t), the

distribution tunction Eft), ttt" survival tunction S,(t) = l-4(t) = P(l >t), the hazard

tunction 1.,(t) or the cumulative hazard function A,(t)= Jl,,(u)au. Thc hazard function
0

is defined by

1.,(t) = rim-P(I < t + 
^ql' 4/(a0

i.e. for At small }",(t)At is approximately the conditional probability ofindividual i of

dying in the interval (t, t + At] given it was alive at time t.

In survival analysis most often the hazard function is modelled. The hazard function can

be non-parametric, semiparametric or fully parametic. The Cox model is a

semiparametric model. The hazard tunction is given by i,r(t) = fo(t)exp{x,B}, wtrere

l.o (t) is an underlying hazard function, xi is a vector of covariates of individual i, due to

which individual i's hazard functions deviate from the underlying hazard function, p is

the corresponding vector ofregression parameters. In the Cox model, the ratio of two

different individuals hazard functions is independent of time I i.e. for i * j,

1,,(t)/}.,(t) = exp{(:<; -><;)p} =";i,where ctu is a constant independent of time t. The

Cox model can be generaliscd in different ways, e.g. to allow for stratification, and to
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allow for time dependent covariates. An example, of a model with time dependent

covariatcs, is given in the next section. In fully. parametric models also l,o(t) is

parameterised. E.g. i,i(0 = fo(t)op{*ip}, with lo(t)= L; }. > 0, is the exponential

regression model.

3. GAMMA FRAILry MODELS

The models described in the preceding section were all fixed effects models for survival

data. Frailty models arc mixed models for survival data. In the gamma frailty model it is

assumed that there is a random variable, that is gamma distributed (or a linear

combination of gamma distributions), that acts multiplicatively on the hazard function.

The simplest case is the shared gamma frailty model - a sire modei for survival data. In

the shared frailty model, groups of individuals (or several survival times on the same

individual) share the same frailty variable; e.g. daughters ofa given sire could share the

same frailty variable.

A fully parametric shared gamma frailty model with time dependent covariates was used

to model true stayability of dairy cows in Ducrocq et al. (1988). True stayability is

defined as the aptitude of a cow to delay culling, and the models was

ru(t) = I'011;r .xp{tr"(t) + g,(t)}

with xo(t) = xp(lt)o-'; l,p>0. lu(t) is ttre trazard function ofthej'th daughter ofsire

i, conditional on the frailty of sire i: Z, = y. ; i=1,...,s; j=1,..., 1, . The underlying hazard

function, l,o(t), is that of a Weibull distribution. h.(t) and go(t) arc time dependent

covariates. h"'(t) is the m'th time dependent herd x year effect, which changes on

January I 'st each year, i.e. it is a function of calender time. go (t) is the time dependent

stage of lactation x lactation number effect corrcsponding to the k'th stage of lactation

(from 0 to 29 days after parturition, from 30 to 249 days or from 250 to the beginning of
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the ncxt lactation) and the I'th lactation number (lactations 1,2 and 3 or more). g is a

function of biological time.

4. LOGNORMAL FRAILTY MODELS

The frailty variable is oftcn assrimed to follow a gamma distribution or a linear

combination of gamma distributions, mainly for rcasons of rnathemat::al convenience,

In the log normal frailty model, the frailty variable is assumed to follow a log normal

distribution, i.e. conditional that frailty Z, of individual i equals z, , the hazard function

of individual i; i=1,...,n, is given by

l,'(t) = I'o(t)z' exp{x,P} (l)

where Z, =exp(Wi), W-N"(0,t) where W = (Wr,...,W"). If the baseline hazard

function, 1.00, is unknown, this is a semiparametric model. Tbe model given by (l) can

be generalised, like the Cox model, to allow for stratification and for time dependent

covariates.

In the rest ofthis section, a special case of(l), that essentially is an animal model for

survival data, is focused on.

Let \ = 3. +e,, i=I,...,n, *n.r. 
" 

= (ar,...,a") given o] is N"(O,lol) disributed and

independent of e=(e,,...,e"),thatgiven o] is N"(O,to]) distributed. A is the additive

genetic relation matrix. In this case (l) becomes

r, (0 = roft)",,p{a, + e,}expix,p} \z)

(3)logi.,(t) = loglo(t)+a, +e, + x,p

1G:



i.c. thcrc is an additive gcnetic part a, and an environmental part e, afrecting frailty in

the multiplicativc way given by (2) or in the log additivc way given by (3).

Inference is approached in a Bayesian way. The Bayesian approach rcquircs computation

ofthejoint and marginal posterior distributions of paramercrs and hyperparameterc.

These are intactable, but the full conditional distibutions ofthe parameters arc either

known distributions or proportional to some log concave distribution. This fact makes it
possible to use e.g. the Gibbs samplcr, a MCMC method, to sample from the joint

posterior distribution of the paramstcrs (e.9. Gelfand et al. (1990)). The empirical

distribution functions ofthe parameters can be used to make inferences about the

parameters in the model.

It is assumed that each component in p are independent and have an uniform improper

prior on [--"o; o] and that the prior for Ao, the integrated underlying hazard firnction, is

an independent inorement gamma processes with mean f(nr(t))= l'r(t) and variance

var(a'.(t)) = ir'.(t)/c where l'00 is a known tunction. The increments are

independent and gamma distributed: d.r\o(t) - f(cdA'(t),"t).h improper vague prior

is incorporated for Ao by letting c = 0. As stated already alo] - N"(0,Ao:) and

elol - N"(o,lol) . A priori ol is assumed to be IG(a,,b,) distributed and o] is

assumed to be IG(ar,br) distributed, that is inverted gamma distributions. These prior

distributions are chosen in close agreement with those used in earlier Bayesian analysis

ofsurvival data (e.g. Kalbfleisch (1978), Clayton (1991), Sinha (1993) and Gauderman

and Thomas (1994)), to the extend that the models agree.

A priori, it is assumed that that p, (a,o]), (e,o]) and the process Ao0 are mutually

independent. By this assumption, the joint posterior distribution of pararneters and

hyperparameters 0 = (n.(.), p,a,o],e,o]) given data (y,6) is given by
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where p(y,610) is the conditional likelihood of qi = (rf.(.),p,o],"1) Biven a and e. Thc

product p(AoQ)n(F)n("1"1)p("1){"1"3)p1"3; is the prior distribution of 0 .

Under thc assumptions, that conditional on a and e censoring is independent and non-

informative on e, p(V,Dle) is given by (e.g. Andenen et al. (1992))

dv, 6le) = il [(exp{a, 
+ e, + xip}1.(v, ))'' "*p{-(.*p{", 

+ 
", 

+ *,B})4(r, []

Given assumptions on censoring and on prior distributions, the full conditional posterior

distributions arc given as follows: Ao0 is another independent increment gamma

process, that jumps at failur€ times only. The full conditional distribution of each

component in p is proportional to a log concave distribution, similarly for each a, and

adaptive rcjection sampling (Gilks and Wild, 1992) can be used to sample from these

distributions. o] followsan IG(ry'Z+a,,b, +Zf(a'e-'a)) disnibutionand ol an

IG(ry'Z + ar, U, + Z/(e'ete)) distribution. Further details are given in a paper under

preparation.

5. POTENTIAL USE OF THE LOG NORMAL FRAILTY MODEL. BRIEFLY

Whether animals with high or low values of a, should be selected, depend on the nature

of the problem; this is exemplified in the following.

In the context of example l, assume that the breeding goal is to shorten time from birth to

first calving and that the model for time from birth until first calving conditional on a and

e is given by f, (0 = fo(t)z exn{x,p} , wtrere zt = exp{ai } exp{e,} . Considering the

genetic contribution only, a high value of exp{a, } or identical a high value of a, is

preferential. In a breeding program, animals with the highest values of a, are selected.
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In other cases a low value of a, is preferential.. Consider an cxample where the breeding

goal is to prolong length of lifc and that the model is given, conditional on a and e, by

I'G) = f.(02, exp{x,p}, where again zi = exp{ai }exp{e, }. Considering the genetic

part of frailty, a low value of a, is desirablc. A low value of a, gives a low conditional

probability of dying in thc ntxt small timc interval given alive right now - over thc whole

time interval. As an example considlr nvo animals i and j at time t with exactly the same

covariates and by assumption ofthe model the same underlying hazard function. Given

e; =e, =0 and a, =-3. =l then x,,(t)/I,(t)=exp{-z}, i.e.the hazardofindividualj is

only 0.14 of that of individual i's for all t eR..
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