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1. Introduction 
 
Accurate estimates of genetic parameters at a 
national level are needed for national genetic 
evaluations to obtain more reliable breeding 
values, but those parameters are also a key 
point in  international evaluations, as best bulls 
from countries with higher heritabilities  have 
more chance of better rankings, because 
information of daughters in their country are 
weighed more heavily. 
 

In Spain, national evaluations for 
production traits are calculated with a 
repeatibility animal model assuming 
heritability 0.25 and repeatability 0.4, while 
some other countries assume higher values for 
these parameters (France and Italy use 
heritability 0.30 and repeatability 0.50, USA 
0.30 (average) and 0.55,  and The Netherlands 
0.35 and 0.55). Various countries had raised 
heritabilities used in their national evaluations 
based on recent estimates, as reported by 
Bagnato et al. (1996) and Van Tassell et al. 
(1997) for first lactations data and by Janss and 
de Jong (1999) for first three lactations.  

 
Several estimates of heritability have been 

obtained recently based on Spanish data. 
Rekaya (1997), applying a multiple trait 
animal model to a subset of North of Spain 
reported decreasing heritabilities for first three 
lactations, 0.28, 0.24 and 0.23 for kg milk and 
0.25 0.22 and 0.22 for kg protein. Charfeddine 
(1998) analized first lactation data with a 
multiple trait animal model between 
production, type and longevity, reporting 
heritabilities of 0.31 for kg milk and 0.28 for 
kg protein. Ibañez et al. (1999), analysing first 
lactation data from all Spain with a sire model, 
found a much lower value for heritability of kg 

milk, 0.26, and, also, a great heterogeneity of 
heritabilities between regions, periods of time 
and herd production level.  

 
Hernandez et al. (1998) applied a Gibbs 

sampling squeme for estimating variance 
components (VC) with the  same data and 
model used in Spanish national evaluation of 
January 1998, considering up to 10 lactations 
per cow. They obtained heritability of 0.23 and 
repeatability of 0.46 for kg milk and values of 
0.22 and 0.46 for kg protein, much lower 
heritabilities than the ones found in previous 
studies.  Based on the same data set, 
Hernandez et al. (1999) estimated genetic 
parameters by region trying to verify if regions 
with a big increase in milk recorded animals 
were contributing to lower national estimate of 
heritability and if there was heterogeneity of 
heritabilities between regions, as found by 
Ibañez et al. (1999), but they couldn’t confirm 
this hypothesis. They suggested, following 
Pieramati and Van Vleck (1993), that lower 
estimates of heritabilities compared to previous 
results with reduced data sets could be caused 
by genetic groups reducing estimates of 
additive genetic variance, as earlier analysis 
did not include phantom groups in the model.  

 
Selected base animals has been reported to 

be a source of bias in the estimation of genetic 
variance (Kennedy et al., 1988; Van der Werf 
and De Boer, 1990). As reported by Jeyaruban 
and Gibson (1996), animal model estimates are 
subject to large and essentially unpredictable 
bias (-45% to –10%) when there has been 
selection  and pedigrees do not trace back to an 
unselected base generation, what could be of 
special importance in the Spanish Holstein 
population with a big increase in recorded 
animals in the last 15 years. As reported by 
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Koots and Gibson (1996), data structure and 
selection history among populations explain 
much of the residual variation in estimates of 
heritabilities among populations that is 
unrelated to sample size.  

 
Graser et al. (1987) suggested that, in 

presence of selected base animals, genetic 
variance prior to selection could be estimated 
considering base animals as fixed.  The basis 
for it is that estimation of genetic variance 
would be based on variance due to mendelian 
sampling variance and, under the infinitesimal 
model, this variance is assumed not to be 
affected by selection  (Bulmer, 1971). But  
Van der Werf (1992) found that, when treating 
base animals as fixed, bias still exist if progeny 
of these base animals was also selected, 
although this bias was reduced as more 
generations of data were include in the 
estimation. Van der Werf (1992) also 
concluded that considering base animals as 
fixed is equivalent to consider a different 
phantom group for each base animal. Inclusion 
of phantom groups in the model takes into 
account the effect of selection on the mean of 
base animals and it can reduce some bias in the 
estimation of genetic variance due to selected 
base animals (Pieramati and Van Vleck, 1993), 
but not completely. Van der Werf and 
Thompson (1992) separated estimation of 
genetic variance between selected base animals 
and non base animals for simple designs and 
described biases that may arise if assuming 
wrong reductions in the genetic variance of 
selected base animals.  

 
The objective of this study was to estimate 

genetic parameters for kg of protein with an 
animal model applying Gibbs sampling to a 
new model and with renewed data 
requirements, analysing the effect of including 
phantom groups in the model and the effect of 
excluding selected base animals when 
estimating the additive genetic variance.  

 
 

2. Materials and Methods 
 
2.1. Data 

 
Data used were 904851 lactations from 
calvings between year 1984 to 1998, with only 
10% of the data from calvings before 1991. 

Edits were the same as in national evaluations, 
but all records were projected to 305 days with 
the method used in official evaluations.  A 
minimum of 215 days in milk was asked for 
data to be included in the analysis and up to 
five lactations were used by cow. All animals 
with data were required to have at least an 
informative parent. No preadjustment for 
heterogeneity of variance was done. Pedigree 
file included 588203 animals.   
 
 
2.2. Model 
 
Factors considered in the model were as in the 
new model developed for national genetic 
evaluations:  
 
- Herd-Year-Imported-Season-Parity (86317 

levels), built with a flexible strategy in 
order to achieve a minimum of five 
observations per management group when 
splitting herd-year into imported cow or 
not, season and parity.  

- Age within lactation (1,2,3,4,5) nested to 
production system (444 levels) 

- Month of the year within lactation (1 or 
later) nested to production system (288 
levels) 

- Permanent environmental effect to model 
repeated lactation records  (420851 levels) 

- Additive genetic effect 
- Phantom groups 
 

Production system was defined as level of 
production on first lactation, region and period 
of time. Two regions (Cantabric Cornice and 
Rest of Spain) and two periods of time (before 
1995 and from 1995) were considered. Three 
levels of production were defined within 
region and period of time. 

 
Phantom groups were defined by sex of 

animal with unknown parent(s), sex of missing 
parent, periods of three years, country of origin 
(USA, CAN, NLD,FRA,ITA, DNK, AUT and 
rest of the countries) and region of origin in 
Spanish animals. Animals with both parents 
unknown were put into the same group. 
Because of problems in convergence of the 
Markov chain, two alternative strategies were 
used. In  strategy A, 200 groups were 
considered, with a minimum of 100 
observations per group. With strategy B, 
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groups were merged so that a minimum of 200 
animals was achieved and male and female 
parents were merged in the same group, 
resulting in 129 groups. Distribution of base 
animals through phantom group sizes is shown 
in Table 1. 

 
Table 1. Distribution of base animals through phantom  
group sizes, considering two different strategies. 

Percentage of animals assigned 
to each group 

 
Number of 

observations 
Per group 

Strategy A 
(200 groups) 

Strategy B 
(129 groups) 

< 200 20% 0 

200-500 35% 25% 

500-1000 20% 50% 

> 1000 25% 25% 

 
 
2.3. VC Estimation  

 
With a so big data set, estimation of genetic 
parameter was realised with a Bayesian 
analysis implemented via Gibbs sampling with 
software Maggic (Janss, 1998). A requirement 
for using it is animals must have both parents 
known or both unknown and, for achieving it, 
fictitious parents are added when there is only 
one parent known (138421 animals). Final 
number of base animals were 168090, that 
represents 23% of total animals in the final 
pedigree used in the calculations 

 
Scaled inverted chi-squared distributions 

were assumed as prior distributions for 
variance components. Flat priors were avoided 
for variances in order to prevent improper 
posterior distributions of these parameters. So, 
vague priors were considered as in Hernandez 
et al. (1998), with 4 degrees of belief (ν) and 
scaling factors (H) 237 for genetic variance, 
207 for permanent environment variance and 
501 for error variance. 

 
When sampling a new realization of genetic 

variance, scaling factor of the posterior  
conditional distribution, that is also an scaled 
inverted chi-squared distribution, is calculated 
as: 
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being n number of animals considered. 
Quadratic form u’A-1u is calculated as the sum 

of squared deviations of breeding values from 
average phantom parents solutions for all base 
animals plus twice the sum of squared 
deviations from parental averages for non-base 
animals. If not including phantom groups in 
the model, breeding values of base animals are 
deviated from cero.  
 

Four different estimates of VC were run: 
 

- Without phantom groups in the model 
- With strategy A of phantom groups 
- With strategy B of phantom groups 
- With strategy B of phantom groups and 

excluding selected base animals from the 
estimation of genetic variance. 

 
For eliminating the effect of selected base 

animals on the estimation of genetic variance, 
squared deviations of breeding values from 
average phantom parents solutions for  base 
animals  are not included  when calculing  
u’A-1u, which means that genetic variance 
estimate would be based on Mendelian 
sampling variance. This is possible because, as 
described before, all animals have both parents 
known or both unknown. Only slight 
modification of the software is needed for 
implementing this  approach. 

 
For each analysis a unique long chain of 

100,000 samples was implemented. The first 
20,000 samples were discarded as burn-in and 
the remaining samples were used in the 
computation of summaries from the posterior 
distributions of genetic parameters.  
 
 
3. Results and Discussion 
 
3.1. Convergence of Markov chains 
 
Estimates with strategy A for phantom groups 
did not converge at all. When 40000 samples 
were obtained, heritability had increased with 
each sample, from an initial value of 2 to 80% 
while permanent environment variance over 
total phenotipic variance decreased from 46% 
to 0% and repeatability had gone from 48% to 
80%. Residual variance remained fairly 
constant. Similar results were obtained with 
different starting values. Generating a lot more 
random numbers in each sampling of variances 
and phantom parents  (Janss, personal 
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comunication, 1998) didn’t have any positive 
result. Hernández et al. (1998) did not report 
convergence problems in the analysis, even 
though they had used phantom group strategy 
as defined for national evaluation, which is 
close to strategy A.  An explanation might be 
they did use different software and no fictitious 
animals needed to be added to the pedigree. 
Too many small phantom groups combined 
with big amount of fictitious animals added to 
the pedigree might be a reason for non 
convergence. 

 
With strategy B, excluding or including 

base animals, or when phantoms groups were 

not considered, convergence was achieved 
around 2000 cycles, based on visual inspection 
of a plot. 

 
 
3.2. Posterior means and standard 

deviations of the parameters 
 
In Table 2 are shown the posterior means and 
standard deviations of the parameters of the 
repeatability model for the three analysis that 
did converge without problems. 
 

 
 
Table 2. Posterior means and standard deviations (into brackets) for genetic parameters  

Genetic Parameters I (No  PGa) II (PGa-B) III ( PGa-B + MSb) 

Error Variance 584,97  (1,27) 584,99  (1,27) 584,87  (1,27) 

Permanent Enviromental Variance 287,64  (3,48) 284,82  (3,61) 253,07  (3,59) 

Genetic Variance 273,02  (4,75) 278,11  (4,93) 331,46  (5,38) 

Phenotypic variance 1145,64  (2,61) 1147,92  (2,70) 1169,40  (2,98) 

Heritability 0.2383  (0.0038) 0.2423   (0.0039) 0.2834  (0.0041) 

Repeatability 0.4894  (0.0014) 0.4904  (0.0014) 0.4999  (0.0015) 
aPG: Estimates including Phantom Groups 
bMS: Estimates based on Mendelian Sampling (excluding selected base animals) 
 
 

3.2.1.  Phantom groups effect 
 
Contrary to Pieremati and Van Vleck (1993) 
that reported an important reduction on genetic 
variance estimates when including phantom 
groups in the analysis, slight increases in 
genetic variance and heritabilities were found 
when including or not phantom groups in the 
model. Li and Kennedy (1994) also reported 
increase in heritabilties, but of a higher 
magnitude than the ones found here. So, 
differences in genetic parameters due to 
inclusion of phantom groups in the model 
might depend on structure of the data set used 
in the analysis. 
 
 
3.2.2. Effect of selected base populations 

on estimate of genetic variance 
 
Big changes were found in genetic variance 
estimates when excluding base animals. 
Inclusion of base animals in the estimation 

makes a decrease of 16% in genetic variance 
estimates and an increase of permanent 
environment variance. So, as it seems logical, 
permanent environment variance was 
overestimated when genetic variance was 
underestimated. This increase in genetic 
variance is the reason for increase in 
heritability, while repeatability increased only 
+0.01. Heritability equal to 0.28 is more in line 
with values assumed in national evaluation of 
main countries.  
 

About correctness of excluding selected 
base animals for estimating genetic variance, it 
seems it reduces bias in this estimate, but the 
problem is not completely solved, as selected 
base animals would be assigned higher genetic 
variance than the one that correspond to them, 
and that holds for the estimation procedure and 
for its application in national evaluation. About 
this last argument, it would be the same if 
genetic parameters had been estimated with a 
well structured data set in which pedigrees 
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trace back better to the unselected base 
population. A better approach would be to 
estimate different genetic variance between 
base and non base animals, as suggested by 
Van der Werf and Thompson (1992). As a 
more general approach, Alfonso and Estany 
(1999) made proposals for inclusion of 
different genetic variances for different groups 
of base animals into genetic evaluations, once 
these variances are known. An appropiate 
procedure for estimating those different 
genetic variances could be developed. 
Problems could be accuracy of the estimates 
and at least phantom groups should be grouped 
into “super-phantom groups” for estimating 
separate genetic variance for them.  

 
Janss and de Jong (1999) with Dutch data 

found much higher heritabilties (0.360) when 
applying a repeatability animal model for kg 
protein. Some reasons that may explain these 
differences are structure of lactational data, 
herd production level and more homogeneous 
environment in The Netherlands than in Spain, 
but no bias or little is expected from selected 
base animals in data set used by Janss and de 
Jong (1999), as they included only records 
from herds with 18 years of data and, so, 
pedigree of animals included in the analysis 
trace back better to the unselected base 
population.  
 
 
3.2.3. Other factors affecting VC 

estimates 
 
Besides data structure, an important factor for 
explaining some of the differences of 
heritability estimates between results shown 
here and those of Hernandez et al. (1998), 
Charfeddine (1998) and Rekaya (1997) in 
different sets of Spanish data could be number 
of lactations per animal. Estimates on a 
subset of North of Spain with calvings before 
1994 and high level of production (Pena, 
unpublished results, 1999), showed how 
heritabilities for kg milk drop down 
sustancially, from 0.31 to 0.256 when 
including one versus first three lactations, and 
drop to 0.244 when first 10 lactations were 
considered. This trend is also shown by Janss 
and de Jong (1999), as they found higher 
heritabilities for first lactations than for first 
three lactations (increases of 0.03 for kg 

protein and 0.06 for kg milk). Similar trends 
were reported  by Mrode and Swanson (1994) 
and  Rekaya (1997).  

 
Other factor that may explain some 

differences in heritability estimates is the use 
of a sire model versus an animal model. With 
the same data than the one reported in previous 
paragraph, Pena (unpublished results, 1999), 
found heritability of 0.358 when applying a 
sire model for first lactations, higher than the 
previously reported value of 0.31 for an animal 
model. Including only first lactations and a sire 
model could explain the higher heritabilities 
obtained by Ibañez et al. (1999) against ours 
without including phantom groups and 
including base animals. 
 

Preliminar analysis with Gibbs sampling on 
similar data sets than used in this work  
showed that modifications on data and fixed 
effects considered in the analysis do influence 
heritability estimates. When projecting all 
lactations to 305 days heritability increased 
+0.006 (2.7%) and repeatability +0.021 
(4.6%). Elimination of data from both parents 
unknown and none accurate birth date 
increased heritability in +0.01 (4.5%). When 
parity was defined within herd-year-imported-
season, heritability increased in +0.01 (4.5%) 
and repeatability +0.004  (0.8%). If lactations 
were pre-corrected by heterogeneity of 
variance as presently done in Spanish national 
evaluation following Ibañez et al. (1996), 
heritability increased +0.012 (5.9%) and 
repeatability +0.005 (1.1%). Reverter et al. 
(1997) also reported increases in heritabilities 
for different traits  (4.2% in average) when 
applying the multiplicative model of 
Meuwissen et al. (1996). Althought all this 
changes in heritabilities and repeatabilities are 
sligh and some of them may not be 
significative, they do show a trend. 
 

Data included in the analysis and fixed 
effects considered in the model may explain 
the slightly higher heritability found in our 
analysis including phantom groups, 0.2423, 
against results of Hernández et al. (1998), 
0.2215, that also included genetic groups in the 
model. Some differences between both data 
sets are those due to modifications in data 
planned for next national evaluation: lactations 
from animals with both parents unknown and 
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none accurate birth date are eliminated and all 
lactations were projected to 305 days, without 
considering some old lactations without test 
day data. Also only up to first five lactations 
per animal would be included.  

 
Heterogeneity of heritabilities within a 

country has been described by several authors 
(Dong and Mao, 1990; Hill et al., 1983; De 
Veer and Van Vleck, 1987; Ibañez et al., 1999;  
Dodenhoff and Swalve, 1999). Although some 
different factors as data structure and effect of 
selected base animals could affect those 
reported heterogeneous heritabilities, caution 
should be taken about it. If assuming constant 
heritability and inclusion of all available data 
is not affordable for VC estimation, 
heterogeneity of heritabilities within a country 
could affect VC estimates depending on the 
criteria for selecting the subset(s) of data to be 
used.  
 

Finally, as reported by Rekaya et al. (1999), 
correlations less than one within country is 
another issue and should be considered. 
 
 
4. Conclusions  and Suggestions 
 
Based on results presented here heritabilities 
and repetabilities of kg protein should be set to 
0.28 and 0.50, respectively, in Spanish national 
evaluation. As multiplicative model of 
Meuwissen et al. (1996) will be applied in 
Spanish national evaluation of production 
traits, genetic parameters should be updated 
considering it. Parameters for kg milk and kg 
fat should be estimated with the same 
approach.  
 

Given the importance and impact of 
accurate genetic parameters assumed in 
national evaluations, some guidelines should 
be stablished by Interbull for estimating them 
in countries participating in international 
evaluations (Bagnato et al., 1996). Some 
suggestions that may contribute to them could 
be the following some of them already 
followed in many VC estimations: 
 
 
 
 

1. Phantom groups should be included also in 
the estimation of variance components. 

 
2. Effect of selected base populations in 

stimates of genetic variance should be 
considered. If selecting the data set, data 
and, at least, pedigrees should trace back 
as much as possible to better represent the 
unselected base population. A simple 
strategy could be to select herds with many 
years of data. Otherwise partitioning 
genetic variance between base and non 
base animals could be an alternate 
approach for estimation of VC and routine 
genetic evaluations. 

 
3. Model used for estimating variance 

components should be the same than the 
one used in national evaluation. In 
example, if national evaluation uses all 
lactations, variance component estimation 
should include them also.  

 
4. Genetic parameters should be updated 

when modifications of data quality or 
model are to be implemented in national 
evaluations, in example if starting to 
project all lactations to 305 days, modified 
edits or changing definition of comparison 
groups. Some changes would not affect 
heritabilties but could affect other 
parameters as repeatability. 

 
5. Adjustment for heterogeneity of variances 

should be considered when estimating 
genetic parameters. 

 
6. Because of possible heterogeneity of 

heritabilties, if selecting the data set an 
additional criteria is that it should be 
representative of different environments 
or, better, different estimates be run for 
different environments. 

 
7. Movement towards test-day models with 

really complex variance-covariance 
structures may fit better the biology of the 
observations, but should not implicate to 
forgot evidence of heterogeneity of 
heritabilties and possible genetic 
correlations of less than 1 within country.  
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Finally, the effect of selected base 
populations could be also an important issue in 
international evaluations with MACE, but are 
of special importance when applying a Global 
Animal Model based on all available data from 
each country, both for estimating VC and for 
genetic evaluation. 
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