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Abstract

In animal breeding after selection of the breeding animals a second step is introduced: the
matching of a male and a female. This mating can occur randomly or assortatively.  Primary
reasons for the application of mating are exploitation of non-additive genetic effects
(preference of heterozygote), anticipating on non-linearity of profit functions (profit heterosis,
maintain or reach optimum level in progeny, and avoid extremes or specific classes), and the
desire to influence genetic (co)variances (reduce variability, increase variance to maintain or
increase possibilities for selection, restrain inbreeding, and effects on genetic correlations).
This paper gives an overview on definitions and applications and details some theory on the
influence of mating on genetic (co)variances.

1. Introduction

The Oxford Dictionary of Current
English defines ‘to mate’ as: “come or
bring together in marriage or for
breeding: fit well (with)”. In animal
breeding, this is exactly what occurs
when mating animals: fitting a pair of
(pre-selected) animals for breeding the
next generation. There are many
different ways in which mating can
occur. The most well known way is
probably the random mating. There are
two main ways in which random mating
can be defined (Jorjani, 1995):
•  the (pre-selected) animals are

mated without method or conscious
choice, and

•  the equal chance of mating with
any of the opposite sex, measured
by phenotypic correlation between
mates which should be zero in case
of random mating.

Neglecting the fact that it is very likely
that all finite populations will have
some degree of ‘matched’ (assortative)
mating due to accidentally mating of
related animals, assortative mating can
also be practised on purpose. It is this

type of assortative mating that will be
considered in this paper.

There are several reasons for
applying non-random mating systems
•  exploiting non-additive genetic

effects (e.g., heterosis or specific
combining ability),

•  exploiting or anticipating on non-
linear profit functions, and

•  influencing population
(co)variances.

This paper will briefly summarise
definitions and possible applications of
mating systems, and will provide some
details on the influence of non-random
mating systems on genetic
(co)variances.

2. Definitions

Mating is ‘making sire-dam
combinations’. Mating can be either
randomly (RM) or assortatively (AM).
When assortatively, the intent can be
either to mate similar sires and dams
preferentially (positive assortative
mating, PAM) or non-similar sires and
dams preferentially (negative
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assortative mating, NAM).  NAM is
often also referred to as dis-assortative
mating, corrective mating or
compensatory mating.

AM can be based on true (known)
genotypes of animals (e.g., gene or
marker haplotypes), or on phenotype of
the animals. In between these
possibilities is the criterion of predicted
breeding value. Another type of criterion
is the additive genetic relationship
between sire and dam, used either to
create closely inbred lines or to delay
inbreeding and reduce inbreeding trend
(e.g., minimum co-ancestry mating).

The degree of assortative mating is
measured by the marital correlation,
which is the correlation between mates
for their (true) breeding values for the
mating criteria (Lande, 1977; Gimelfarb,
1981). In case of AM on phenotype,
other authors use the phenotypic marital
correlation as a measure of the degree of
assortative mating; the genetic marital
correlation is equal to the product of the
phenotypic marital correlation and the
accuracy of selection (Crow and
Felsenstein, 1968; Baker, 1973).

Apart from the marital correlation,
the degree of assortative mating can also
be denoted by the fraction of the sires
and dams mated assortatively: 0 is fully
RM.

A specific form of AM is Mixed
Assortative Mating (MAM). MAM can
be used in case two separate traits are to
be combined in a specific way in the
offspring (e.g., mating sires with high
performance for growth and dams with
high performance for reproductive traits
and vice versa). MAM changes the
genetic correlation between traits over
generations; positive MAM (high trait 1
with high trait 2) increases, and negative
MAM decreases the genetic correlation
(Gianola, 1982; Campo and Turrado,
1997).

Another way of differentiating
between mating systems is in
hierarchical versus factorial designs.
With hierarchical or nested designs, sires

are mated to multiple dams and each
dam is only mated to one sire (or vice
versa, dams are mated to multiple sires
and each sire is only mated to one dam,
but this is not readily practised in
livestock breeding). With factorial or
cross classification designs, sires are
mated to multiple dams, and dams are
mated to multiple sires. In a complete
factorial design, all sires are mated to all
dams, and all dams are mated to all sires.

Generally, first a number of sires and
dams are selected based on their
predicted breeding value. Secondly,
selected sires and selected dams are
mated. Another option is that first all
possible combinations of sires and dams
are considered, and (potential) offspring
of all combinations are listed, and next,
(potential) offspring are selected. In this
second option, called ‘mate-selection’,
selection of sires and dams is only an
implicit step (Allaire, 1980; Kinghorn,
1987). In both options, selection and
mating are in principal independent
processes. In practice, however,
selection and mating often interfere. A
very common example is where sires are
pre-selected, and next mating to dams is
partially based on non-random, but
rather on predicted breeding values,
resulting in more dams mated to better
sires. In this example, the average
predicted breeding value of pre-selected
sires will be lower than the weighted
(according to frequency of mating)
average of the mated sires.

3.  Applications

Primary applications of assortative
mating systems are in exploiting non-
additive genetic effects, anticipating on
non-linearity of profit functions, and
the desire to influence genetic
(co)variances.
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Non-additive genetic effects

With the existence of dominance
genetic effects, the heterozygous
genotype is favoured over the
homozygous genotypes (especially in a
situation of over-dominance).
Systematic crossbreeding, i.e. a mating
system combining sires and dams from
different lines, can increase the
frequency of heterozygous genotypes.
Exploiting this genetic heterosis is part
of the increased efficiency when using
specialised sire and dam lines (Moav,
1966). Systematic crossbreeding can
also exploit other non-additive genetic
effects, such as epistatic effects, or
more general, exploit general or
specific combining abilities of lines
(Falconer, 1989).

The within-population equivalent
of systematic crossbreeding is the
selection and directional use of
individual animals with high
dominance genetic effects  (clone line
selection; De Boer, 1994) or high
within-line specific combining ability.
For the same purposes, but addressed
from a reverse angle, avoiding
homozygous genotypes is practised to
avoid inbreeding depression.

In current sire-advising
programmes, minimum co-ancestry
mating is used not to reduce population
inbreeding trend, but primarily to
avoid that animals at commercial
production farms will have extreme
high levels of inbreeding, in order to
avoid high inbreeding depression and
high frequencies of genetic defects by
(deleterious) recessive alleles.

Non-linear profit
Systematic crossbreeding of

specialised sire and dam lines as a
mating system can be used to
anticipate on non-linear, multi-trait
profit contours (Moav, 1966). Also
within-population, planned mating can
increase the mean value of the non-
linear profit in the progeny by either

aiming at maintaining or more closely
reaching the optimum (population)
level in progeny. The advantage of
planned mating will be greatest for
traits with high heritability and
population mean close to the economic
optimum (Weller et al., 1996). Apart
from this advantage when generally
considering continuous, non-linear
profit functions, planned mating can be
addressed to avoid extremes or specific
classes or ranges of phenotypes with
discontinuous profit functions. As an
example, a commonly practised mating
system is the use of a calving ease bull
on heifers to avoid dystocia
(Meijering, 1986).

Influence genetic (co)variances
A general feature of mating

systems is that they can be used to
influence variation in the population. A
common practice is to use systematic
crossbreeding to reduce variability of
the product, especially in meat type
animals. But likewise mating can be
used to reduce variability in animal
characteristics, for example at herd
level (like reducing variability in
milking speed to enhance efficient
milking).

Mating systems can be used to
increase within-population variance to
maintain or increase possibilities for
selection and mating in future
generations. Mating can also be used to
split a population in highly inbred lines
to redistribute population variance.
Advantages are in selecting specialised
sire and dam lines with a uniform
genetic background. Also, in theory,
with many highly inbred lines, total
population variance will increase
(Falconer, 1989).

Related to maintaining within-
population variance is reducing
inbreeding trend. Mating systems
(especially minimum-co-ancestry
mating) can be used to reduce
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inbreeding trends in populations
(Caballero et al., 1996), or likewise to
increase genetic trend at a
predetermined, constrained rate of
inbreeding in the population (Sonesson
and Meuwissen, 1999). Reducing
inbreeding trend refers to reducing a
surplus of homozygous genotypes
relative to parental, base population
allele frequencies (FST). Also Hardy-
Weinberg dis-equilibrium (relative
surplus of homozygous genotypes
relative to allele frequencies in the
current population, FIS) can be avoided
by specific mating systems. This is not
only practised in livestock breeding,
but also natural mating systems to
adhere variability are observed (e.g.,
Wenink et al., 1999).

Breaking or enforcing genetic
correlations can be accomplished by
mixed assortative mating (MAM,
discussed above; see also Tallis and
Leppard, 1988).

4.  Effects of mating on population
variance

The variance among total additive
genetic values can be written as the
sum of the (co)variances of the n
component genes/loci,
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where, i and j are individual genes.
The additive genetic variance (σ²Ai) at
one gene with two alleles is (Falconer,
1989)
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with alleles A1 and A2 at a certain
locus having frequencies p1 and p2, and

allele substitution values p2α and -p1α,
respectively.

Let f be the correlation between
homologous alleles, k the correlation
between non-homologous alleles on
the same gamete, and t the correlation
between non-homologous alleles on
different gametes:

     f
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       k

               t
     Bi          Bj

The covariance within a pair of
alleles is p1p2fα2, and there are n pairs.
The covariance between homologous
alleles on the same (maternal or
paternal) gamete is p1p2kα2 and there
are n(n-1) combinations. Likewise,
there are n(n-1) pairs of non-
homologous alleles on different
gametes with covariance p1p2tα2.
Putting all this together (Crow and
Felsenstein, 1968; Baker, 1973)

σ²A = 2n p1p2α2 [1 + f + (n-1) k + (n-1) t]

In fact, f is a measure of Hardy-
Weinberg dis-equilibrium, and k and t
are measures of linkage dis-
equilibrium. Without further
specification, f, k and t are usually
assumed to be zero, which means that
σ²A reduces to 2n p1p2α2.

Let f*, k* and t* be the correlations
in the (selected) parental fractions of
the population. Selection induces
gametic phase linkage dis-equilibrium
(Crow & Felsenstein, 1968;  Bulmer,
1971; Baker, 1973). When no
recombination occurs, k’ in the
progeny (the correlation between
alleles on the same gamete) will be
equal to k* in the parental fractions. In
case of recombination fraction c,
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k’ = (1-c)k* + c t*.

Correlation f* and t* will be broken
down during gametogenesis. However,
with assortative mating, the correlation
between gametes joining in offspring
depends on the relative magnitude of
the marital correlation r between mated
sire and dam (Crow and Felsenstein,
1968)

f’ = t’ =
         r / 2n [ 1 + f* + (n-1) k* + (n-1) t* ].

According to the sign of r, mating will
result in relatively higher or lower
frequencies of homozygous genotypes,
and consequently more or less additive
genetic variance in the population.

Bulmer (1971) expanded the
principle of linkage dis-equilibrium as
a result of selection to an infinite-locus
model, and derived formula to
calculate an equilibrium variance loss:
the ‘Bulmer effect’. Selected
individuals, parents for the next
generation, represent one tail of the
distribution of the index selected for. As
a consequence, the variance on the
index in the selected parents must be
less than that of the whole population

σ σ γσ γ σA A IH A IH Ar r2 2 2 2 2 21* ( )= + = +

where r²IH  is the accuracy of selection
and γ = -i (i - x), with i is the selection
intensity and x is the corresponding
deviation at the point of truncation
from the population mean. The
additive genetic variance in the
following generation is represented by
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where subscript t denotes the
generation number, subscript F an M
denote populations of females and

males, and superscript * denotes the
selected population. σ²A0 is the original
additive genetic variance in the base
population and represents Mendelian
Sampling variance. With prolonged
selection over generations, the
equilibrium reduction in additive
genetic variance will be equal to

[ ]D r r requilibrium P IH IH IH= ⋅ − + − − −σ γ γ γ2 2 2 22 1 1 4 1 2 1( / ( )

Following the theory of Bulmer
(1971), Tallis & Leppard (1987)
expanded this equation to a situation
incorporating assortative mating; with
assortative mating calculation of γ is
changed to γ ” which is

γ γ γ γ γ" ( ) /= + + + +M F M Fr2 1 1

where subscript M and F refer to
selected male and female parents.

As a general conclusion, the
mating system will determine the
correlation between alleles in joining
gametes, and thereby influence
variance components (additive,
dominance, epistatic, and their
covariances; Jorjani, 1995).
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