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Abstract

We present an alternative to the classical way of combining breeding values into a total
merit index, traditionally based on selection index principles. An approximate multiple
trait BLUP sire model is proposed, using deregressed proofs or preferably daughter
deviations to build the right hand side of the mixed model equations. The advantages of
the proposed approach are: a) a unique definition of the weight for each individual trait in
the total merit index (independent from the accuracy of each index); b) new estimated
breeding values for each individual trait, optimally combining direct and indirect
information; c) the possibility to account for residual covariances between performances
of a same animal (in contrast with MACE methodology). An algorithm for an easier
solution of the multivariate system of linear equations is proposed as well as a possible
extension to the computation of female EBVs. This approach is still to be implemented
and tested.

1. Introduction

A total merit objective function for
French dairy breeders combining
production traits and functional trait
information is under development
(Colleau et al., 1999). It includes genetic
values on traits such as milk yield, somatic
cells count (SCC), female fertility and
functional longevity. These traits are
obviously correlated (e.g., see Larroque et
al., 1999). Most functional traits exhibit
rather low heritabilities, leading to genetic
evaluations with low reliabilities for
young sires. Fortunately, early predictors
of, e.g., SCC or functional longevity can
be found in the long list of type traits
recorded in each breed. An optimal
combination of these pieces of information
is needed.

The optimal estimation procedure is
known to be the multiple trait BLUP
evaluation (MT-BLUP): see the reviews
by Van der Werf et al. (1992) and
Ducrocq (1994). It provides an improved

accuracy of the evaluation on each trait
through an increase of the amount of
information, an improved data structure
through better connectedness and a
correction of biases due to selection on
correlated trait. Finally, optimal weighting
factors to be used in the total merit index
are precisely the economic weights
themselves: the multiple trait evaluation
automatically accounts for the fact that
traits are correlated and that the relative
accuracy of the evaluation for each trait
varies between animals. This latter
property is extremely interesting. Note
that MT-BLUP EBVs for predictors are
not considered in the total merit index.

However a unique multiple trait BLUP
evaluation on all relevant traits together,
although conceptually possible, is not
routinely feasible. Traits are described by
very different models. Some of these
models are not linear; others involve
repeated measures and/or more than one
genetic effect and above all, the amount of
data to manipulate in national evaluations
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is tremendous. Despite huge and fast
improvements of computing power,
computational considerations are still a
limiting factor. Furthermore, a large set of
dispersion parameters should be known or
estimated accurately before being included
in such an evaluation.

Still, most countries are providing total
merit indices, approximately combining
indices with various accuracies on
correlated traits. For example, correlations
between traits or differences in reliabilities
between bulls are ignored in the current
total merit index in France (ISU), which
combines linearly the aggregate
production index (INEL) with the overall
type and milking speed indices. Low
correlations and rather homogeneous
reliabilities for all traits justified this. This
is obviously no longer the case with the
new set of functional traits considered.

A possibility is to rely on index
selection theory to account for genetic and
phenotypic correlations between traits and
unequal information on different traits.
But this approach quickly becomes
complex if one wants to consider all
possible cases (variable family structures).
However, some information is lost when
the contributions from related animals are
not systematically considered. Finally, the
nested use of selection index theory (e.g.,
to compute a more precise functional
longevity index and then to compute the
total merit index) may be questionable.

Another recent approximation that has
been suggested and used (e.g., Druet et al.,
1999; Larroque and Ducrocq, 1999) is the
extension of MACE (Multiple trait Across
Country Evaluation) methodology
(Schaeffer, 1994). This is a very attractive
alternative in order to “recycle” the results
of (deregressed) univariate proofs,
characterised by
1. an exhaustive use of the pedigree file,
2. an elegant way to include proofs for

traits described by non-linear models,
3. the possibility to account for genetic

correlations between traits and
heterogeneous reliabilities.

However, it relies on a zero residual
correlation between any pair of traits, a
natural assumption when different traits
are recorded in different countries, i.e., on
different animals. However, the traits
considered both for inclusion in the
selection objective and for prediction are
observed on the same animals. Then the
residual correlations can differ
substantially from 0 for some pairs of
traits (Larroque and Ducrocq, 1999).

This paper proposes an improved
version of MACE, where residual
correlations are considered. In section 2,
the general, “correct” case will be
presented as a starting point for several
successive approximations, detailed in
section 3. This will illustrate where and
how information is lost, for the sake of
computational feasibility and simplicity.
Section 4 proposes an algorithm for an
easier solution of the approximate multiple
trait evaluation. The extension of the
approach to a cow evaluation will be
discussed in section 5.

2. Multiple trait evaluation of functional
traits (traits in the objective function
and early predictors)

2.1. Notations

Consider the general situation
encountered in multiple trait evaluation.
For each trait i, i=1,..t, assume that the
data vector yi can be analysed using a
linear model with only one random effect
other than the residual ei:

ieiuiZibiXiy ++++++++====   

[1]
where, as usual, bi and ui represent the
vectors of fixed and random effects, Xi
and Zi are the corresponding incidence
matrices.

Let the (co)variance matrices be written
as:
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{{{{ }}}} {{{{ }}}} t,..1j,i Covt,..1j,i ================ )'ju,i(uijGG

{{{{ }}}} {{{{ }}}} t,..1j,i Covt,..1j,i ================ )'je,i(eijRR

and j ,i  all for  0Cov ====)'je,i(u .

Define a similar partition for the inverse
matrices of G and R : {{{{ }}}}ijGG ====−−−−1  and

{{{{ }}}}ijRR ====−−−−1 .
The submatrices ijG  and ijR  depend on

the pedigree and data structures and on
0G and 0R , which are functions of the

genetic and residual (co)variance
parameters. The notation used here is
general: the vector ui may represent either
a sire effect (later referred to as si) or an
animal additive genetic effect (ai). In the
former case, elements gij and rij of 0G  and

0R  are ijg,  41ijg σσσσ====  and

ije,ijg,  43ijr σσσσ++++σσσσ==== .

2.2. Correct multiple trait BLUP
evaluation

Let’s assume that, whatever the trait
considered, all elementary records that
would be used in the univariate evaluation
are available and that the linear model [1]
can be used to describe them. The general
form of the MT-BLUP mixed model
equations is:
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3. Various approximations to MT-
BLUP

3.1. Approximation 1: multiple trait
evaluation using preadjusted records

As previously indicated, the models
used for each trait are so different and the
amount of information is so large that one
may want to get rid of the step consisting
in estimating fixed effects. Instead of
manipulating raw data, the evaluation
system is then based on preadjusted
records:
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[3]

where ibiXiy  *
iy ˆ−−−−==== and the ib̂ ’s are

obtained from the univariate evaluations.
In practice, as the iu ’s are not necessarily
centered on the same basis, a general
mean vector µµµµ={µi} must be included in
the mixed model equations and estimated
together with the vectors iu .

Note that this first simplification could
be used to estimate in an approximate way
(because it is based on preadjusted
records) both the genetic and residual
correlations between traits at least on a
reduced file and for traits described by a
linear model. However, this procedure is
not adapted to non-linear traits (for which
the assumed linear model is not valid) and
needs some adaptation for traits for which
repeated measurements are available
(production traits, SCC, female fertility).
Also, the necessary knowledge of all
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individual preadjusted records is quite
demanding.

3.2. Approximation 2: use of deregressed
proofs

An evaluation of males only - through
a sire model – advocates the use of a more
concise information at the sire level. Let
si,m represent the effect of a particular sire
m for trait i. Let nij,m be the number of
daughters of sire m, with performances
actually recorded both on trait i and on
trait j (for simplicity, we will note ni,m =
nii,m ; also, whenever possible, an
equivalent number of daughters should be
preferred, to account for loss of
information due to the estimation of fixed
effects).
Define Nij = diag{nij,m} ; 1−−−−

0G ={gij}i=,j=1..t

and similarly 1−−−−
0R ={rij}. Then, if we

expand the vectors of sire effects so that
they have all the same dimension, the
typical expression in the coefficient matrix
of the mixed model equations in [3] can be
simplified into:

1 AijN   ijGjZijR'
iZ −−−−++++====++++ ijgijr

[4]
where A is the relationship matrix
between sires. At the same time, if iy~ 
represents the vector of deregressed proofs
of all sires for trait i, the right hand side in
[3] can be approximated as:

(((( ))))
(((( )))) ~ijr~ ii

iir                 """

"""

++++++++++++++++

≈≈≈≈++++++++++++

jyijNiyN

*
jyijR*

iyiiR'
iZ

[5]
and the mixed model equations become:
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[6]

The important advantage of this
approximation is that there is no longer the
need to work at the individual
performance level. All the information
about sire m is summarised in its
deregressed proofs and the nij,m’s. A
potential limitation is that, for each bull
and for all combinations of traits, the
figures nij,m must be known. This may
require the handling of large files
summarising information on all traits for
all cows. This drawback can be
circumvented via two further
approximations that we will present now.

3.3. Approximation 3: approximate
computation of the number of animals
recorded both on trait i and trait j

To avoid the actual computation of
nij,m, one may assume that all the
daughters of a particular sire m have the
same probability to be recorded on any
trait. Let *

mn = maxi(ni,m), i.e., the largest
number of daughters of sire m recorded on
a particular trait. This trait will usually be
milk production. Then, the probability that
a given daughter of sire m is recorded on
trait i is simply pi,m = ni,m / *

mn . The
probability that a cow is recorded on both
traits i and j is pi,m pj,m and the number of
daughters recorded on both traits is:
 nij,m = (p i,m pj,m) *

mn

= ni,m nj,m / *
mn [7]

Of course, there are combinations of traits
when this expression would be known to
be invalid, but then the approximate value
can easily be replaced by the correct one.
For example, if i and j are type traits, one
expects nij,m = ni,m= nj,m.

3.4. Approximation 4: no residual
correlations

If one can assume that residual
correlations between any combination of
traits i and j are small enough so they can
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be ignored, or equivalently, that traits i
and j are recorded on two distinct batches
of daughters (nij,m=0), then the MT-BLUP
mixed model equations are further
simplified into:
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[8]
with:

 m,iy~m  m,in ~ ∑∑∑∑====iyiiN [9]
This is exactly the model, which is
considered in the MACE approach. Such
an approximation is indeed perfectly valid
when traits i and j are recorded in different
countries, but may result in biases in the
framework considered here (Larroque and
Ducrocq, 1999).

It is worthwhile noting that
intermediate options exist. In particular,
the assumption of zero residual correlation
between two type traits recorded
simultaneously on the same animal is
often not acceptable. For such
combinations of traits, accurate estimates
of residual correlations usually exist and
could be used, while the choice of rij=0 is
kept for other combinations (e.g., somatic
cell counts and fertility?).

2.6. Where to stop?

Which of these approximations should
be promoted? Obviously, there is a
balance to be found between ease of
computation and accuracy. If a good data
base exists and/or in the long run,
approximation 1 is probably the one
which should be envisioned. On a shorter
horizon, our conjecture is that
approximation 2 is “better” (less
assumptions => less bias) than the MACE
approach (approximation 4). This needs to
be tested: are the differences between the
two large enough to justify the extra
computational effort ?

4. An EM-type algorithm for the MT-
BLUP evaluation

4.1. MT-BLUP on preadjusted records

An attractive feature of system [3] is
that it implicitly describes a model for
which all traits are analysed using the
same linear model (same fixed effect = µµµµi;
only one random effect other than the
residual). Animals are not necessarily
recorded on all traits but the extension of
the canonical transformation (Thompson,
1976; Quaas, 1984) to the missing value
case proposed by Ducrocq and Besbes
(1993) and Ducrocq and Chapuis (1997)
can be implemented. The underlying idea
is that the missing values are iteratively
replaced by their expectation given the
current values of all parameters. Then, the
resulting system is solved as if they were
not missing, i.e., applying the canonical
transformation. This technique leads to the
same solutions as the original multiple
trait system and has a formal justification
based on the Expectation-Maximisation
(EM) algorithm of Dempster et al. (1977).
Substantial benefits are expected: such a
transformation leads to decreased
computing requirements, faster
convergence and simplified (univariate)
programming.

Let’s first extend the notations. In the case
of no missing values, let *

q,my be the

vector of all preadjusted records that
represents the typical contribution to the
right-hand side of [3] of a daughter q of
sire m. In practice, some traits may be
missing. Denote as δ the list of indices
describing the combination of traits
actually recorded on cow q and and δ− the
list of the missing ones, i.e., δ + δ−={1,2…
t}.
Decompose the vector *

q,my  into the sum

of two vectors, distinguishing between
observed and missing preadjusted records:
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 *
q,m,

*
q,m,

*
q,m −−−−++++==== δδ yyy [10]

For example, if t=3 and δ ={1,3}, then
δ−={2} and

*
q,m,δ

*
q,m,δ

0

*
qm,2,y

0

*
qm,3,y

0

*
qm,1,y

*
q,m -yyy ++++====
















++++



















====

[11]
i.e., records *

qm,1,y and *
qm,3,y  are

observed whereas *
qm,2,y is missing.

To implement the EM algorithm, consider
that {{{{ }}}}*

q,m * yy ====  is the complete

(augmented) data vector. Given s, the
vector of all sire effects on all traits and µµµµ,
the vector of grand means, y* follows a
multivariate normal distribution with
mean:

 sNtIItI  )*( )( ⊗⊗⊗⊗++++µµµµ⊗⊗⊗⊗   [12]

Here, *N = diag{ *
mn } implies that in the

complete data vector, records of all
daughters of sire m on all traits are
available. The right hand side of system
[3] is a vector of sufficient statistics for
the estimation of s and µµµµ. At each EM
iteration [k], the vectors *

q,m,δ−−−−y (for all

m and q) being unknown, they are
replaced by their expectation given the
current parameter estimates, when
constructing the right hand side of [3]. The
vector *

q,m,δ−−−−y is replaced at iteration [k]

by:

)[k]
mδ,ˆ[k]

δˆ*
q,m,δˆ(

δδ,
1

δδ              

[k]
m,δ

ˆ[k]
δ

ˆ[k]*
q,m,δ

ˆ

-

--

sy-
0R 0,R

sy

−−−−µµµµ−−−−++++

++++µµµµ====−−−−

[13]

where the notation δµ̂µµµ  refers to vector µµµµ̂  

where rows that are not in combination δ
were set to 0 and δδ -0,R represents

matrix 0R  where rows not in δ− and
columns not in δ were set to 0 (similarly

for -δ
µ̂µµµ ,

m,δ
ˆ,mδ,ˆ -ss and

δδ,
1-
0R ). The last

term of [13] is the regression of the
residuals for the missing values of cow q
onto the residual estimates for the
observed records. he resulting system is
the-BLUP mixed model equations in the
situation of no missing values: if n*
={ *

mn } and N is the total number of

records (N = Σm *
mn ), [3] becomes:

]k[*ˆ  
*'

1                                         

 
*

 N

y
N
n*'

0R

s1A1
0GN1

0R*n1
0R

n*'1
0R1

0R








⊗⊗⊗⊗−−−−

====






 µµµµ

















−−−−⊗⊗⊗⊗−−−−++++⊗⊗⊗⊗−−−−⊗⊗⊗⊗−−−−
⊗⊗⊗⊗−−−−⊗⊗⊗⊗−−−−

[14]
The M step of the EM algorithm consists
in solving [14]. Now the canonical
transformation (Thompson, 1976; Quaas,
1984) can be applied. This leads to t
univariate  systems to solve, each one of
the form:

]k[*
ic  

'* 
ic
icμ 

icλ
*

N
y

N
n*'

s1AN*n
n*'









====




















−−−−⊗⊗⊗⊗++++

[15]
where ic refers to the ith canonical trait
with variances ratio λ ic on the canonical
scale. Once these systems are solved,
back-solutions on the original scale are
obtained and a new EM iteration starts,
and so on until convergence. If an iterative
algorithm is used to solve [15], iterations
for the solutions of the linear system and
for the EM algorithm can be interlaced
(Ducrocq and Besbes, 1993). Again, this
repeated solution of univariate systems is
expected to lead to faster convergence,
lower computational requirements and
easier coding.

4.2. MT-BLUP on deregressed proofs

As already indicated, the approach in
section 3.1 may be unattractive because it
implies to work on individual
(preadjusted) records rather than on
deregressed proofs.
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To avoid the manipulation of individual
records, an approximation of the EM-type
algorithm described in the previous
section is necessary. Most of the notations
remain identical, except that preadjusted
records are replaced by deregressed proofs
(e.g., any *

q,my is replaced by m
~y , etc…).

Let nδ,m be the number of daughters of sire
m that have only combination δ of traits
known. At each EM iteration [k], the
vector {{{{ }}}}m,δ

~
-y (for all m and δ−) being

unknown, it is replaced by its expectation
given the current parameter estimates in
the computation of the right hand side of
[6]. In particular, one needs

(((( ))))  
[k]

m
~ *

mn y which is equal to:

 
δ all

 ]k[
m,δ

~̂
m,δ

~
m,δn -∑∑∑∑ 



 ++++ yy        [16]

However, when working on deregressed
proofs, there are no individual data to
estimate the residual vectors for observed

traits )[k]
mδ,ˆ[k]

δˆ*
q,m,δˆ( sy −−−−µµµµ−−−− , that are

needed in [13]!  An extra hypothesis must
be added in order to approximate

]k[
m,δ

~̂
m,δn -y in [16]. If we assume that

there is no systematic bias in the
distribution of the daughters of sire m
across the different combinations of
recorded traits, i.e., for all combination δ:

0[k]
mδ,ˆ[k]

δˆ*
q,m,δˆE ≈≈≈≈



 −−−−µµµµ−−−− sy [17]

it may be approximately considered that:

0)[k]
mδ,ˆ[k]

δˆ*
q,m,δˆ(

δδ,
1

δδ 
δq

- ≈≈≈≈



 −−−−µµµµ−−−−

⊂⊂⊂⊂
∑∑∑∑ sy-

0R 0,R

[18]

and therefore:

)[k]
m,δ

ˆ[k]
δ

ˆ(  m,δn   ]k[
m,δ

~̂
m,δn --- sy ++++µµµµ≈≈≈≈ [19]

Note that the quality of this assumption
will depend not only on the true absence
of samplingbias but also on the number
nδ,m of observations in each combination:

the larger this number, the smaller the
average estimated residual for a given
sire. If the approximation is not a too
strong one, the missing value algorithm
described in section 4.1 can be applied…
except that now all nδ,m records are
processed at the same time. This may be
extremely advantageous for some bulls
with thousands of daughters, since the
number of possible combinations of
recorded trait is usually very small.

5. An EM-type approximation for
female MT-BLUP evaluation

Until now, only the computation of
male breeding values in a multivariate
context was discussed. Obviously, an
extension of the procedure to obtain
female EBVs is also needed. One
demanding approach would be to apply
either one of the above approximations
([3] or [4]) simultaneously on males and
females assuming an animal model.

A simpler approach is proposed here,
which makes use of the previous results.
Again, we will suppose -at least initially-
that all traits can be described by a linear
model. The starting point is the correct
MT-BLUP system of equations described
in [2], but this time, an animal model is
assumed (ui = ai with 0G and 0R
appropriately modified). A first level of
approximation consists in working on
preadjusted records, i.e., after correction
of the records using univariate estimates
of fixed effects. A second level of
approximation relies on the assumption
that the mean vector µµµµ  and male EBVs are
known: they are the solutions of one of the
approximate MT-BLUP evaluations

described above ( mi,ˆ 2m,ˆ sia ==== for all sires

m).
The resulting multivariate mixed

model equations (comparable to system
[3] with sire solutions known) is huge.
Applying once more the missing value
algorithm of Ducrocq and Besbes (1993),
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the system can be modified to a
configuration where the canonical
transformation is applicable. In practice,
the vector of missing values *

q,δ−−−−y for

female q at iteration [k] must be computed
as:

)[k]
q,δˆ

[k]
δˆ*

q,δˆ(
δδ,

1
δδ            

[k]
q,δ

ˆ[k]
δ

ˆ]k[*
q,δ

ˆ

-

--

ay-
0R 0,R

ay

−−−−µµµµ−−−−++++

++++µµµµ====−−−−

[20]
Again, the matrix 0R  in [20] is different
from 0R  for the sire model. On the
canonical scale, t univariate systems of the
form:

]k[*
ic  *' 

ic
icμ 

icλ
*'

F
y

F
f*'

a1AF*f
f*'









====




















−−−−⊗⊗⊗⊗++++

[21]
must be solved, where F*, f* and F are the
matrix, vector and scalar analogous to N*,
n* and N in [15]. In particular, N* is a
diagonal matrix with qth diagonal element
equal to the maximum number of records
of cow q.

In equation [21], the mean vector µµµµ
and the male EBVs are assumed known.
Isolating the rows of [21] corresponding to
females, we get the system:
[[[[ ]]]]

m,icˆ fm 2-                                                    

)ˆ]k[*
ic(  *' f,ic  fficλ

*'

s1A

yFa1AF

−−−−

µµµµ−−−−====−−−−⊗⊗⊗⊗++++

 [22]
where f refers to females and m to
males, 1

ff
−−−−A  represents the matrix

composed of the terms of 1A−−−−  relating

females (diagonal terms for females +
contribution of their dam and their female
progeny) and 1

fm
−−−−A  includes the terms

relating females to males (sire, mate or
male progeny). System [22] is of the form:

]k[
ic f,ic  ic haH ==== [23]

Poivey (1986) showed that, when the rows
of icH are ordered such that progeny
always preceed parents, then the Cholesky

factor icL of icH  (such that icH = icL '
icL )

has exactly the same structure as the lower
diagonal part of icH : there is at most one
nonzero element in each column q of icL ,
located in the row corresponding to the
dam of animal q. Then the Cholesky
decomposition of icH is extremely fast, as
well as the exact solution of system [23]
as:

 
f,ic  for  f,icf,ic  '

ic   Solve

f,ic  for  ]k[
ic f,ic  ic   Solve

azaL

zhzL

====

====
     [24]

An application of this particular
decomposition for the solution of large
univariate problems can be found in
Ducrocq et al. (1990). Once this system
has been solved for all canonical traits, a
new prediction of missing values using
[20] is possible. The algorithm is iterated
until convergence is reached.

The advantage of this approach is that
all females get EBVs on the same traits as
males, even if they do not get a cow EBV
in the univariate evaluation on some traits.
For example, so far, only sire EBVs for
direct functional longevity are available. It
seems difficult and even questionable (for
animals still alive) to compute female
EBVs (Ducrocq, 1999), based on direct
information only. The procedure described
here offers an appealing framework to get
female EBVs on functional longevity:
Pedigree information on the male side for
functional longevity is optimally
combined with information from female
predictors such as type traits or somatic
cell scores. The same total merit index
(same economic weight) would apply to
males and females.

6. Conclusion

This paper presents a number of
approximations to the optimal MT-BLUP
evaluation, for the computation of both
male and female EBVs. It is shown that, at
least theoretically, there are better
alternatives than the often-recommended
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MACE approach. The implementation of
these alternatives will tell us whether the
extra computing effort is worthwhile.

There are still many unsolved
problems to face (estimation of dispersion
parameters, sensitivity of the evaluation to
the values of these parameters, adaptation
when univariate analyses are based on
repeated records, inclusion of foreign
information and groups of unknown
parents, etc…). Without any doubt, the
most difficult ones relate to the inclusion
of the information on traits described via
nonlinear models, and in particular,
functional longevity: preadjusted records
are not available then, especially for
censored records. Subsequently, the use of
deregressed proofs for the functional
longevity part is almost compulsory.

In conclusion, it is strongly argued that
the (approximate) MT-BLUP evaluation
of males and females offers an appealing
framework for the computation of total
merit indices, with, as by-products,
improved EBVs on low reliability traits
(such as functional longevity) that
optimally combine direct and indirect
information.
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