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Introduction

The use of test day models including single
test day yields has become more and more im-
portant for breeding value estimation for milk
production traits in the recent years. With the
transition from aggregated lactation yields to
test day yields the amount of data is increasing
drastically. However, test day model ap-
proaches offer better opportunities to correct
for environmental influences. These new op-
portunities lead to a wide range of effects that
have to be examined when validating a model.
Depending on the data structure in some cases
problems may be caused due to small fixed ef-
fect subclasses, especially concerning the
contemporary group (Meyer et al., 1989; Ptak
and Schaeffer, 1993; Reents et al. 1995;
Swalve, 1995). Therefore, the question
whether to include interactions between fixed
effects in the model is especially important for
cattle populations with an unfavourable herd
structure.

The goal of genetic evaluation should be to
maximize genetic progress per time unit. One
of the factors that directly influences selection
response is the correlation between true and
estimated breeding values. Aim of the present
study was to analyse how this correlation is af-
fected if interaction effects are included into

the evaluation model. The method is demon-
strated with the interaction between lactation
and herd test day (HTD) as an example. The
analysis is based on test day milk yields of the
Braunvieh breed in Southern Germany.

Material

Data for the analysis included about 6.4 mil-
lion test day yields of  397000 cows from 1990
to 1997. Two data sets were created by ran-
domly sampling 40 complete herds from two
geographical regions with different herd
structures. One region contained herds near
and within the mountain region and the other
contained herds under more intensive condi-
tions. The data sets included test day yields
from first to third lactation. The model for the
yield of one can contain the same or different
herd test day effects for all lactations. Charac-
teristics of the data are given in Table 1. Data
sets included test day yield information from
2477 and 1782 cows, respectively. Parents
without records were added to the pedigree
file, so that the total number of animals was
5645 and 4145, respectively. Average daily
milk yield of the Braunvieh cows was 18.0 kg
( s = 5.4 kg), 0.74 kg fat (s = 0.23 kg) and 0.63
kg protein ( s = 0.18 kg).   
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Table 1. Structure of herd test days (HTD) and number of yield records per HTD for having only one HTD ef-
fect and for having one HTD effect for each lactation for the two data sets (DAT I und DAT II)

Methods and model

The statistical model for analysing the test day
data was a multiple trait test day model with
repeated observations within each lactation.
The first, second and third lactation were re-
garded as different traits (Reents, 1995). The
influence of stage of lactation was corrected
with a function of four regression coefficients
(Ali and Schaeffer, 1987), which were fitted
within subclasses of cows. These subclasses
contained animals with same parity, similar
calving age (three classes), calving season
(two), and calving interval (five).

 The statistical model for the analysis of
test day observations was:

yijklmnop  = Li + HTDjk + LHTDijk  +
(LCSA)ilmn + b1ilmn (D/c) + b
2ilmn (D/c)2 + b3ilmn ln(c/D)+
b4ilmn [ln(c/D)]2  +  Aio  +  Pio  +
eijklmnop

where yijklmnop is the pth milk yield of cow o in
lactation i; Li is the fixed effect of lactation i;
HTDjk is the herd effect in herd j on test day k
over all lactations; LHTDijk is the interaction
effect between lactation i and HTDjk;
(LCSA)ilmn is the fixed 'lactation' x 'calving in-
terval' x 'season of calving‘ x  'age of calving'
interaction effect, with a total of 90 subclasses;
b1ilmn and b2ilmn are fixed regression coefficients
on the linear and quadratic effects of (D/c),
where D is the lactation stage in days and c is
a constant (c=381); b3ilmn and b4ilmn are fixed
regression coefficients on the linear and quad-
ratic effects of ln(c/D); Aio is the random addi-

tive genetic effect of cow o in lactation i; Pio is
the random permanent environmental effect of
cow o within lactation i, and eijklmnop is the ran-
dom residual effect.

Since LCSAilmn already contains the effect
of the lactation, the main effect of lactation
need not be included in the analysis. The inter-
action LHTD was included as a random effect
with different operational values in separate
analyses. The following three situations are
especially interesting:

i. The variance of the interaction effect was
set to a very small value, which is con-
verging to a model without interaction.

ii. The variance of the interaction effect was
set to a very large value, which is con-
verging to a model with fix interaction.

iii. The variance of the interaction effect was
set to the true variance.

Only in the third case the approach has
BLUP properties, otherwise the approach can
be looked at as empirical BLUP. The method
of investigation is based on the calculation of
the correlation between true and estimated
breeding value:

 )û Var( Var(u)
)'û(u, CovrHI =

where Var(u) is the variance of true breeding
values. The covariance between true and esti-

one  HTD for HTD only HTD only HTD only
lactations 1 to 3 lactation 1 lactation 2 lactation 3

DAT I DAT II DAT I DAT II DAT I DAT II DAT I DAT II

number of records 39.853 27.971 16.826 11.221 13.118 9.197 9.909 7.553
number of HTD 3.349 3.360 3.200 3.138 3.122 3.055 2.995 2.850
average records/HTD 11,9 8,3 5,26 3,58 4,20 3,01 3,31 2,65
percentage of HTD with

   1 record 2,1 3,2 10,2 15,2 13,4 20,0 21,6 26,4
≤ 2 records 4,7 6,5 22,5 37,2 30,0 46,4 42,4 54,8
≤ 5 records 17,7 26,0 62,0 83,0 74,5 91,2 86,3 93,9
≤ 10 records 49,7 71,7 90,9 99,3 97,2 99,7 99,3 99,9
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mated breeding values ( )'û(u, Cov ) and the
variance of the estimated breeding values

 ))û(Var( were calculated from blocks from
the inverted left hand side (LHS) of the mixed
model equations (MME) (see also Appendix):

)'ûCov(u,  = G -  T22
~

[ 1 ]

Var(u)!       = G -  T  +  T  F  F F  T   22 21
-1 -1

12
~ ~ ~ ~ ~

∆
[ 2 ]

where

G: matrix of additive genetic (co-
)variances;

22T~ : block of the inverse of the LHS of the
MME, that corresponds to the
( -1

1
1

1 G+ZRZ - )-block of the animal ef-
fects in the LHS, where Z1 is the design
matrix of the animal effects;

21T~ : block of the inverse of the LHS, that
corresponds to the off-diagonal block
between the interaction LHTD and the
( -1

1
1

1 G+ZRZ - )-block of the animal ef-

fects in the LHS,  12T~ is the transpose

of 21T~ ;
-1F~ : inverse of the assumed covariance ma-

trix of LHTD, where  2
Fσ~ =F~ Ι ;

F∆ : difference between the true variance of
LHTD  (F ) and the operational value
(F~ ).

T~ is the inverse of the coefficient matrix
of the MME where the operational values
G~ ,R~ , and F~ are applied. The correlation rHI

for single animals was calculated by aggre-
gating the variances and covariances from
equations [1] and [2] with equal weights for
lactations. The variance of the estimated
breeding values depends on the operational
value and on the true variance of the interac-
tion LHTD. Therefore, it is possible to calcu-
late for a given operational value the correla-
tions rHI for several possible true variance
components. The blocks of the inverse LHS
were calculated with the software FSPAK
(PEREZ-ENCISO et al., 1994)  and the
FORTRAN 90 interface FSPAK90 (MISZTAL
und PEREZ-ENCISO, 1998).

Results and discussion

The statistical model was applied to the two
data sets in separate runs assuming three dif-
ferent operational values for interaction LHTD
( 2

Fσ~ = 10 -6 , 1.0 und 10 9  kg2). Correlations
were calculated for the 'true' values from zero
to 100 kg2. The results are summarized in Ta-
ble 2 for all cows with test day observations. If

2
Fσ~  was assumed very high the results con-

verged to results obtained from a model with
fix LHTD effect. In the opposite case when

2
Fσ~  was set to a very low value the results

converged to results from a model without the
interaction effect.

Table 2. Average correlation rHI for animals with test day information in the two data sets DAT I (n=2477) and
DAT II (n=1782) for three different operational values in the analysis over different true variances of
the interaction LHTD

operational values true variance of interaction LHTD (kg2)
of 2

Fσ  (kg2) 2
Fσ  =  0.0 2

Fσ  =  1.0 2
Fσ  = 5.0 2

Fσ  = 10 2
Fσ  = 50 2

Fσ  = 100

DAT I 0.6827 0.6816 0.6774 0.6722 0.6361 0.59972
Fσ~  = 10 –6

DAT II 0.6719 0.6707 0.6661 0.6605 0.6223 0.5846

DAT I 0.6825 0.6818 0.6788 0.6751 0.6483 0.62002
Fσ~  = 1.0 DAT II 0.6718 0.6709 0.6673 0.6630 0.6323 0.6008

DAT I 0.6669 0.6669 0.6669 0.6669 0.6669 0.66692
Fσ~  = 10 9

DAT II 0.6482 0.6482 0.6482 0.6482 0.6482 0.6482

The comparison of the results with quasi
fixed and quasi ignored LHTD effect shows

the consequences of ignoring LHTD. The
analysis with an operational value of 109
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caused up to 0.016 (DAT I) and 0.024 (DAT
II) smaller correlations for cows with yield in-
formation for true variances in the range from
zero to 10 kg2. The observed differences were
higher in the second data set with the more un-
favourable herd structure. When the true vari-
ance exceeded the 10 kg2, the average correla-
tions from the model with the quasi fixed ef-
fect were higher than those from analysis with
the quasi ignored effect. The analysis where a
value of 1.0 kg2 was assumed for the opera-
tional value gave similar results as compared
to the analysis with the operational value 10-6

kg2.

To obtain an idea of a realistic range for the
true variance of the investigated interaction,
larger data sets were analysed with a fixed
model. The estimates for variance of interac-
tion were between 5.4 and 5.8 kg2 in different

data sets. These values can be regarded as up-
per bounds for the true variance of the interac-
tion in the population, because the expected
value of the variance of the estimates is greater
than the variance of the true effect.

Including LHTD as a fixed effect in the
model results in a comparison of animals
within a certain lactation and HTD. The con-
sequence of this restriction is a large percent-
age of subclasses with only one or two obser-
vations (see Table 1). Correlations between
true and estimated breeding values depending
on the herd size are presented in Table 3. The
increase of correlation rHI assuming a true state
of nature of 2

Fσ  = 5.0 kg2 was between 0.010
and 0.037. When excluding the interaction
LHTD, correlation increased especially in
smaller herds, as expected.

Table 3. Differences of correlation rHI between the analysis with quasi ignored and quasi fixed interaction effect
in different herdsizes in the second dataset

herds with x calvings true variance of interaction LHTD (kg2)
in DAT II  (% of cows) 2

Fσ  =  0.0 2
Fσ  =  1.0 2

Fσ  = 5.0 2
Fσ  = 10 2

Fσ  = 50 2
Fσ  = 100

<= 20 ( 2.4 ) 0.079 0.077 0.072 0.066 0.022 -0.020
21-30 ( 11.5 ) 0.043 0.042 0.037 0.031 -0.007 -0.045
31-40 ( 11.4 ) 0.030 0.029 0.025 0.019 -0.020 -0.058
41-50 ( 17.3 ) 0.022 0.021 0.016 0.011 -0.025 -0.062
51-60 ( 19.2 ) 0.019 0.018 0.013 0.008 -0.031 -0.070
61-80 ( 38.0 ) 0.016 0.015 0.010 0.004 -0.034 -0.071

Conclusions

Based on the results of this analysis the
correlation between true and estimated
breeding values could be increased by ignoring
the interaction LHTD when the true variance
of this effect is between zero and 10 kg2 milk.
The amount of increase depends on the amount
of available information within herds. To
evaluate a model it is necessary to take into
account the correlation rHI as well as the bias
of estimated breeding values. Treating LHTD
as a random interaction effect the risk of get-
ting biased  breeding values

exists, but this is assumed to be very unlikely.
Another aspect is the increase of the number of

equations in the MME when the interaction
effects are included in the model. In the inves-
tigated data sets the increase is about 25 per-
cent of the dimension of the MME. Consider-
ing the small risk of bias and the advantages of
higher correlations rHI and a computationally
less demanding procedure, the model without
the interaction effect LHTD seems to be well
suited for the unfavourable herd structure in
Southern Germany.
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Appendix

The developement of the method is shown on a sim-

ple example with one random effect (u) and one ef-

fect, that should be investigated (α).

True state of nature

y = 1μ + Xα + Zu + e

Var(e) = R = 2
e

 σΙ  ; 0 ≤ 2
e

σ  ≤ ∞ ;

Var(u) = G = 2
u

 σΙ  ; 0 ≤ 2
u

σ  ≤ ∞ ;

Var(α) = F = 2
α

 σΙ  ; 0 ≤ 2
α

σ  ≤ ∞ ;

Var(y) = XFX’ + ZGZ’ + R

Cov(y,u’) = ZG

Estimation procedure

Setting up the MME :
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 = 
û
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Symbolize the designmatrices as :

[ ]  W  ZX1 =

Denote the inverse of the coefficient matrix as :
-1
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Define the matrix 1P~− and the vector t̂ :
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
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û
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Then the MME and solutions can be written as :

[ ]  yR~   W'  t̂ P~   WR~ W' -1-1-1 =+

 yR~  W'T~    t̂ -1=      .

By definition :

[ ] Ι=+    P~   WR~ W' T~ -1-1

and it follows :

[ ] ( )[ ]  P~ T~ -    P~ - P~   WR~ W' T~     WR~ W' T~ -1-1-1-1-1 Ι=+=

That can be written as:
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     F~T~   X R~ W'T~ 1
21

-1
_2

−−= (1)

     G~T~    Z R~ W'T~ 1
22

-1
_2

−−Ι= (2)

Calculation of the covariance between estimated and

true u :

Since  yR~  W'T~  û -1
_2

=

we have

G ) G~T~ -  (  ZG R~ W'T~  )u' , û( Cov 1
22

-1
_2

−Ι==

under the condition  G~  G = we get:

22
T~ - G    )u' , û( Cov =

Calculation of the variance of the estimated u :
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Under the condition

F   F~  F  and  R~  R  and  G~  G ∆+===  and using of

equation (1) and (2) :
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Thus under the condition

F   F~  F  and  R~  R  and  G~  G ∆+===  we get:
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T~ - G    )u' , û( Cov =
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