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Abstract 
 
Genotype by environment interaction (GxE) can be modelled using a multi-trait approach where the 
same trait measured in different environments is considered a different, but correlated trait. An 
alternative is to model GxE with reaction norm models where the breeding values are modeled as a 
function of the environment defined as a continuous variable. Genomic implementations of both models 
can be parameterized such that homogeneous (co)variances are assumed for all SNP across the genome. 
Since specific regions in the genome may harbor QTL and others may not or loci may have a large effect 
in one environment and a zero effect in another, the assumption of equal (co)variances across the 
genome is violated. We have developed an analysis protocol based on readily available BLUP software 
packages to allow for heterogeneous SNP (co)variances in genomic GxE models. The analysis protocol 
consists of a two-step approach, where the data set of interest is split in two subsets. One subset is used 
to estimate SNP effects and derive weights for each SNP, which are subsequently used to upweight SNP 
in the analysis of the second subset. We have carried out a simulation study that showed a small increase 
in accuracy of genomic breeding values when allowing for heterogeneous SNP (co)variances compared 
to homogeneous SNP (co)variances.  
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Introduction 

Genotype by environment interaction (GxE) 
is typically modelled by a multi-trait approach, 
where the same trait measured in different 
environments is considered being a genetically 
different, but correlated trait (e.g. Falconer, 
1952). As an alternative, GxE can be modelled 
with reaction norm models, where the breeding 
values are modelled as a function of the 
environment defined as a continuous variable 
(Kolmodin et al., 2002; Calus and Veerkamp, 
2003). Both models can be implemented in 
genomic prediction models by replacing the 
pedigree based relationship matrix by the 
genomic relationship matrix. Both, genomic 
multi-trait models or reaction norm models, 
implicitly assume the same (co)variance matrix 
for every SNP. Since certain regions in the 
genome may contain QTL, the assumption of 

equal (co)variances across the genome may be 
violated. To overcome this limitation, we have 
developed an analysis protocol allowing for 
heterogeneous SNP (co)variances across the 
genome in genomic GxE models. The analysis 
protocol can be implemented using standard 
BLUP software packages. The objective of the 
study was to evaluate the accuracy of genomic 
GxE models allowing for heterogeneous SNP 
(co)variances across the genome in simulated 
data.  
 

Materials and Methods 

Simulation 

The analysis protocol was tested on 
simulated data. For this purpose, we have 
simulated two populations and crossed these to 
produce F1 crossbred individuals. The 
simulations were performed using the QMSim 
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software (Sargolzaei and Schenkel, 2009). A 
historical population spanning 1 000 
generations, consisting of 10 000 individuals in 
the base population (generation -1 000), was 
simulated. The population size decreased 
linearly to 400 individuals across 980 
generations until generation -20. This 
bottleneck was used to achieve LD. The 
population continuously increased to a size of 4 
100 individuals in generation 0. The last 
generation of the historical population consisted 
of 100 males and 4 000 females, and was 
randomly divided in two groups of 4 100 
individuals (100 males and 4000 females) 
forming two separated populations (A and B). 
In both populations A and B, random mating 
was applied for 210 generations to produce 1 
000 male and 1 000 female offspring in each 
generation. A crossbreeding program started in 
generation 206 where 200 male and 500 female 
individuals were randomly selected to produce 
1 000 crossbred offspring (500 males and 500 
females) until generation 210. The simulated 
genome consisted of 30 chromosomes with 
length of 100 cM each. In total 51 000 markers 
were simulated equally distributed across the 
whole genome, which is similar to the 50k 
Bovine BeadChip. Table 1 shows the 
parameters used for the selection design and the 
simulated genome.  
 
Table 1. Parameters used in the simulation 

Item  
Litter size  1 

Proportion of male 

progeny 

0.5 

Mating design random 

Selection design random 

Sire replacement 0.5 

Dam replacement 0.25 

Culling criteria Age 

Genome  

No. Chromosomes 30 

Chromosome length 

(cM) 

100 

No. markers per 

chromosome 

1 700 

No. QTL per 

chromosome  

150 

QTL effects Sampled from 

normal distribution 

Marker mutation rate 2.5 x 10
-5

 (recurrent) 

QTL mutation rate  2.5 x 10
-5

 

Position of markers 

and QTL 

random 

 
Phenotypes were simulated to follow a linear 

reaction norm model with a custom Fortran 
program and calculated per individual for its 
assigned environment as the sum of 
environmental value and true breeding values 
and a residual error. Environmental values were 
drawn from a normal distribution with N(0,1) 
and ranged between -2.063 and 2.063. The 
genetic variances for intercept and slope were 
assumed to be 0.3 and 0.025, respectively. The 
genetic covariance between intercept and slope 
was 0.05 leading to a genetic correlation of 
0.577. The residual variance was set to 0.5. The 
resulting simulated heritability across 
environments is shown in Figure 1. The 
individuals were randomly assigned to the 
environments.  

A protocol consisting of several steps has 
been developed to allow for heterogeneous 
(co)variances across the genome in genomic 
GxE models. Firstly, the data set is split in two 
subsets: subset 1 is used to estimate SNP effects 
𝛼 using a model that assumes equal 
(co)variances for all SNP. SNP specific 
variances are then computed as 2𝑝 (1 −

𝑝 )𝛼 . The model applied to subset 2 then 
considers these SNP specific variances as 
weights to compute a weighted SNP 
(co)variance matrix.  
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Figure 1. Simulated heritability across 
environments 
 

Subset 1 consisted of 4 000 individuals of 
generations 205 and 206 (including crossbred 
individuals). Subset 2 consisted of individuals 
of generations 207 to 210 (including crossbred 
individuals), where all individuals of 
generations 207 and 208 were used as training 
population (n=4 000) and all remaining 
individuals of generations 209 and 210 (n=4 
000) were used as validation set.  
 
Analysis subset 1 

A univariate linear genomic reaction norm 
model has been applied to subset 1 using the 
software package mtg2 (Lee et al., 2016): 
 

𝐲 = 𝟏𝜇 +  𝛃𝟎 +  𝐐𝛃𝟏 + 𝐞 
 
where y is a vector of simulated phenotypes, 𝜇 
is an overall mean, 𝛃𝟎 and 𝛃𝟏 are the vectors of 
intercept and first order of regression 
coefficients for the random genetic effects, 𝟏 is 
a vector of ones, 𝐐 is a (diagonal) incidence 
matrix storing the environmental values for 
each individual, and 𝐞 is the vector of random 
residuals.  
 
Calculation of SNP specific weights 

Allowing for heterogeneous SNP variances 
(HET), SNP specific weights for each SNP k for 
each coefficient i of the reaction norm model 
(i.e. intercept 𝛽  and the linear regression 
coefficient 𝛽 ) were calculated as: 
 

𝐷 =  2𝑝 (1 − 𝑝 )𝛼  

 

where 𝐷  is diagonal element i of diagonal 

matrix 𝐃𝒌 that stores the weights for SNP k, 𝑝  
is the allele frequency of SNP k, and 𝛼  is the 
estimated effect of SNP k for coefficient i. The 
SNP effects 𝛼  for intercept and linear 
regression coefficient were obtained by 
backsolving based on the GEBV for 𝛽  and 𝛽  
obtained from the genomic reaction norm 
model. SNP effects were calculated following 
the approach described in Bouwman et al. 
(2017) implemented in the companion program 
compute_SNP_effects of calc_grm (Calus and 
Vandenplas, 2016). 
 
Analysis subset 2 

The following SNP-BLUP model was 
applied to subset 2 using the MiXBLUP 
software (ten Napel et al. 2020): 
 

𝐲 =  𝟏𝝁 + 𝐙𝛄𝟎 + 𝐐𝐙𝛄𝟏 + 𝐞 
 
where 𝐲 is the vector of simulated phenotypes 
of individuals in the training set of each cross 
validation run, 𝜇 is an overall mean, 𝐙 is a 
matrix including the centered genotypes for 
each SNP, 𝐐 is a diagonal matrix storing the 
environmental values for each individual, 𝛄𝟎 
and 𝛄𝟏 are vectors of estimated SNP effects for 
random intercept and linear regression 
coefficient, respectively, and 𝐞 is a random 
residual term. For HET the following 
(co)variance matrix is used for SNP k: 
 

𝑉𝑎𝑟([𝛄𝟎, 𝛄𝟏] ) =  𝐃𝒌 ∗ 𝐆 ∗  𝑫𝒌 
 
where 𝐆 is the estimated genetic (co)variance 
matrix between intercept and quadratic 
regression coefficient obtained from the 
reaction norm model in the analysis of subset 1. 
For HOM, homogeneous SNP variances for 
intercept and linear regression coefficient are 
provided by 𝜎 /2 ∑ 𝑝 (1 − 𝑝), where 𝜎  is the 

genetic variance for either intercept or linear 
regression coefficient estimated in subset 1. The 
GEBV for validation animals were calculated as  
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𝐆𝐄𝐁𝐕 =  𝟏�̂� +  𝐙𝛄𝟎 + 𝐙𝐐𝛄𝟏 . The accuracies 
of GEBV for individuals in the validation set 
were obtained as the correlation coefficient 
between the simulated true breeding value and 
predicted GEBV.  
 

Results & Discussion 

The estimated genetic variances for intercept 
and linear regression coefficient of the genomic 
reaction norm model in subset 1 were 0.35 and 
0.031, respectively. The estimated genetic 
covariance was 0.04. These results were in good 
agreement with the underlying simulated 
genetic covariance structure.  

For the HOM scenario, the correlation 
between GEBV and TBV in the validation set 
in subset 2 were 0.521 and 0.588 for intercept 
and the linear regression coefficient, 
respectively. For HET, where heterogeneous 
SNP variances were allowed, the correlation 
between GEBV and TBV for intercept and 
linear regression coefficient were 0.551 and 
0.601, respectively. This results in a small 
increase in accuracy of HET compared to HOM 
of 0.03 and 0.013 correlation points for 
intercept and linear regression coefficient 
across all environments, respectively. The 
accuracy was highest in environments where 
higher genetic variance was observed 
(environmental value > 0.7) and lowest for 
environments with smaller genetic variance 
(environmental value < -0.7).  

The increase in accuracy in HET compared 
to HOM is small. In the current study, SNP 
effects for intercept and linear regression 
coefficient were estimated assuming equal 
(co)variances for each SNP across the genome 
in subset 1. Bayesian approaches to derive SNP 
effects in subset 1 and upweight SNP in a 
following GBLUP or SNP-BLUP analysis 
could be beneficial. The current implementation 
of the analysis protocol is based on readily 
available software allowing for fast and large 
scale implementations and resulting in an 
increase in accuracy of GEBV in simulated 
data.  

 

Conclusions 

The aim of this study was to evaluate the 
accuracy of genomic reaction norm models 
allowing for heterogeneous SNP (co)variances. 
We developed an analysis protocol to allow for 
heterogeneous SNP (co)variances based on 
readily available BLUP software packages. The 
results show a small increase in accuracy of 
genomic GxE models allowing for 
heterogeneous SNP (co)variances. The analysis 
protocol allows for fast and large-scale 
applications in routine genomic evaluations.  
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