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Topics that may deserve further attention in survival analysis
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Abstract

For the past ten years, the need to account for specificities of survival data (censoring, skewed distributions,
time-dependent covariates) has lead to the development of methods, models, programs and routine genetic
evaluations that are becoming standards. In this paper, I try to present some potential directions for further
research, concentrating on modelling. These directions include the computation of cow EBVs, the use of time-
dependent sire effects, the implementation of multivariate analyses, the definition of survival traits on a
lactation basis and the investigation of culling components. Obviously, this list is not exhaustive and some
topics may be perhaps premature. They should be considered as the basis for discussion and for projects of
collaborations.

1. Introduction

Survival analysis applied to animal breeding has
gained popularity since the pioneering work of
Smith (1983). From my obviously biased
perspective, the main steps of its development
were: the extension of the Cox model to a mixed
model for sire evaluation (Smith, 1983; Smith and
Quaas, 1984), the use and justification of a Weibull
model with time-dependent covariates (Ducrocq,
1987), the availability of a general program for
applications of mixed models involving time-
dependent covariates to large data sets (Ducrocq
and Sölkner, 1994), the design of proper methods
for the estimation of genetic parameters (Ducrocq
and Casella, 1996; Korsgaard et al., 1998) and the
implementation of routine genetic evaluations (see
these proceedings). The same general evolution as
for other related fields in animal breeding (e.g., for
discrete data) can be observed: advanced methods
were developed and used because they more
precisely describe the statistical and biological
characteristics of the data at hand. Initially, they
were restricted to simple models or limited size
data sets but a better understanding of their nature,
a constant increase in computing power, and the
use of more efficient algorithms made them
applicable to larger and more complex problems.
There is no reason to believe that such a trend will
stop in the near future. Here, I will concentrate on
some potential directions for model improvement. I
will voluntarily exclude other important research
topics, such as on economic aspects of longevity,
on improvement of evaluations using early
predictors, on its use in selection schemes, etc…

2. Animal models versus sire - maternal grand
sire models

2.1. Context

Genetic evaluations based on survival analysis
have been developed so far considering sire or sire-
maternal grand sire models only. Some people are
concerned because only bull EBVs are computed,
when they consider as essential to supply breeders
with cow EBVs too. They are very reluctant to use
pedigree values for cows, although the low
heritability traits implies that the own performance
of the cow –especially if she is still alive - would
probably not influence much her EBV.
At the same time, one particular approach for
estimating genetic variance in frailty models (the
Laplacian integration technique used to find an
approximate marginal posterior density of this
genetic variance) was found to give biased results
when a survival analysis model was used on a
simulated data set (Ducrocq and Casella, 1996).
One of the explanations given was that on that
simulated data set, a very simple pedigree structure
was assumed with no information at all coming
from female relationships.
Unfortunately, this lead to the general belief that
survival analysis could not be applied to animal
models and that other methods perhaps less
adapted to survival data should be preferred.
It is important to restate that there is nothing in
frailty (mixed) models theory that prevents the use
of an animal model. Such models have been
applied in other contexts (Korsgaard et al., 1998;
Ducrocq et al., 1999). The main problem is
computational: large scale applications based on
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sire models are already computationally very
demanding and national evaluations based on an
animal model cannot be envisioned in the near
future. However, it will be showed that
approximate animal model EBVs can be obtained.

2.2. The animal survival model:

The approximate procedure to get cow EBVs for
longevity requires a formal presentation of the
“correct” model (model without any approxim-
ation). Using the classical mixed model notations,
let xm and zm be the vectors of explanatory
variables relating the failure time of animal m to
the fixed and random effects vectors β and a. For
the time being and without loss of generality, xm

and zm will be considered as time-independent and
we will assume that there is only one random
effect: vector a represents the additive genetic
value of all animals with observations, and their
ancestors. Let:
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The hazard function h(t) and wm are related
assuming a Weibull proportional hazards model:

h(t ; wm) = ρt
ρ−1

 exp{ wm’θ} [1]

θ includes an “intercept term” ρlog λ, where ρ and
λ are the parameters of the baseline Weibull
distribution. A multivariate normal distribution is a
natural choice for the random effects a:

a ~ MVN(0, A 2
aσ )

where 2
aσ  is the additive genetic variance and A is

the relationship matrix between all animals.
If y is the vector of observations (failure times +
censoring codes), and if effects other than a have
flat priors, the joint posterior density of all
parameters is (Ducrocq and Casella, 1996):
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{unc.} and {cens.} represent the sets of uncensored

and censored observations, respectively. If 2
aσ  is

assumed known (e.g.,2aσ = 4 2
sσ̂ and 2

sσ̂  is the sire

variance used in the sire-maternal grand sire
model):
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Estimates of θ and ρ are obtained at the mode of

the log posterior density. At the mode, the vector of
its first derivatives with respect to each parameter
is 0. This maximisation is exactly what is currently
implemented in the Survival Kit, without any
modification for an animal model. Again, the only
limitation is the resulting slow convergence, This
lead to often prohibitive CPU requirements. This is
the motivation for looking for an approximate
procedure.

2.3. A two-step procedure:

From [2], we have at the mode, for a particular
animal m:
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Hence, if δm is the censoring code (δm =1 if animal

m is uncensored; δm =0 if m is censored):
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We will assume that all fixed effects and additive
genetic effects for males are known and equal to
their estimates obtained from the sire-maternal
grand-sire models. We will also assume that cow m
does not have any progeny, that her own dam does
not have any observation and that only her sire (the
maternal-grand sire of m) is known. Then:
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where dm represents the fraction of total genetic

variance in φm (11/16 if the sire and maternal
grand-sire are known). If we find an approximation

of mφ̂ , we could approximate am as:
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Combining expressions [4] and [5], the MAP
estimate of φm is the solution of the equation:
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The nonlinear equation f(φm)=0 can be easily
solved iteratively, for example using Newton’s

algorithm. Take, e.g., 0 )0(
m =φ .  At iteration k:
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Although this formula is not correct if φm is large,
it illustrates a few points:

• It is the result of the first iteration of Newton’s

algorithm when 0 )0(
m =φ .

• Expression [8] for mr̂  is the estimate of

generalised residual (Cox and Snell, 1966) of the
observation on animal m. If the Weibull sire-
maternal grand-sire model is correct, the
generalised residuals are distributed as a unit
(censored) exponential, of mean and variance 1
(Cox and Oakes, 1984). When an animal dies (δm

=1) with mr̂ equal to the mean value mr̂ =1, then

mφ̂ =0. If animal m dies very quickly and mr̂  is

very small, ≈φm
ˆ dm 

2
aσ . This is the largest

positive value it can take.
• More importantly, the evolution of mφ̂  for

censored records (δm =1) is of interest: initially,

mr̂  is very small: ≈φm
ˆ 0, so  â
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i.e., its pedigree value. Then, as time goes,

mφ̂ becomes more and more negative,

corresponding to a better EBV mâ  (less risk of

being culled). But as soon as the record is

uncensored (δm=1), the cow EBV jumps up by a

value of 2
a2

am
1

m

  
rd

1
 σ

σ+−
!!

• On average, this jump brings back the cow’s
EBV to her pedigree value.

If needed, this whole derivation can be started
again to lead to more precise EBVs, by exactly
solving the nonlinear equation [9] or by relaxing
some of the assumptions, e.g., on the knowledge of
grand-dams or the existence of daughters. But this
does not elude another question: does it make sense
to publish proofs for censored cows? These proofs

will change over time until the animal is censored
and are not equal to the expected value of what
they will be if the animal dies the next day.

Evidently, more work is needed on this topic and
more generally, on the accuracy, usage and
relevance of cow EBVs.

3. Time-dependent sire effects

Classically, in survival models used for genetic
evaluation, it is assumed that sire effects are time-
independent random effects, i.e., constant over
time. But functional longevity is a complex trait:
there is a long list of events leading to involuntary
cullings. These events do not have the same
probability of occurring during the life of the cow:
e.g., fertility or mastitis problems are more likely to
occur later in life. At the same time, the respective
contribution of their genetic component to the
genetic merit for functional longevity may be very
different from one sire to the other. For many bulls,
this may not be so crucial: for example, the
Kaplan-Meier survivor curves of the daughters of
the three bulls in figure 1 do not suggest that their
ranking on functional longevity EBV may change
as time goes, at least during, say, the first three
lactations. If one is concerned about sire reranking
later in life, a simple strategy would be to censor
all records of cows still alive after 3 lactations or
after 1000 days. It would be interesting to have a
look at the impact of such a censoring rule, for
example on estimates of genetic variances and on
sire ranking. I have never seen this strategy applied
but it is attractive in the sense that it would
explicitly look at what we want to improve most:
the ability to delay early cullings which are the
most costly ones.

Figure 1: Kaplan-Meier survivor curves of the
daughters of three bulls which seem to have a

constant effect on survival
 

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

days since first calving

S
(t

)

Figure 2 displays the survival curve of the 27971
daughters of a bull with a good EBV for functional
longevity, but which went down (-0.7gσ ) when a

large number of these daughters finished their
second lactation: within lactation, culling rate is
quite homogeneous but clearly, it differs between
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the first and the second lactation. For another bull
with very poor EBVs on most functional traits (for
functional longevity: -1.9 gσ , on somatic cell

score: -1.7 gσ , on udder type: -1.8gσ , on milking

speed: -1.2 gσ ) despite a good production EBV, the

survivor curve of his daughters (figure 3; for first
crop daughters only, as he did not get any second
crop ones) displays a similar pattern across
lactations but clearly shows within-lactation
differences with 2 visible bumps, after about 100-
150 days and at the end of each lactation. Although
based on raw data, these two examples are
illustrations of potentially time-dependent sire
effects on survival.

Figure 2: Kaplan-Meier survivor curve of the
daughters of a bull which seems to have a
different effect on survival during the first and
second lactations (dotted line: 95% confidence
interval)
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Figure 3: Kaplan-Meier survivor curve of the
daughters of a bull which seems to have a
different effect on survival within lactation
(dotted line: 95% confidence interval)
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Indeed, nothing prevents us from extending the
present evaluation models by assuming time-
dependent sire effects. For example, a different sire
effect could be assumed in first, second and later
lactations. The same methodology as described in
Ducrocq and Casella (1996) could be applied,
using as a prior distribution for sire effects:
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where { }qii s  =s  represents the vector of sire

effects in lactation i and G is the variance-
covariance matrix between sire x lactation effects.
Obviously, there are drawbacks to such an
approach:

• How many and on what basis should the periods
be defined ? Too many of them would lead to very
imprecise sire x period EBV. A definition on a
lactation basis makes sense but does not reflect
situations such as for the bull in figure 3. Note
however that within lactation changes in sire
effects could be described with, say, random
regression models, but that does not make the
problem simpler…

• How do we estimate the genetic (co)variances
in G ?

• In practice, how much do we gain in terms of
efficiency of selection or on accuracy, in a situation
already characterised by lack of interest from the
breeders, because longevity evaluations come too
late and have poor reliabilities? In other words, is it
worth the effort ? I am not too optimistic about it,
but from a research perspective, this may help to
understand what we are doing.

4. Multivariate analyses

So far, only univariate survival analyses of
longevity traits have been performed in animal
breeding. Again, as for the animal model situation
described in section 2, the apparent inability to
extend survival models to multivariate ones has
been put forward to use less sophisticated
approaches, that may perform well in some real life
situations but that do not account for peculiarities
of survival data (censoring, skewed distributions,
time-dependent explanatory variables, etc..).

Let’s first see where the “problem” lies: in the
case of a Weibull regression model and in absence
of censoring, the typical Weibull hazard model [1]
can be redefined as a log-linear mixed model
(Kalbfleich and Prentice, 1980): if “1” refers to the
survival trait and y1m = log T1m is the failure time
of animal m, this log-linear model states that:
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We would like to analyse this first trait
simultaneously with a second trait described by the
following mixed model :

m2
*
2

'
2m

*
2

'
2m2m ey ++= sz¢x [14]

Note that this second trait can be a “linear” trait,
such as a type trait or milk production, in which
case e2m is supposed to be normally distributed, or
it can be another survival trait. Then, we will
assume that y2m = log T2m, that a different Weibull

parameter ρ2 is involved and that e2m is also
proportional to an extreme value distribution.

Let Σ be the set of dispersion parameters and
θi=(βi , ρi , si). A direct application of Bayes’
theorem leads to the joint posterior density (with
obvious extensions of notations and removing the
star ‘*’ for clarity):
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Traditionally, a flat prior is assumed for fixed
effects and the Weibull parameters in θ, and often
(but this is not an obligation) for Σ. Also, a joint
multivariate normal distribution is chosen for the
genetic effects. The difficulty lies in the derivation

of the joint density   ),,  ,(p 211 �¨¨yy 2 . If the

two traits are observed in independent
environments (e.g., on different sets of daughters),
we can write:

),  (p ),  (p ),,  ,(p 2211211 �¨y�¨y�¨¨yy 2 =
[16]

With censoring, expression [16] must be modified
to take into account that the contribution of
censored records is not the density function at
failure time but the survivor function at censoring
time (Kalbfleisch and Prentice, 1980).
 If traits 1 and 2 are observed on the same animal,
the independence of residuals can no longer be
supposed. I don’t know any bivariate distribution
whose marginals are either a normal and an
extreme value distributions or two extreme value
distributions!
Another approach must be used. Let’s review these
two cases:

• Traits in different environments: indeed, there
are quite a few situations when we may be
interested in the joint analysis of two survival traits
in two distinct environments and the estimation of
the genetic correlations between these two traits.
For example, sire effects on functional longevity
are likely to differ between temperate and tropical
or harsh environments, between mountainous and
flat regions or between intensive and extensive
management systems.

Using equation [16], it is possible to combine the
likelihood contributions of both traits and to
maximise the resulting posterior density [15] or its
logarithm to get estimates of θ.  To estimate the
genetic parameters (genetic variances and
covariances in Σ), Laplacian integration could be
applied as in Ducrocq and Casella (1996) to get an
approximate marginal posterior density p(Σ | y).
Modal estimates of this approximate density can be
obtained or, if the interest is on the genetic
correlation ρ between the two traits, Laplacian
integration can be applied directly to obtain the
approximate marginal posterior density p(ρ  | y)
along the same lines as in Hofer and Ducrocq
(1997). Of course, other techniques such as Gibbs
sampling (as in Korsgaard et al, 1998) can be used
to obtain the exact marginal posterior densities of
these parameters. In all cases, as in most
multivariate analyses, computing costs will
increase dramatically but there is no conceptual
difficulty involved.
As a final remark, note that often, the data can be
sampled in such a way that a residual correlation is
forced to be 0 (Larroque and Ducrocq, 1999).

• Traits with nonzero residual correlations
A typical example is the joint analysis of a

survival measure and a type trait, in particular in
order to estimate the genetic correlation between
the two traits, without the approximation of, e.g.,
Larroque and Ducrocq (1999). Perhaps the best that
we can do is to adopt the same approach as Foulley
et al. (1983), which was also used with some
adaptations in Janss and Foulley (1993) or Le
Bihan-Duval et al. (1997):

Assume that for each animal, both traits are
present (no missing trait). We will rewrite [12] as:
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where *
m1e is an error term uncorrelated with the

error term for the other trait m2e .
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eρ  through the residual regression coefficient b=
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If ω1m still has an extreme value distribution, the

rescaling of *
m1e  will be through a new estimate of

the Weibull parameter 1ρ  ( 1ρ  and the rescaling

factor are confounded). Expression [17] allows the
following decomposition of the joint likelihood :
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As previously, censoring should be accounted for,
by a proper calculation of the likelihood
contributions. The posterior density [15] can be
computed either to jointly estimate 21   and ¨¨

assuming that Σ is known, or as the starting point
for applying, e.g., Laplacian integration to get an
approximate marginal posterior density of the
parameters in Σ. Again, the main challenge lies in
the computational implementation of this approach

When for some animals, one or the other of the
traits is missing, it is possible to distinguish subsets
with homogeneous information available (only one
trait or both) as in Janss and Foulley (1993) or Le
Bihan-Duval et al. (1997). The contributions of the
likelihood of each subset can be combined since
they are conditionally independent given θ.

When the second trait is also a longevity trait
(e.g., two longevity measures determined by
different culling reasons), a joint analysis seems
even more difficult, in particular because definition
of generalised residuals (Cox and Snell, 1968) does
not seem to fit here for the computation of m2ê .

Care must also be taken in the computation of
likelihood contributions of censored records
(censored for one or the other or both traits).

5. A model for survival on a lactation basis

In most of the current genetic evaluation models
that are based on survival analysis, stage of
lactation x lactation number (SLLN) effects are
included as time dependent covariates (these
proceedings). The stage of lactation effect is
included to account for changes in culling policy
during the lactation: it is assumed (and verified)
that culling is more intense at the end of the
lactation, when production is lower, when it is
known whether the cow is pregnant or not and
when her carcass value is better. Classes of stage of
lactation are defined somewhat empirically in order
to model these changes by a piecewise constant
function. However, as SLLN effects are changing
according to a predefined sequence as time goes,
the exact interpretation of its effect must be done
after combining it with the baseline as (Ducrocq,
1999):

} )t'(t,l̂  exp{ * tˆ )t(ĥ j
1-ρ̂ρ=   [19]

where lj(t,t’) represents the jth SLLN effect. Figure
4 shows a typical plot of the change in hazard
during the lactation. It is tempting to conclude from
such a graph that the hazard pattern is more or less
the same for each lactation, with a regular (convex)
increase of the risk during the lactation, and that
this regularity is partly broken by the arbitrary
choice of boundaries for SLLN effects. A more
regular curve would imply a thinner definition –
i.e., more classes- of stages of lactation, but this

has already a huge drawback : at least with the
approach used in the Survival Kit (Ducrocq and
Sölkner, 1994), each change in SLLN induces the
creation of a new « elementary record », a record
covering an interval on which no time-dependent
covariate changes. This makes the recoded file
bigger and bigger.
 This leads to the suggestion of an alternative
model, for which survival is looked at on a
lactation basis rather than on the whole length of
productive life.

The current longevity measure uses the date of
first calving as starting point and the date of culling
as end point. The proportional hazard model is
written as:

}s 0.5 s +                                               

 )t'(t,l + (t)f)(hy  exp{ )t(h)t(h
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+
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[20]

where hyr(τ) is the herd year effect, su and smgs are

the sire and maternal grand sire effects and the fk‘s
are the other fixed effects, some of them being time
dependent (see, e.g., Ducrocq, 1999).

Figure 4: Hazard function of a reference cow
with constant lactation length and calving
interval, in the Normande breed

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 365 730 1095 1460 1825 2190
Number of days since first calving

ha
za

rd
 fu

nc
tio

n 

For the alternative model, each lactation of each
animal is treated as one survival measure : the
origin point is date of calving, the end point is date
of culling or date of next calving (whichever comes
first) and of course, the record is censored if the
cow starts a new lactation. The hazard of cow m is:

}s 0.5 s +                                               

  c +fhy  exp{ )t(h)t(h

gsu

mk krj0,

+

+= ∑
  [21]

where  )t(h j0, is a Weibull baseline hazard specific

to each lactation, hyr is the herd year effect when
the lactation was started (i.e., time-independent),
and the fk’s are the other fixed effects, which can
be time-dependent but most often are not (e.g.,
variation in herd size or deviation in milk
production can be considered as time-independent
within lactation). cm is an extra random effect
(cow effect), which describes the shared
unobservable genetic and non genetic character-



187

istics specific to cow m that affect her hazard
during all her lactations. This definition is along
the lines of the definition of the random terms in
the frailty models advocated by Vaupel et al.(1979)
or Clayton and Cuzick (1985).

I see some important attractive features for such a
model:
• It allows a continuous description of the SLLN
effect in figure 4, avoiding the definition of
arbitrary stage of lactation intervals. If a Weibull
baseline hazard stratified by lactation is chosen,
[19] is replaced by:

h(t) = constant x
1-j t

ρ
[22]

The term 
1-j t

ρ
 should account for the convexity

of the lactation curves in figure 4. At the beginning
of the lactation, h(t)=0 : this model cannot describe
a « bathtub » hazard, with a phase with decreasing
hazard followed by an increasing hazard. If culling
risk is important at the very beginning of the
lactation, this may be a drawback. Then, a time
dependent stage of lactation effect may have to be
added… Note however that if survival information
comes from milk recoding schemes, very early
cullings occur before the first ‘potential’ test date
and the ‘apparent’ culling is considered as
occurring late during the previous lactation.

• From a computational point of view, this model
leads to a drastic reduction of the size of recoded
data file: with the current models, the average
number of elementary records per cow is large
(e.g., 19.4 for the French evaluation, see Ducrocq,
1999). With the alternative model, this number
would go down to about 3, i.e., a reduction by a
factor of about 6, maybe making the analysis
possible without the time-consuming compression -
decompression approach (Ducrocq, 1999).

• This approach may offer a much nicer
framework for multiple trait analyses (e.g., within
lactation milk production and survival) or for time-
dependent sire x lactation effects.

The main drawback of this approach is, I think,
the need to include an extra random effect: the cow
effect. What does it change? Do we loose accuracy
by including it in the model? What distribution do
we choose for it? What variance does it have? How
do we estimate it? Can the effect be integrated out?
What is its consequence on convergence rate?
There are a lot of interesting questions to work on!

Note that successful applications of survival
analysis on a lactation basis (but with only one
lactation considered per cow, i.e., without cow (cm)
effect) can be found in epidemiology (e.g., Gröhn
et al.,1997, 1998).

6. Towards a better understanding of the
components of longevity

A better knowledge of the relationships between
traits will be obtained by getting more precise
estimates of the genetic and residual correlations
between them, either from true multivariate
analyses or from approximate approaches (Druet et
al; 1999; Larroque and Ducrocq, 1999). But my
impression is that our perception of the factors
influencing culling rates is to some extent limited
when it is only based on the estimates of regression
parameters or of correlations. To go one step
further, I suggest to try to decompose the culling
decisions into different components in a more
didactic way. For example, can we identify groups
of animals with, say, different type characteristics
that are homogeneous (within group) but with very
different survivor curves from one group to
another? Specific tools have been developed by
statisticians to tackle such questions. Discriminant
analysis is one such tool.  Another one is
classification and regression tree (CART) models
(Breiman et al., 1984, Chipman et al., 1998). These
are used to create binary trees that recursively
partition the space of explanatory variables into
subsets in which the distribution of the dependant
variable (survival time in our case) is more
homogeneous. Figure 5 illustrates what kind of
results CART models can lead to, using phenotypic
scores on type traits as predictors.

Figure 5: a completely invented regression tree
which defines 4 groups of animals with different
type phenotypes that have distinct, but
homogeneous (within group) survivor curves

Udder Depth

Teat Placement
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<4 >4

<3 >3

<3 >3

>7<7<6>6

Group 1

Group 2

Group 3Group 2 Group 4

There are quite a few difficulties involved: at
each stage of the recursive partitioning, groups are
divided into two “nodes” as distinct as possible
from each other. This is decided according to the
value of some function of the data, for example a
likelihood function or a posterior density in a
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Bayesian analysis (Chipman et al., 1998). As many
such functions may be computed when the limit
separating nodes is changed, the resulting
algorithm can be extremely time consuming. Also,
there is a balance to be found between maximising
homogeneity within group and minimising the
number of groups. It seems recommended to start
by constructing a large tree with many terminal
nodes and then to reduce it by “pruning”,
combining the groups that are most similar.
Finally, cross-validation is advisable, if not
compulsory when such a technique is used.

Note that CART models could be also useful to
tackle one of the research topics indicated in
Beaudeau et al. (1999), regarding the interpretation
of herd-year effects and their components.

Conclusion

As it can be seen, most of the topics described here
are in their early stages of development and some
of them may be unworkable, unpractical or very
premature. My hope is simply that they could be
the basis for discussions and for future
development of fruitful collaborations.
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