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Abstract

Proportional hazards models most often assume that failure times are expressed on a continuous time scale.
There are common situations in animal breeding when this is not the case, for example when longevity is
expressed in years, number of parities, etc… As a result, some basic assumptions of most survival models are
violated. For example, the Cox’ partial likelihood is no longer correct. This paper presents a more appropriate
strategy, the “grouped data model” of Prentice and Gloeckler (1978) for the analysis of discrete data, that
maintains the assumption of proportional hazards. A reparameterisation of the model underlines the main
differences with the Cox model or with a parametric regression model, the Weibull model. It also allows an
easy modification of existing programs to make them suitable for the analysis of discrete survival data. The
« grouped data model » is compared with continuous models on simulated data sets. The robustness of the
Weibull model and the inadequacy of the Cox model on discrete data are illustrated.

1. Introduction

    In survival analysis, the time scale used to describe
failure time is most often considered to be
continuous. Such an assumption seems reasonable
when length of life of large domestic animals is
expressed, e.g., in days. Then, it is becoming a
standard practice to analyse such data using
proportional hazards models (Cox, 1972, Kalbfleisch
and Prentice, 1980) or, in genetic studies, their
extension to mixed (frailty) models (Ducrocq, 1997).
However there are situations when the time scale is
obviously discrete with very few classes: this is the
case when the available information is limited to a
total number of parities, a number of completed
lactations, etc… But in some instances, even though
more precise information is available, the exact
timing of culling – just after calving, 3 months later
or just before the next calving - is somewhat
irrelevant, e.g., what counts is that there will be no
more progeny born after culling. For discrete data, a
direct survival analysis using ‘standard’ proportional
hazards models is a priori incorrect, as the usual
approaches assume continuity of the baseline hazard
distribution and/or absence of ties between ordered
failure times.  After a description of a technique due
to Prentice and Gloeckler for the analysis of discrete
survival data without rejecting the proportional
hazards model, I will describe how this technique can
be easily accommodated in the Survival Kit, a
package developed for the use of regression and
frailty models with time-dependent covariates
(Ducrocq and Soelkner, 1998).

2. Background

2.1 Proportional hazards models

Let x = (x1 .. xn)’ be a vector of explanatory
variables upon which failure time may depend. The
xj’s can be continuous or discrete covariates. In
proportional hazards models (PHM ; Cox, 1972), the
hazard function h(t) and x are associated through the
expression:

h(t ; x) = h0(t) exp{x’β} [1]

where β is a vector of regression coefficients. h0(t) is
called the baseline hazard function and exp{x’β},
represents a stress-dependent term specific to the
animals with covariates x. The simple intuitive
interpretation of the regression coefficients in
proportional hazards models greatly explains their
popularity: the hazards of two individuals are
proportional over time. If (piecewise constant) time-
dependent covariates are used, the proportionality
assumption must hold over intervals and not longer
on the whole time axis.

When a parametric form is chosen for the baseline
hazard function h0(.) in [1], it is relatively easy to
write down, to compute and to maximise the full
likelihood function, combining contributions from
censored and uncensored records. This provides
maximum likelihood estimates of the parameters of
the baseline density and of β. But the parametric
forms most frequently used (exponential, Weibull,
gamma, log-normal, Pareto, etc…) are all continuous.
One can wonder about the consequences on
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parameter estimation of the use of continuous
functions to describe inherently discrete variables.

It is also possible to leave h0(.) completely arbitrary.
Expression [1] then defines a semiparametric
regression model known as a Cox model (Cox, 1972).
The attractive feature of the Cox model is that it
permits the estimation of β without making any
assumption about the form of h0(.). The procedure
developed by Cox relies on the definition of what he
calls a partial likelihood function which is the part of
the full likelihood function which does not depend on
h0(t). The formal expression of the logarithm of the
partial likelihood is:
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where F is the set of ordered distinct failure times
T[k]  and R(T[k] ) is the set of animals at risk (i.e.,

alive) at time T[k] . The partial likelihood also
received other formal justifications. In particular, it
can be obtained as the marginal likelihood of the
ranks of failure times, i.e., it contains all the
information about the order in which animals died.
However, the ranking of failure times is not possible
with a discrete measure of failure times, which
generates a large amount of “ties”. When there are
few ties between failure times (at least compared
with the total number of observations),
approximations of Cox’s partial (log-)likelihood have
been proposed. In particular Peto (1972, in the
discussion of Cox’s paper) suggested to use:
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where D is the set of the dk dying at time T[k] .
Once estimates β̂  of β have been obtained maxim-

ising [3], the baseline survivor function )t(S0 is

estimated assuming that ββ ˆ= .

2.2 The grouped data model of Prentice and
Gloeckler (1978)

When there are many ties among failure times, e.g.,
when only a few classes (say, less than 20) of a
discrete measure of survival are available, the
approximation [3} is no longer valid or useful and a
different analysis must be performed. Prentice and
Gloeckler (1978) presented another approach for
such data, that I will introduce now.

 Define the intervals representing the unit of measure
(e.g., years):

[0 =  τ 0,  τ 1), [τ 1,  τ2), … , [τk-1,  τk),…

 Implicitly, all failures occuring during the interval
[τk-1,  τk) will be “grouped” and the attached failure
time will be k. It will also be assumed that censoring
only occurs at the end of each interval. The survivor
function at t = τk-1, i.e., at the beginning of the
interval k, is:
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Then, adapting the definition of the hazard function,
we have:
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 Using the formal relationship between survivor
function, hazard function and density function and
combining [6] and [8], we get :

         f(t ; x) = h(t ; x) S(t ; x)
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Expressions [6] and [9] are used in the construction
of the full likelihood (Kalbfleisch and Prentice,
1980):
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In contrast with the Cox model approach, the
elements of the baseline survivor curve (the αi’s in
[6]) are estimated jointly with β.

An example using this methodology for the analysis
of number of years in competition in horses can be
found in Ricard and Fournet-Hanocq (1997).

3. Reparameterisation of the grouped data model

 The joint estimation of the αi’s and β in [10] requires
the writing of a specific programme. In fact, a simple
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reparameterisation of the model permits the use of
the Survival Kit package (Ducrocq and Soelkner,
1998) with minimal modification.
By definition, the  αi's in [6] take only values
between 0 and 1. This requires a constrained
maximisation of [10]. As noted by Miller (1981,
p139), it is more convenient to reparameterise the αi's
into ξi's, where ξi= log( - log αi) which all take values
between ∞− and ∞+ . Then:

                           { }i exp - exp i ξ=α [11]

This reparameterisation leads to new expressions for
equations [5] and [6] :
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 Assume that all interval lengths are equal and define
this interval length as unity (τ 0 = 0, τ 1 = 1,…,  τi = i).
Define x*’ (τi-1) β* = ξi + x’β, then:
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Now, this equation [14] will be related to another
expression obtained in a different context : consider a
Weibull regression model, in a situation where the
regression vector x(t) is time-dependent. The
expression of the survivor function S(ym) for this
animal is :
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defining x*’ (u)= (1  x’(u))’ and  β*’  = (ρlog λ, ββ’).
Assume that x’(u) is a piecewise constant function of
time : the value of at least one element of x(u)
changes at time q0 = 0 < q1 < … < qQ = ym, the
failure time of animal m. This implies that expression
[15] can be integrated explicitly:
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This resemblance between [14] and [16] suggests
another interpretation of Prentice and Gloeckler's
model: it is equivalent to an exponential (ρ =1)
regression model which includes a time-dependent
covariate that I will call time_unit. This time-
dependent covariate is a step function of time with
changes at  τ0=0,  τ1=1,  τ2=2, …,  τk=k,…. Then, the
resulting expression for the survivor curve of such an
exponential regression model is identical to [14].
However, the hazard functions differ. Indeed, the
time-dependent exponential regression model leads
to :
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for the grouped data model.

To illustrate the subtle difference between the
xpressions [18] and [19], consider the limiting
situation when there are many different (small) time
intervals [τk-1,  τk). Then, one can expect that the
conditional survival probabilities αk will not be very

different from 1, i.e.,  k1k ε−≈α  for some smallkε
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 The latter expression is the same as definition [18].
In other words, Prentice and Gloecker's model can be
viewed as a fully parametric (exponential) model, for
which the baseline is estimated at every (discrete)
time-point (through the use of the time_unit time-
dependent variable) and for which the definition of
the hazard is modified to take into account the
discrete time scale. This property can be used to
modify existing software for the analysis of grouped
survival data In particular, the « Survival Kit –
V3.1 » , which is available at :

http://www.boku.ac.at/nuwi/popgen/

includes such a change : in the parameter file of the
program « prepare.f » of recodification, the simple
keyword « DISCRETE ; » forces the definition of the
time-dependent covariate time_unit and the creation
for each animal of as many elementary records as
changed in time_unit. Without any further indication,
Prentice and Gloeckler’s model will be automatically
used  when the next program (weibull.f – not cox.f !)
is called. It should be remembered that in this case,
the fitted model is not a Weibull model and that in
the calculations, the value ρ =1 will be always taken.

4. Extension to frailty models

   Most of the Bayesian analysis of mixed (frailty)
models developed in Ducrocq and Casella (1996) can
be applied to Prentice and Gloeckler's model for

discrete (or « grouped ») data. The vector β in β'ex

of expressions [6] and [8] can be extended to include
random effects s={sq}. Let:
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In the Bayesian analysis, the log-gamma or
(multivariate) normal prior distributions can be used
for the frailty term sq. The analysis proceeds as in
Ducrocq and Casella (1996).
   One needs the following expressions of the
survivor function:
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in order to combine the contribution of each
individual to the construction of the likelihood
function [10]. These formula can be adapted to
accommodate time-dependent covariates. Inferences
on θ can be drawn from the posterior distribution

( )y  etershyperparam,... k21 ξξξπ   , , θ,  exactly in the

same way as in Ducrocq and Casella (1996) : the
Laplacian integration technique to obtain the
approximate marginal posterior distribution of the

hyperparameter(s) of the prior distributions can be
applied without any change. However, it is important
to note that the algebraic integration of the frailty
term from the joint posterior distribution (when the
random term follows a log-gamma prior distribution
is not possible here.

5. Numerical example

To illustrate the grouped data approach and without
aiming at general conclusions, several proportional
hazards (mixed) models were applied to the analysis
of simulated data sets.

5.1. Data sets

Using the program simul.f (also available at the
Survival Kit home page), 10000 records were
simulated assuming a Weibull frailty model (data set
A), on a continuous time scale. The true parameters
of the Weibull baseline hazard distribution were ρ =
2.0 and ρ logλ = -14.05, which corresponds to a
median failure time of 750 days. All values above
3000 days were censored at this date. (1.6% censored
records). In the simulation model, the records were
influenced by 2 fixed effects with 5 and 4 levels each
and a random (« sire ») effect with 100 levels. The
levels of both fixed effects were randomly distributed
across records and each sire had 100 simulated
daughters, resulting in a nearly balanced design The
sire effects were assumed to be iid N(0, 0.05).
Simulated values of fixed effects are indicated in
table 1.
A discretised version of data set A (data set B) was
created using the following rule : if ym is continuous
failure or censoring time, the new discrete value is

Ym = n if  365*(n-1) ≤  ym < 365*n. In other words,

Ym represents the number of « started » years of life.

Data sets AC and BC were obtained from A and B
censoring records larger than 1095 d (= beginning of
the fourth year) at t=1095 for the former and records
larger than 4 (years) at t=4 for the latter. The
corresponding censoring rate is 45.1% for both files.
Note that the underlying model is still Weibull. To
drastically force a different (not Weibull) model data

set BC was modified assuming that all records with

Ym= 4 were in fact not censored (data set BD).

5.2. Analyses

These data sets were analysed using the « Survival
Kit – V3.1 » and fitting a Cox or a Weibull model

(i.e., ignoring the discrete scale for data sets B, BC

and BD)  or the grouped data model described in this
paper. Solutions of fixed effects, characteristics of
the approximate marginal posterior distribution of the
sire variance were compared to the true values.
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Table 1 : true values used in the simulation and estimates from the Cox model and the
Weibull model when the time scale is really continuous

Model (True) Cox Weibull
Data set

(a) (A/B) A A

Time scale continuous continuous continuous
Intercept (ρ logλ) -14.0503 -14.007

ρ 2.0 1.994+/-0.016
fixed effect 1 : β1 0 0 0

β2 0.5296 0.5636 0.5675
β3 -0.3456 -0.3073 -0.3080
β4 0.3803 0.4046 0.4066
β5 -0.5136 -0.5203 -0.5201

fixed effect 2 : γ1 0 0 0
γ2 -0.0510 -0.0480 -0.0485
γ3 -0.3917 -0.4229 -0.4246
γ4 -0.4071 -0.4764 -0.4785

sire variance : mode 0.05 0.04915 0.04948
  mean 0.05169 0.05203
  std 0.00917 0.00917

skewness 0.596 0.596
(a)

 see text

Table 2 : true values used in the simulation and estimates from the Cox model, the Weibull model
and the drouped Data model when the time scale is discrete

Model (True) Cox Weibull Grouped data
Data set

(a) (A/B) B B B

Time scale continuous discrete discrete discrete
intercept -14.0503 -3.0075

ρ 2.0 2.330/-0.018
fixed effect 1 : β1 0 0 0 0

β2 0.5296 0.4270 0.5705 0.5578
β3 -0.3456 -0.2428 -0.3253 -0.3102
β4 0.3803 0.3061 0.4084 0.3983
β5 -0.5136 -0.4210 -0.5542 -0.5296

fixed effect 2 : γ1 0 0 0 0
γ2 -0.0510 -0.0457 -0.0598 -0.0595
γ3 -0.3917 -0.3287 -0.4377 -0.4244
γ4 -0.4071 -0.3725 -0.4937 -0.4787

sire variance :
mode

0.05 0.02756 0.05452 0.05078

  mean 0.02924 0.05719 0.05341
  std 0.00583 0.00993 0.00944

skewness 0.600 0595 0.596
(a)

 see text

5.3. Results

Table 1 illustrates the excellent behaviour of both
the Cox model and the Weibull model when the
time scale used for the analysis is continuous, in
this idealised situation (almost no censoring,
balanced design, true underlying Weibull model).
The similarity of the estimates of the Cox and the

Weibull models is striking : there is virtually no
information lost when the partial likelihood is used.
None of the estimates is significantly different
from its true value. The approximate estimation
procedure of the sire variance also gives very
satisfying results



46

Table 3 : estimates from the Weibull model (correct underlying model) and the grouped data model
when the time scale is either continuous or discrete, in presence of censoring

Model (True) Weibull Weibull Grouped data
Data set

(a) (A/B) AC BC BC

Time scale continuous continuous  discrete discrete
intercept -14.0503 -14.174 -2.8643

ρ 2.0 2.028+/-0.0247 2.123+/-0.026
fixed effect 1 : β1 0 0 0 0

β2 0.5296 0.5642 0.5734 0.5493
β3 -0.3456 -0.2898 -0.3109 -0.2952
β4 0.3803 0.4079 0.4206 0.4026
β5 -0.5136 -0.5111 -0.5510 -0.5238

fixed effect 2 : γ1 0 0 0 0
γ2 -0.0510 -0.0737 -0.0952 -0.0873
γ3 -0.3917 -0.4329 -0.4662 -0.4407
γ4 -0.4071 -0.5067 -0.5338 -0.5069

sire variance : mode 0.05 0.05551 0.06345 0.05698
  mean 0.05867 0.06696 0.06018
  std 0.01142 0.01264 0.01169

skewness 0.603 0.601 0.603
(a)

 see text

Table 4 : estimates from the Weibull model (incorrect underlying model) and the grouped data model
when the time scale is discrete

Model (True) Weibull Weibull
+ time_unit  effect

Grouped data

Data set
(a) (A/B) BD BD BD

Time scale continuous discrete discrete  discrete
intercept -14.0503 -4.3852 -2.341

ρ 2.0 3.696+/-0.32 1 (constrained)
fixed effect 1 : β1 0 0 0 0

β2 0.5296 0.3719 0.3061 0.5494
β3 -0.3456 -0.1429 -0.1228 -0.2951
β4 0.3803 0.2578 0.2113 0.4026
β5 -0.5136 -0.2323 -0.1992 -0.5237

fixed effect 2 : γ1 0 0 0 0
γ2 -0.0510 -0.0566 -0.0463 -0.0873
γ3 -0.3917 -0.2528 -0.2107 -0.4407
γ4 -0.4071 -0.2868 -0.2386 -0.5069

sire variance : mode 0.05 0.01532 0.00733 0.05693
  mean 0.01633 0.00778 0.06018
  std 0.00389 0.00264 0.01169

skewness 0.598 0.583 0.603
(a)

 see text

In table 2, the time scale is changed. Then the
Cox model gives poor results : all fixed effects
solutions are shrinking towards 0, compared with
the true value (by 20 to 30% for fixed effect 1).

More importantly, the sire variance is strongly
under-estimated. This reflects the inadequacy of
the approximation [3] of the partial log-likelihood
in presence of many ties. The solutions of the
Weibull model are reasonably correct, except for

the Weibull parameter ρ. Indeed, it seems that the
biases in β may be a direct consequence of the

overestimation of ρ (the ratios ρ̂/β̂ and β/ ρ are very
similar). The grouped data model gives the best
results, with no significant bias for the fixed effects
as well as for the sire variance.

Table 3 reports the analyses of data sets AC and

BC, obtained from A and B after censoring records
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of 4 years and more. When the time scale is still
continuous, the solutions from the Weibull model
and also from the Cox model (not shown) are
almost unchanged : censoring has very limited
impact. When failure and censoring times can take
only one out of 4 values (1, 2, 3 or 4), solutions of
fixed effects are only marginally affected.
However, the sire variance is overestimated,
although the true value 0.05 is still in the 95%
credible set of its marginal posterior density. The
grouped data model gives better results than the
Weibull (discrete) model, for the fixed effects as
well as for the sire variance component.

Finally, in data set BD, the underlying distribution
is forced to be not distributed as Weibull by

treating all censored records of data set BC as
uncensored. Note that this has no impact on the
« true » values of β and of the sire variance used to
simulate the data nor on the validity of the
proportional hazards assumption [1]. Table 4
shows that applying a Weibull model to such data
set is incorrect : solutions for fixed effects are even
more shrunk towards 0 than for the Cox model in
table 2 and the sire variance is grossly
underestimated (close to 0). Once again, the
grouped data set gives excellent results, unchanged

with respect to the analysis of data set BC in table
3. In contrast with the Weibull model, the grouped
data model can accommodate a conditional
survival probability of 0 at time 4, and reveals the
proper genetic variability.

6. Conclusion

It is not possible to generalise inferences drawn
from this small, idealised numerical example.
Nevertheless, it illustrates some characteristics that
are well known from methodological
considerations, or from real life examples obtained
elsewhere. These characteristics have important
consequences on the appropriate strategy that
should be used for the analysis of survival data :

• When the time scale is continuous and the
Weibull assumption is reasonable, Cox and
Weibull models give almost identical results (see
Ducrocq and Casella, 1996, for other simulated
examples).

• This is true even when censoring rate is
substantial, at least in relatively balanced
situations.

• When the time scale is discrete, the Cox model
is no longer adequate.

• However, at least when the « underlying
continuous baseline » remains distributed as
Weibull, the Weibull model seems remarkably
robust (see Lubbers et al., 1999 for another
example of such robustness).

• When this is not the case, the grouped data
model should be the method of choice, as it does
not require any particular assumption about the
shape of the baseline distribution.
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