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Abstract 

Farmers, maintaining indigenous cattle breeds, are typically lacking accurate (G)EBV for their animals. 

Finnish local cattle breed (Finncattle, FIC) in 2019 presented less than 1% of milk recorded cows of the 

country. Breeding values for FIC are calculated jointly with Red Dairy Cattle (RDC) of Finland, 

Denmark, and Sweden (DFS). To perform joint GEBV prediction for FIC and RDC breeds, we propose 

a single-step GTBLUP approach with metafounders (MF). We used genomic data from 917 FIC and 

168 476 RDC animals and test-day milk records from FIC and RDC cows. Originally assigned 137 

unknown parent groups were replaced by 137 MF with and the meta-founder relationships were derived 

using co-variance functions. 
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Introduction 

Genetic and genomic prediction is common 

in large dairy cattle breeds (e.g., Holstein, Red 

Dairy cattle, or Jersey). The situation is the 

opposite for small breeds with limited genomic 

data available.  Insufficient phenotypic and 

genomic information can be considered a 

synonym for bias, overprediction, and low 

accuracy (Andonov et al., 2017). An approach 

to overcome the limitation is to perform 

genomic prediction of a small breed jointly with 

a genetically related large breed. 

Finncattle is the indigenous breed of Finland 

presented by less than 1% of milk recorded 

cows in the country (Soini et al., 2019). 

However, the current breed is expected to share 

genetics with Finnish and Swedish Ayrshire and 

Friesian cattle due to an open herd book, fourth 

generation cross is accepted as a pure breed.  

The routine genetic evaluation of the breed is 

performed by NAV (Nordic Cattle Genetic 

Evaluation, Denmark) jointly with Nordic 

(Denmark, Finland, and Sweden) Red Dairy 

cattle (RDC) and Finnish Holstein (HOL) since 

2006. However, genomic prediction for FIC is 

not yet available as FIC breeders and farmers 

just recently started to collect genotypes from  

 

FIC cows and bulls.  Current genotyping has 

focused on the western subpopulation which are 

the major part of FIC animals. 

Genomic prediction in Nordic dairy cattle is 

currently performed as a two-step approach 

(VanRaden, 2008), but many efforts have been 

done to move to the single-step approach 

(Mäntysaari et al., 2020). Theoretically, a 

single-step method (Aguilar et al., 2010; 

Christensen and Lund, 2010) and, recently 

proposed, metafouders (Legarra et al, 2015) 

would allow joint FIC and RDC genomic 

prediction in a sophisticated way. However, 

some worry about a possible drop in the quality 

of genomic prediction in RDC due to presence 

of FIC genotypes in reference population exist. 

The original MF approach should also be 

adjusted in a way to include as many MF as 

unknown parent groups (UPG).  

Aim of the current study was to: investigate 

ways to extend the number of MF to the same 

as UPG; perform single-step genomic 

prediction using RDC and FIC phenotypes and 

genotypes simultaneously; and see if the 

inclusion of FIC genotypes has negative 

impacts on quality of RDC genomic prediction. 
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Materials and Methods 

Data 

Phenotypic data and pedigree were obtained 

from the August 2020 NAV RDC production 

traits evaluation.  Protein and milk yield test-

day records were available from 3.6 million 

RDC, 0.86 million HOL, and 30 thousand FIC 

cows. The reduced data set was created by 

omitting the records collected in 2017-2020 in 

order to assess prediction ability of the models.  

All the breeding values were estimated using 

the official NAV test day model with 27 traits: 

milk, fat, protein x 3 lactations x 3 countries.  

Full pedigree included 4.6 million RDC, 1 

million HOL, and 34.6 thousand FIC cows and 

76.6 thousand RDC, 22.5 thousand HOL, and 

1.5 thousand FIC bulls. Truncated pedigree was 

created for estimation of base population allele 

frequencies (AF) by keeping only genotyped 

individuals and one generation of their parents.  

The genomic dataset included 168 476 RDC 

and 917 FIC animals with 46 914 markers per 

genotype available. Imputation and quality 

control of the genotypes were done by NAV.  

UPG and MF 

In the truncated pedigree, unknown parents 

were replaced by a set of 20 groups. The set was 

only used in estimation of base population allele 

frequencies and to compute the “regular” 

gamma matrix (𝚪𝟐𝟎) required in the 

metafounder approach. The groups were 

formed as country × breed (or just breed) by 

time intervals: Finnish, Swedish, and Danish 

RDC (FIN RDC, SWE RDC, and DNK RDC in 

<1990,1990-2000,and >2000) = 9 groups; RDC 

from other countries (RDC OTHER in <2000 

and ≥2000) = 2 groups; FIC (FIC in  

<1980,1980-1990, and >1990)  = 3 groups; 

other breeds (OTHER  <2000 and ≥2000) = 2 

groups; HOL (HOL <1960,1960-1980,1981-

2000, and >2000) = 4 groups.  

In the full pedigree the UPG defined by 

NAV were replaced by set of 137 groups. The 

137 UPG were formed based on breed, country, 

selection path, and sex and birth decade. In the 

genomic prediction the set were considered as 

either UPGs or MFs.  

Gamma matrix 

The base population AF for RDC, FIC, and 

OTHER groups were computed using RDC and 

FIC genotypes in BPOP program using GLS 

model (Strandén and Mäntysaari, 2020). HOL 

AFs were estimated using HOL genotypes by 

M. Koivula (personal communication). Markers 

with minor allele frequency ≤ 0.05 by breed 

were deleted, and only common markers for 

HOL, RDC, and FIC breeds were selected. 

Obtained marker set of 40,536 markers was 

used to estimate 𝚪𝟐𝟎. The 𝚪𝟐𝟎 matrix was 

computed as 8 ∗ 𝑐𝑜𝑣(𝑷), where 𝑷 is m by n 

matrix of AF with m = number of SNPs and n = 

number of base populations (groups). The 𝚪𝟐𝟎 

was needed to predict 𝚪𝟏𝟑𝟕. 

The estimation of 𝚪𝟏𝟑𝟕 was done using co-

variance function described in Tijani et al. 

(1999):  𝚪𝟏𝟑𝟕 = Ф137𝐊Ф137
′ , where Ф137 is the 

model matrix describing the groups and K is a 

matrix of co-variance function coefficients 

estimated as 𝐊 =  (Ф20
′  Ф20)−1 ∗ Ф20

′ 𝚪𝟐𝟎Ф20 ∗

(Ф20
′  Ф20)−1. Here  Ф20 is the model matrix 

functions proposed for given (20) MF. 

Statistical model 

Genetic prediction was done using the 

following models: 1) single-step GTBLUP 

(Mäntysaari et al. 2017) with 137 UPGs; 2) 

single-step GTBLUP with 137 MFs; and 3) 

original TD BLUP animal model (Lidauer et al., 

2006). 

ssGTBLUP UPG model included genomic 

relationship matrix (G) built with residual 

polygenic effect = 30% and a base population 

allele frequency = 0.5. Diagonal of G was 

scaled by trace(𝐀𝟐𝟐)/trace(G). Inbreeding was 

accounted in the inverse of pedigree 

relationship matrix (𝐀−1) and submatrix of 

genotyped animals (𝐀22), and a full QP 

transformation for UPG was used (Matilainen et 

al., 2018).  

ssGTBLUP MF model included G matrix build 

with the same assumptions as in ssGTBLUP 
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UPG, except the scaling. The inverses of 𝐀 and 

𝐀22 matrices were build using 𝚪𝟏𝟑𝟕 and MF 

inbreeding was accounted. 

TD BLUP model had 137 UPGs and inbreeding 

accounted in the inverse of pedigree 

relationship matrix (𝐀−𝟏). 

Computations were done with MiX99 

software (Strandén & Lidauer, 1999). 

Validation of genomic prediction was 

performed by regression of genomic estimated 

breeding values (GEBVs) obtained using the 

full data on the corresponding GEBVs from the 

reduced data (Legarra and Reverter, 2018). 

Criteria for selection of validation bulls was 

>20 daughters with records in the full and no 

daughters in the reduced data. The set of 

validation cows included cows with at least one 

record in the full and no records in the reduced 

data sets. 

 

Results & Discussion 

Gamma and relationship matrices. 

Figure 1 has the Γ20 matrix as a heatmap 

plot. The dull red color implies fair kinship 

between the MF, in opposite the bright red color 

implies high kinship. FIC MFs were barely 

related to modern HOL and OTHER MFs. The 

relationships between FIC and RDC MFs were 

alike across all time intervals. Expectedly HOL 

MFs had the lowest kinship with the other 

groups. 

 
Figure 1. Heatmap plot of the Γ20 matrix. Diagonal 

= self-relationship of the MFs; off-diagonals are 

relationship between MFs. 

The K matrix used to compute the 𝚪𝟏𝟑𝟕 

matrix is in Appendix I. The 𝚪𝟏𝟑𝟕 matrix 

(Figure 2) had a structure replicating, to some 

extent, the structure of the 𝚪𝟐𝟎 matrix. 

Average diagonal elements of the 𝐀22, 

 𝐀22
Γ137, and  𝐆05 by birth year of genotyped 

animals are presented in Figure 3. Use of the 

𝚪137 matrix lifted the diagonal elements of the 

𝐀22 matrix closer to those of 𝐆05. Correlation 

between the diagonal elements of 𝐆05 and 𝐀22 

increased from 0.51 to 0.71 after augmentation 

by the 𝚪137 matrix. In FIC, correlation between 

the off-diagonal elements of 𝐆05 and 𝐀22 

increased from 0.63 to 0.67 after augmentation 

by the 𝚪137 matrix, but between the diagonal 

elements remained unchanged.  

 

 
Figure 2. Heatmap plot of the Γ137 matrix. Diagonal 

= self-relationship of the MFs; off-diagonals are 

relationship between MFs. 

 

 

 
Figure 3. Average diagonal element of the 

relationship matrices (𝐀22, 𝐀22
Γ137 , and  𝐆05 ) by birth 

year of the genotyped animals. 
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Genomic prediction and validation. 

Table 1 has validation results for genomic 

prediction in FIC bulls for protein and milk 

yields. Model predictive values (𝑅2) were the 

same for the ssGTBLUP UPG and the 

ssGTBLUP MF models. The highest 𝑏1value in 

the protein was obtained for ssGTBLUP UPG. 

Surprisingly high 𝑅2 and  𝑏1 were attained for 

the TD BLUP model, especially in milk. This 

may be due to the low number of a candidate 

bulls used to perform the regression analysis.  

In the cows set (Table 2), the highest coefficient 

of determination in protein and milk was 

obtained for the ssGTBLUP MF model.  

 

Table 1. Validation results in the 21 FIC bulls for 

protein and milk yield (G)EBV predicted using 

ssGTBLUP UPG, ssGTBLUP MF, and TD BLUP 

models (𝐺𝐸𝐵𝑉𝑈𝑃𝐺 , 𝐺𝐸𝐵𝑉𝑀𝐹 , and 𝐸𝐵𝑉𝑈𝑃𝐺). 

 

 Model  MDiff 𝒃𝟏(±SE) 𝑹𝟐 

P
ro

te
in

 𝐺𝐸𝐵𝑉𝑈𝑃𝐺  -4.2 0.90 (±0.2) 0.66 

𝐺𝐸𝐵𝑉𝑀𝐹  -4.0 0.79 (±0.1) 0.66 

𝐸𝐵𝑉𝑈𝑃𝐺  -3.1 0.82 (±0.2) 0.53 

M
il

k
 𝐺𝐸𝐵𝑉𝑈𝑃𝐺  -195 0.80 (±0.2) 0.60 

𝐺𝐸𝐵𝑉𝑀𝐹  -177 0.92 (±0.2) 0.60 

𝐸𝐵𝑉𝑈𝑃𝐺  -203 0.93 (±0.1) 0.69 

MDiff = mean (G)EBV from full data minus 

(G)EBV from reduced data;  

𝒃𝟏 = the regression coefficient; 

𝑹𝟐 = the coefficient of determination of LR-model 

(Legarra and Reverter 2018). 

 
Table 2. Validation results in the 109 FIC cows for 

protein and milk yield (G)EBV predicted using 

ssGTBLUP UPG, MF, and TD BLUP models 

(𝐺𝐸𝐵𝑉𝑈𝑃𝐺 , 𝐺𝐸𝐵𝑉𝑀𝐹 , and 𝐸𝐵𝑉𝑈𝑃𝐺). 

 

 Model MDiff 𝒃𝟏(±SE) 𝑹𝟐 

P
ro

te
in

 𝐺𝐸𝐵𝑉𝑈𝑃𝐺 3.1 0.89 (±0.1) 0.48 

𝐺𝐸𝐵𝑉𝑀𝐹 3.5 0.83 (±0.1) 0.50 

𝐸𝐵𝑉𝑈𝑃𝐺 4.3 0.79 (±0.2) 0.32 

M
il

k
 𝐺𝐸𝐵𝑉𝑈𝑃𝐺  66 1.04 (±0.1) 0.59 

𝐺𝐸𝐵𝑉𝑀𝐹 76 0.99 (±0.1) 0.61 

𝐸𝐵𝑉𝑈𝑃𝐺  90 0.94 (±0.1) 0.48 

MDiff = mean (G)EBV from full data minus 

(G)EBV from reduced data;  

𝒃𝟏 = the regression coefficient; 

𝑹𝟐 = the coefficient of determination. 

Because performance comparison of 

genomic prediction in RDC breed was not 

among the aims of the current study, we have 

not presented validation results for those. 

However, to describe how much the presence of 

FIC genotypes in joint evaluations affects the 

RDC GEBVs, ssGTBLUP UPG model was run 

also without the FIC genotypes. The correlation 

of GEBVs from both the models for RDC AI 

bulls was >0.999 (Figure 4). As was expected, 

FIC genotypes did not bias RDC evaluations. 

The proportion of genotyped RDC animals 

would always be hundred times higher than 

FIC. Thus, RDC animals would not be much 

affected even if the number of FIC genotypes 

increases. Joint evaluation of RDC and FIC 

leads to high impact of RDC genomic 

information which may cause false-positive 

overprediction in FIC. 

 

 
Figure 4. Scatter plot of RDC bulls milk GEBVs 

predicted using ssGTBLUP UPG model with RDC 

and FIC genotypes and ssGTBLUP UPG model with 

RDC genotypes only. 

 
The current study showed that co-variance 

function allows to use the same number of MF 

as UPG. Thus, the same groups can be used in 

MF as UPG in a routine evaluation. The MF 

approach gave slightly higher validation 

reliability then UPG with full QP 

transformation. However, correlation between 

diagonals of 𝐆05 and 𝐀22 after use of Γ137 

increased for RDC but not for FIC animals. The 

allele frequency change in time dictated by Ф20 

matrix presumably assigned overly strict time 
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trend to FIC animals.  Further work for the 

better approach to estimate 𝚪𝟐𝟎 matrix seems 

justified. 

  

Conclusions 

The results showed that the use of co-

variance functions to get same amount of MFs 

as UPGs is feasible. The MF approach showed 

slightly higher 𝑅2 than the UPG approach. 

Influence of FIC genotypes on RDC GEBVs 

was not detected. This suggests that presence of 

FIC genotypes would not harm RDC single-step 

evaluations. 

 

Acknowledgements 

We acknowledge Project “Genomic 

evaluations for Western Finncattle” financed by 

Luke (Finland) and Finncattle Foundation 

(Finland). Data providers: Finnish Breeder 

Association (FABA, Finland), Nordic Cattle 

Genetic Evaluation (NAV, Denmark), and 

VikingGenetics (Denmark). 

 

References 

Andonov, S., Lourenco, D.A.L., Fragomeni, 

B.O., Masuda, Y., Pocrnic, I., Tsuruta, S., 

and Misztal, I. 2017. Accuracy of breeding 

values in small genotyped populations using 

different sources of external information—A 

simulation study. Journal of Dairy Science, 

100(1): 395-401.  

 https://doi.org/10.3168/jds.2016-11335. 

Aguilar, I., Misztal, I., Johnson, D. L., Legarra, 

A., Tsuruta, S., and Lawlor, T. J. (2010). Hot 

topic: A unified approach to utilize 

phenotypic, full pedigree, and genomic 

information for genetic evaluation of 

Holstein final score. Journal of Dairy 

Science, 93(2), 743-752.  

https://doi.org/10.3168/jds.2009-2730. 

Christensen, O. F., and Lund, M. S. (2010). 

Genomic prediction when some animals are 

not genotyped. Genetics Selection 

Evolution, 42, 2.  

https://doi.org/10.1186/1297-9686-42-2. 

 

 

 

Legarra, A., Christensen, O. F., Vitezica, Z. G., 

Aguilar, I., and Misztal, I. (2015). Ancestral 

relationships using metafounders: Finite 

ancestral populations and across population 

relationships. Genetics, 200 (2), 455–468. 

   https://doi.org/10.1534/genetics.115.177014 

Legarra, A., and Reverter, A. 2018. Semi-

parametric estimates of population accuracy 

and bias of predictions of breeding values 

and future phenotypes using the LR method. 

Genetics Selection Evolution, 50, 53.  

https://doi.org/10.1186/s12711-018-0426-6 

Lidauer, M., Pedersen, J., Pösö, J., Mäntysaari, 

E.A., Strandén, I., Madsen, P., Nielsen, U.S., 

Eriksson, J.-Ä., Johansson, K., and Aamand, 

G.P. 2006. Interbull Bulletin 35, 103-108. 

Matilainen, K., Strandén, I., Aamand, G. P., and 

Mäntysaari, E. A. 2018. Single step genomic 

evaluation for female fertility in Nordic Red 

dairy cattle. Journal of Animal Breeding and 

Genetics,135(5),337–348. 

https://doi.org/10.1111/jbg.12353 

Mäntysaari, E.A., Evans R.D., and Strandén, I. 

2017. Efficient single-step genomic 

evaluation for a multibreed beef cattle 

population having many genotyped animals, 

Journal of Animal Science, Volume 95, 

Issue 11, November 2017, Pages 4728–

4737, https://doi.org/10.2527/jas2017.1912 

Mäntysaari, E. A, Koivula, M., and Strandén, I. 

(2020). Symposium review: Single-step 

genomic evaluations in dairy cattle. Journal 

of Dairy Science, 103(6), 5314-5326.  

https://doi.org/10.3168/jds.2019-17754 

Soini, K., Pouta, E., Latvala T., and Lilja, T. 

2019. Agrobiodiversity Products in 

Alternative Food System: Case of Finnish 

Native Cattle Breeds. Sustainability, 11(12), 

3408. https://doi.org/10.3390/su11123408 

Strandén, I., and Lidauer, M. 1999. Solving 

large mixed models using preconditioned 

conjugate gradient iteration. Journal of Dairy 

Science, 82:2779–2787. 

https://doi.org/10.3168/jds.2016-11335
https://doi.org/10.3168/jds.2009-2730
https://doi.org/10.1186/1297-9686-42-2
https://doi.org/10.1534/genetics.115.177014
https://doi.org/10.1186/s12711-018-0426-6
https://doi.org/10.1111/jbg.12353
https://doi.org/10.2527/jas2017.1912
https://doi.org/10.3168/jds.2019-17754
https://doi.org/10.3390/su11123408


INTERBULL BULLETIN NO. 56. Leeuwarden, The Netherlands, April 26 – 30, 2021 

179 

 

Strandén, I., and Mäntysaari, E. A. 2020. Bpop: 

an efficient program for estimating base 

population allele frequencies in single and 

multiple group structured populations. 

Agricultural and Food Science, 29(3), 166–

176. https://doi.org/10.23986/afsci.90955 

Tijani, A., Wiggans, G. R., Van Tassell, C. P., 

Philpot, J. C., and Gengler N. 1999. Use of 

(co) variance functions to describe 

(co)variances for test day yield. J. Dairy Sci. 

82. 

VanRaden, P.M. 2008. Efficient Methods to 

Compute Genomic Predictions. J. Dairy Sci. 

91, 4414-4423. 

 

 

 

 

 

 

 

 

Appendix I.  The matrix of co-variance function coefficients estimated as  

 𝐊 =  (Ф20
′  Ф20)−1 ∗ Ф20

′ 𝚪𝟐𝟎Ф20 ∗ (Ф20
′  Ф20)−1 

 

Time 

trend 

RDC 

FIC 

RDC 

SWE 

RDC 

DNK 

RDC 

OTHER 
FIC OTHER HOL 

0.0297 -0.0035 -0.0031 -0.0213 -0.0108 -0.0150 -0.0142 -0.0003 

 0.5697 0.5201 0.4528 0.5091 0.4377 0.4274 0.3416 

  0.5328 0.4618 0.5047 0.4298 0.4296 0.3411 

   0.5161 0.4609 0.4376 0.4667 0.3719 

    0.5046 0.4345 0.4379 0.3543 

     0.5504 0.4243 0.3430 

      0.4730 0.3918 
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