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Abstract

The current genetic evaluation for herd life in the UK is reviewed, and alternative methods to
analyse (discrete) longevity data discussed. Lifespan scores, i.e. the number of lactations a cows has
survived or is expected to survive, and a phenotypic index of three type traits are combined using a
bivariate animal model to produce UK national EBV for herd life. Preliminary analyses using
proportional hazard models suggest that correlations between sire EBV from using either linear or
proportional hazard models are high, and that fixed effects may be modelled better using proportional
hazard models. For the use of EBV for survival, it is important to consider the appropriate formulation
of the breeding goal. It is argued that a phenotypic adjustment for milk yield is not appropriate if the
survival trait in the breeding objective is not adjusted accordingly. The emphasis on herd life may be
too large if it is assumed that the calculated EBV are for avoidance of involuntary culling, since the
genetic correlation between EBV for survival and involuntary culling are unlikely to be unity.

1. Introduction

The average herdlife of dairy cows has
a large economic value, approximately half of
that of protein yield on a genetic standard
deviation basis. Genetic improvement for
herdlife is difficult however, because (i) it is
measured on females only, (ii) it is measured
late in life, (iii) longevity traits have low
heritability, (iv) the relationship between
longevity measures, (in)voluntary culling, and

milk yield is not known, and (v) the way to
analyse longevity data for genetic evaluation is
not obvious. The last point is the focus of this
study. There are challenges for genetic
evaluation because of the choices for the trait
which is measured and analysed, and the
choices of models of evaluation. In Table 1,
we present a number of traits and models
which have been suggested in the past. This
list is not exhaustive.

Table 1: Traits and models for genetic analysis of longevity in dairy cattle

Trait Model Example reference
Stayability until x months of life
(0/1)

Linear (sire or animal) Everett et al. (1976)

Survival (0/1) per lactation Linear (‘repeatability’ sire) Madgwick and Goddard (1989)
Survival (0/1) per lactation Linear (multivariate animal or

sire)
Jairath et al. (1998)

Month of productive life Linear (animal) Van Raden and Klaaskate
(1993)

Number of lactations Linear (animal) Brotherstone et al. (1997)
Time (of culling) Proportional hazard (sire or

animal)
Ducrocq and Casella (1996)

Survival (0/1) as a function of
time

Linear (random regression,
animal or sire)

Veerkamp et al. (1999)
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Table 1 shows a wide varieties in traits
and models. Most linear models do not model
the trait of interest as a function of time
(except Veerkamp et al. 1999).

The purpose of this study is to describe
the current method of evaluation for longevity
in the UK, to discuss other possible approaches
to analyse discrete longevity data, to discuss
remaining problems with the analysis of
longevity, and to suggest future developments.

2. Lifespan concept and evaluations

2.1 Data quality

A natural by-product of an efficient milk
recording programme is that we can describe
the life-history of a dairy cow from entering
the milking herd to culling. Specific time
points in the life history are dates at which a
cow calved, was dried off, and started a
subsequent lactation. Unfortunately, in the UK
until recently (end of 1992) the only
information available to researchers was the
number of qualified lactations of a cow in milk
recording, where a qualified lactation means a
lactation length of at least 200 days. In
addition, there are no reliable records kept
after lactation 5. These data quality problems
mean that (i) there is no record of culling
before day 200 in the first lactation, (ii) the
resolution of longevity measures is one
lactation, and (iii) the records of all cows
which have produced five lactations are
censored, i.e. we do not know whether these
cows were culled after lactation 5 or went on
to produce further lactations.

2.2 Concept of lifespan

Brotherstone et al. (1997) developed a simple
method to deal with the UK longevity data,
and which could use existing animal model
BLUP software. They introduced the concept
of lifespan, which is the number of lactations a
cow has survived, or is expected to survive. If
pn is the probability of survival to lactation n+1
of an animal that has survived to complete
lactation n, the expected lifespan of a random
animal that has completed n lactations but has
not had time to complete n + 1 lactations is
(Brotherstone et al., 1997):

n + pn + pn* pn+1 + pn* pn+1* pn+2 + …..

For the current UK evaluation, the survival
probabilities p for lactation 1 to 5 are 0.73,
0.67, 0.71, and 0.71, respectively. It was
assumed that p remains constant after lactation
5, i.e. 0.71. Using these conditional
probabilities, a predefined set of lifespans can
been set up. For example, if an animal had
only time to finish 2 lactation and was
censored at t=2 (i.e., had no time for lactation
3), then the assigned lifespan (LS) is:

LS = 2 + p2 + p2*p3 + p2*p3*p4

              + p2*p3*p4*p5 + …..
= 2 + 0.67 + 0.67*0.71 + ...
= 4.3

Hence, prediction of expected lifespan is based
upon population-wide average conditional
survival probabilities. Note that there can be
cows with censored records which have larger
(predicted) values for lifespan than the largest
value  for an uncensored observation (i.e.,
LS=4). This is based upon the fact that we
know that on average cows which have
survived until lactation 3 and are still in the
herd will have a lifespan greater than 4
lactations.

If all pi values are constant (p), and cows have
had no time restriction in the opportunity to
express LS, then,

Prob(LS=x) =  (1-p)px-1 [x=1,2,3, ....]

i.e. LS has a geometric distribution
(Brotherstone et al., 1997), with mean and
variance

E(LS) = 1/(1-p) = 1 + p/(1-p)
var(LS)= p/(1-p)2

The probability that LS is equal or larger than
value T is,

Prob(LS>=T) = 1 – Prob(LS<T)
= 1 – (1 – pT-1)
= pT-1

This corresponds to the definition of
‘stayability until lactation T’ which has been
used in the literature (see Table 1).
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The concept of lifespan is similar to the
method of longevity analysis in the USA (Van
Raden and Klaaskate, 1993), where the length
of productive life (months in milk) is used as
the trait of interest, and future records are
predicted using phenotypic multiple
regression. The main differences are that in the
UK evaluation a phenotypic regression on milk
yield in the first lactation is used in the genetic
evaluation, and that the parameterisation is in
terms of number of lactations instead of
number of months of productive life. Both
methods use population-wide phenotypic
regression to predict future records.

2.3 Genetic evaluation for herd life

The genetic evaluation for herdlife in the UK
was described by Brotherstone et al. (1998). In
addition to the direct information used from
the lifespan scores of individual cows (as
described in the previous section), information
from type traits are used to predict herdlife.
These sources of information are combined
into a bivariate analysis of lifespan score and a
phenotypic index of three type traits (foot
angle, udder depth and teat length). The index
weights for the type traits were those
previously used in a national index to predict
herd life from type data only. The index of
type traits was created to scale the problem
down from a 4-variate to a bivariate problem,
without much loss of information
(Brotherstone et al., 1998). Assumed
heritabilities for these two traits were 0.06 and
0.44, respectively (Brotherstone et al., 1998),
estimated from a data set in which all cows had
the opportunity to complete 5 lactations. The
bivariate animal model contained the fixed
effects of herd-year of first calving, month of
first calving, age at first calving (covariate)
and the deviation of first lactation milk yield
from the herd mean (covariate) for the lifespan
scores, and herd-classification visit, month of
first calving, age at first calving (covariate)
and stage of lactation of inspection (covariate)
for the type index (Brotherstone et al., 1998).
Bull proofs for herd life (lifespan) were first
published in August 1998 by the Animal Data
Centre (ADC). The range of predicted
transmitting abilities is approximately 1
lactation. The advantage of using a bivariate
analysis is that most of the relevant
information is used to predict herdlife, and that
there is a logical re-weighting of information

as the daughters of a bull get older, from most
emphasis on type traits to most emphasis on
lifespan scores. Bowman et al. (1996) used
customised selection indices to predict overall
profit, including EBV on survival and type
traits in (multivariate) index calculations,
which results in the same re-weighting of
information. The Canadian system of EBV for
herd life also combined survival and type data
(Jairath et al., 1998).

3. Analysis of discrete data

Methods which model the risk of culling (or
‘hazard’) are theoretically better, since they
take account of the appropriate distribution of
the data and allow better fixed effects
structures (see Ducrocq, 1999, and references
therein). The Weibull model has been used
widely (due to the availability of appropriate
software) to model the baseline hazard rate in
dairy cattle. Our discrete data, i.e., failure
times of 1,2, 3, 4, or 5, are discrete, and violate
the assumption of a continuous time variate.
However, the conditional probabilities of
survival in each lactation are fairly constant
over time (Brotherstone et al., 1997), as one
would expect from an exponential distribution
of the hazard rate. Therefore, we used a
Weibull model to analyse lifespan, and
compared heritability estimates and
correlations between EBV of sires using either
the Weibull model or lifespan (Lubbers et al.,
1999). Lifespan (LS) records of 21497 cows,
daughters of 487 sires, were analysed using a
sire model in both approaches. In addition to
LS, the logarithm of lifespan was analysed
using the same linear model as used for the
analysis of LS. Heritabilities for LS and
log(LS) were about 0.05, and 0.07 from the
Weibull model on a log-scale. A
transformation of that heritability to the
observed scale gave a value of 0.17.
Correlations between EBV for sires calculated
from linear and proportional hazard models
were high, with absolute value between 0.93
and 0.98. For example, the correlation between
EBV for LS from the linear model and EBV
from the Weibull model in which no time-
dependent effects were fitted was –0.97. It was
concluded that it may be appropriate to use
discrete lactation data in a Weibull model.

In subsequent study, we compared a
Weibull model and a grouped-data discrete
proportional hazard model using a larger data
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set 85367 records (Yazdi et al, 1999). In the
discrete model the discrete hazard for each
interval was modelled (Ducrocq, 1999, and
these proceedings). Correlations between EBV
for the 284 sires were very high, >0.98 for the
different models investigated. It was concluded
that ignoring the discrete and grouped data
structure in the Weibull model did not have a
significant impact on sire ranking.

4. Considerations for future analysis

From 1992 test-day data have been stored in
the UK, so for future genetic evaluation of
longevity we have a choice of data (herd life in
days, months, years, lactations) and methods
(linear model, proportional hazards model,
others). Although no change in the national
evaluation is planned at present (the current
method was introduced in 1998), we may
speculate on some of the relevant aspects of
different data and methods. In general, we
would prefer simple and robust methodology
which captures most of the information to
complex methods which are sensitive to
assumptions regarding the appropriateness of
the model of evaluation.

Is binary data sufficient? A question
arises what extra information is provided by
using month of herdlife (or even day of
herdlife) instead of the number of years or
lactations in the linear model analyses. If the
number of progeny per sire is large enough, the
extra information provided is likely to be
small, analogous to the difference in accuracy
of sire evaluation of a binary trait versus
analysis of an underlying quantitative
(liability) trait. For example, if the heritability
of the quantitative trait is 0.14, and the
proportion of two classes 0.70 and 0.30, then
the heritability on the observed scale is,
approximately, 0.08. The reliabilities on the
two scales are 0.78 and 0.67 for a progeny test
of 100 daughters. In practice the difference in
reliability for survival is likely to be smaller
because the underlying trait is not normally
distributed (most cows get culled either at the
start or end of the lactation), because we can
utilise multiple 0/1 observations on daughters
of bulls for multiple lactations, and because
some of the observations on the quantitative
trait will be incomplete or censored.  However,
using a finer scale than whole lactations can be
advantageous if the fixed effects structure can
be modelled better. For example, when

herdlife in months is the trait of interest, the
effect of the end-of-quota year or BSE cohort
culling could be fitted, in particular in
proportional hazards models with time-
dependent covariates (e.g., Ducrocq 1999, and
references therein). A particular benefit from a
better data-stream even with a 0/1 analysis is
that information is known sooner. At present,
we have to wait over a year before deciding a
cow has left the herd.

Multivariate analysis of binary survival
traits. There appears to be some confusion in
the literature about the covariance structure of
binary survival traits in genetic evaluations
using a sire or animal model. For example,
Boettcher et al. (1999) tried to estimate
variance components for survival in the first
three lactations using an animal model
(estimating 6 genetic and 6 environmental
covariance components), but encountered
problems with convergence. The likely cause,
which was pointed out by Madgwick and
Goddard (1989) and Visscher and Goddard
(1995) is that there is no environmental
covariance across lactations. Consider survival
in two lactations, and let 1 denote survival.
Then, records are either {1 0}, {1 1}, or {0
undefined/missing}. The phenotypic
covariance is zero, because all cows with an
observation in lactation 2 have the same score
(1) in the first lactation. Essentially the
definition of survival in lactation 2 is
conditional on survival in lactation 1. When
using either a sire or animal model it seems
incorrect to estimate a covariance component
which we know to be zero. Equivalent animal
and sire models are those in which the
environmental covariance is zero (animal
model) and those in which the within-sire
covariance equals three-quarters of the genetic
covariance. In the analysis of variance
components using a sire model, there is no
information from the within sires on the
residual covariance. Using maximum
likelihood one can obtain an estimate of the
residual covariance because the expectation of
the between sire sum of crossproducts contains
that component. However, there is very little
information on the residual component, and the
likelihood is likely to be very flat with respect
to this component, which may cause problems
with convergence. Using a sire or animal
model to estimate variance components, the
prior knowledge of a zero environmental
correlation should be taken into account using
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an appropriate algorithm (e.g., Madgwick and
Goddard, 1989; Visscher and Goddard, 1995).

The usual evaluation method of binary
survival traits is to use a linear model
assuming normality of random effects and to
add fixed effects and covariates (e.g.,
Madgwick and Goddard, 1989; Jairath et al.,
1998; Boettcher et al., 1999). In particular,
milk yield is added in the model to correct
survival for voluntary culling, and resulting
EBV are said to be for ‘functional survival’ or
‘functional herdlife’. What is the impact of
adding covariates on the residual correlations
between the survival traits? If S1 and S2 are
binary survival scores in lactations one and
two, Y1 is the milk yield in lactation one, and
survival in lactations one and two is regressed
on first lactation milk yield, then the residual
covariance between the adjusted survivals is
calculated from cov{(1–b1*Y 1),(S2–b2*Y 1)},
with b1 and b2 the phenotypic regression of
survival in lactation one and two on first
lactation milk yield. This covariance is zero,
because b1*cov(Y1,S2) = b1*b2*var(Y1).
Hence, it appears that even after adjusting for
milk yield, the expected residual covariance is
zero. Environmental covariances were
estimated by Boettcher et al. (1998), and found
to be zero (Paul Boettcher, personal
communication). Following these arguments,
It is not clear to us how previous parameter
estimates for binary survival scores could
contain a phenotypic correlation between
survival in lactation 1 and 2 of –0.29 (Jairath et
al., 1998).

Phenotypic regression on milk yield.
Many genetic evaluations for longevity include
(phenotypic) milk production as a covariate in
the analysis. The reasoning is that voluntary
culling is (mostly) based upon phenotypic
production, and that adjusting for this trait in
the analysis results in an analysis of functional
herdlife, i.e. herdlife independent of milk
yield. It is usually assumed that the resulting
EBV for herdlife is equivalent to EBV for
avoiding involuntary culling. For example, in
the UK national evaluations, the animal model
for lifespan contains the deviation of first
lactation milk yield from the herd average as a
covariate (Brotherstone et al., 1998).

For traits which have simple linear
relationships (i.e. have a joint multivariate
normal distribution), the ranking of sires or
animals should not depend on whether an
adjustment for another trait is used or not.

Consider a simple breeding objective
containing ‘functional survival’ or ‘ability to
withstand involuntary culling’ (S*) and milk
yield (M), and their economic values (as and
am) :

H1 = asS
* + amM

At the genetic level, the trait functional
survival is defined as the error term in the
regression of survival on milk yield,

S = bgM + S*,

with bg the genetic regression of survival on
milk yield. Hence if we wish to include
unadjusted survival (S) in the equivalent
breeding objective,

H2 = asS + (am - bgas)M

The parameterisation in H1 is perhaps easier to
use, because the economic weight for
functional survival is the change in profit for a
small change in survival (or culling)
independently of milk yield, given a constant
level of milk yield. Whether the traits in a
selection index are EBV(S) and EBV(M), or
EBV(S*) and EBV(M), should not matter,
because there is an assumed simple linear
relationship between S, S*, and M. This kind of
reparameterisation is analogous to having
adjusted traits such as ‘residual feed intake’. If
the trait in the breeding objective is S*, it was
suggested to calculate EBV for S* from a
genetic regression on milk yield (Goddard,
1997, 1998), i.e. EBV(S*) = EBV(S) –
bgEBV(M), because then the regression of true
on estimated breeding value for S* would be
unity. For a bull with very many daughters, the
estimated breeding values for S and M would
be approximately equal to the true breeding
values, and hence EBV(S*) = S – bgM, which
is the breeding value in the breeding objective
which we wish to improve. This genetic
regression could be done after univariate
analyses for survival and milk yield, or,
theoretically better, in a bivariate analysis of
survival and milk yield.

The problem with any adjustment for
milk yield is that we do not know the
phenotypic and genetic relationships between
voluntary culling, involuntary culling, and
milk yield, and that these traits do not have
simple linear relationships (Dekkers, 1993).
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For example, if there is no relationship
between survival and milk yield, it could be
because milk yield is uncorrelated with both
voluntary and involuntary culling, but also
because an increase in milk yield is associated
with a decrease in voluntary culling and an
increase in involuntary culling. There is not
enough data to separate these relationships,
because all we observe is (unadjusted) survival
and milk yield.

In practice, the adjustment for
production is made at the phenotypic level,
partly for convenience reasons (it is easy to
add a covariate for milk yield in the model for
analysis). However, there may be some
problems with this practice (Goddard, 1997,
1998). Not all voluntary culling may be on
production. For example, in some type
classifying herds the daughters of some
famous (type) bulls may be kept irrespective of
their production. If not all culling is on
production, the genetic correlation between the
trait in the breeding objective (ability to avoid
voluntary culling) and longevity adjusted for
phenotypic production, is not unity (Dekkers,
1993; Bowman et al., 1996), and the accuracy
of prediction should reflect this. For example,
if that correlation is only 0.90, a bull with
thousands of daughters with lifespan scores
should get a repeatability of his EBV for the
trait in the objective of 0.81 and not 1.00.
Alternatively, the trait which is in the breeding
objective needs to be redefined as ‘longevity
adjusted for phenotypic milk yield’, and
appropriate economic weights calculated.
(However, this would imply having
environmental covariances as part of a
breeding objective.) As Goddard (1998) put it
in a recent GIFT meeting, ‘the trait in the
profit function should be culling for reasons
not already included in the profit function’.

Does it matter whether we apply a
phenotypic regression, i.e. calculate EBV(S –
bpM), or a genetic regression, i.e. calculate
EBV(S) – bgEBV(M)? It is not clear to us
whether these two different regression
approaches will result in a different ranking of
bulls (and cows). Using the parameters for
lifespan and milk yield from Brotherstone et
al. (1998), the ratio of the genetic and
phenotypic regression of lifespan on milk
yield, (rg hlifespan)/(rp hmilk), is about 1.5.

A multivariate analysis of survival in
lactations 1 to 3 and, say, milk yield in
lactations 1 to 3, would be the most efficient

use of information, and avoid the necessity of
fitting a trait (milk yield) as a covariate in the
analysis of a related trait (longevity). However,
even with a multivariate approach, one still has
to choose between a genetic and phenotypic
regression to predict the longevity trait in the
breeding objective. We suggest that more
research is needed in this area, i.e. the
differences in ranking of bulls between
univariate analyses of survival and milk,
univariate analyses of survival with a
phenotypic adjustment for milk yield, and
bivariate analyses of survival and milk.

In conclusion: there are many different
ways to analyse discrete or continuous survival
data in dairy cattle, some simple and hopefully
robust to violations of assumptions, others
more complex and theoretically better. For
genetic evaluation of sires the correlation
between EBV for different methods is likely to
be large if they have many daughters and if the
fixed effects structure is simple. More research
is needed to compare and contrast different
methods in terms of exactly where and how
they differ in the utilisation of records. In
addition, we suggest more research into
multivariate analyses of herd life and milk
yield.
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