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Abstract

Genetic evaluation for the length of productive life (LPL) in livestock species requires specific methods
because of following reasons: (i) some animals are still alive at the time of evaluation and their complete LPL
is not known, which implies that records of such individuals must be treated as censored; (ii) effects
influencing LPL do not act linearly and vary with time; and (iii) the distribution of LPL data is often unknown
and extremely skewed. Models based on survival analysis provide appropriate statistical tools for the analysi
of LPL. These models are based on a hazard funa(@rwhich describes the risk of being culled at time t
conditional upon survival to time t. The hazard function of an animal is modeled as a product of a baseline
hazard function)A(t), describing the ageing process, and a vector containing explanatory variables that
supposedly influence the culling process and may depend on time. Because the Xgtini®hot always
known with certaintyAo(t) can be left unspecified, as in a Cox model. However, with complex models and
large amount of data typical for national genetic evaluation, it is computationally advantageous to assume
parametric, e.g., Weibull hazard function. Such a model can also be easily extended to include a random si
or animal effect and enable estimation of genetic parameters for LPL. Routine genetic evaluation for LPL
based on a Weibull model has been implemented in many countries worldwide. This paper gives an exampl
of implementation of survival analysis techniques in dairy populations in Switzerland.

1. Introduction that a part of the animals is still alive in the moment
of genetic evaluation and only the lower bound of
In livestock production, in particular in dairy their eventual productive life is known. To exclude
cows, longevity of breeding stock is a highlythese records from the evaluation or consider them as
desirable trait that considerably affects overallexact would lead to biased results. Therefore, such
profitability. An increased longevity helps to reducerecords must be treated as censored. Several
costs associated with raising or purchasingesearchers tried to circumvent this problem by using
replacement females. Also, average herd productioimdirect longevity indicators such as whether the cow
is increased, due to higher proportion of matures still alive at certain age (Everett et al., 1976) or
cows in later more productive lactations. Anlactation (Schaeffer and Burnside, 1974) or by
increased longevity enables a greater selectioreplacing censored records by so-called projected
response, because fewer animals have to be replacetords based on currently available information
and thus, higher selection intensity of females igVan Raden and Klaaskate, 1993). Unfortunately, the
possible. first method is associated with a great loss of
From the breeder's perspective, a trait ofinformation. With the second method, the
particular interest is functional longevity, which is information available to predict complete length of
independent of production and reflects cow’sproductive life from partial records is extremely
fertility, health and overall fithess. The importancelimited (Ducrocq, 1997).
of functional longevity in dairy breeding has Another difficulty associated with genetic
increased during last two decades because of imvaluation for longevity is that the overall longevity
increasing impact on production costs, and becausesults from a product rather than from a sum of
of growing need to improve functional longevity in effects influencing the trait (Beilharz et al., 1993);
many dairy populations heavily selected only orwhen at least one of them is defective, the longevity
production. of an individual is impaired (Ducrocq and Sdlkner,
However, considering longevity in breeding1998). Therefore, evaluation methods based on
programs and genetic evaluation of animals for thigaditional linear models, such as BLUP, although
trait are generally difficult. The main difficulty is widely used in some countries, cannot properly
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account for nonlinearity of longevity data. Also,right censoring are the absence of failure before the

some of the effects that influence productive lifeend of the study, the loss to follow up or the loss of

such as milk production, herd size or managementpmpeting risk. Observation is censored when a cow

vary with time. is still alive at the end of data collection, when she
Furthermore, the distribution of longevity data isdisappears from the herd due to sale to another herd

extremely skewed and often unknown. Thuspot under testing program, or when the whole herd is

methods based on assumption of normality have onlyithdrawn from the testing program.

limited use in the analysis of longevity data (Egger- Survival analysis can also accommodate left

Danner, 1993) truncated records, for which the origin point lays
Survival analysis, a statistical method originallyoutside the data collection period. The observation is

developed for research in medicine and engineerintgft truncated when the cow calves for the first time

can be used in analyzing longevity data. Survivabefore the data collection starts. Because no

analysis combines information on dead (uncensored)jformation is available for the period prior to begin

and alive (censored) individuals, enables a prop@f data collection, such cow is considered to be at

statistical treatment of censored records and accoumisk only from the beginning of data collection

for nonlinear characteristics of longevity data. onward. Truncated records are completed records, in
Famula (1981) was the first author who proposedontrast to censored records which contain only

survival analysis as a method to analyze length gfartial information.

productive life in dairy cattle. Smith (1983) and Another type of censoring — left censoring — for

Smith and Quaas (1984) used survival analysiwhich failure occurs prior to a given origin point, is

techniques to estimate breeding values of sires baseaot of interest for applications in animal breeding,

on the length of productive life of their daughtersbecause animals that died before the data recording

The techniques were further developed and adjuststhrts are not considered in the analysis.

for large scale applications by Ducrocq (1994) and

Ducrocq end Solkner (1998). By now, routine2.1 Failure time distributions

genetic evaluation of sires has been implemented in

France and research projects are underway in severalThe analysis of survival data is based on the use

other European countries. of special modeling distributions (Kalbfleisch and
The aim of this paper is to give insight into basicPrentice, 1980):

statistical techniques used in modeling of longevity The survivor function S(t):

data and genetic evaluation for longevity in dairy _ —a_ 1

cows. Application of survival analysis in the routine S(O=Prok(T =1t) =1~ Prol(T <) =1-F(Y

genetic evaluation of sires for the length ofgives the probability that an animal survives at least

productive life will be illustrated using an exampleup to time T. S(t) is the proportion of animals still

of Holstein population in Switzerland. alive at t. F(t) is the cumulative probability density
function.
2. Statistical techniques of survival analysis The density function f(t):

Statistical techniques used in survival analysis are f(t) = lim Proft<T<t+Ag =— ds(v)
aimed at modeling and analysis of response times. 4t-0 At dt
The response time of an individual is a positivdS @ limiting probability that failure will occur
random variable describing a difference between Between t andt.
given origin point and an end point. In analyzing The hazard functioh(t):
productive life of dairy cows, the origin point
corresponds to the first calving of a cow and the endy = |im, Probt<T<t+A(T21) _f(t) _ _dlogS()
point (“failure”) corresponds to her death or culling. A0 At S() dt

The width of the interval is measured in days » - o
months, or years. Generally, the end point mals the conditional probability of an individual of

correspond to any type of event — e.g., recovery frorﬁ;ymgt in the interval (¢, tAt], given it was alive at
disease or success after insemination - and can et . .
expressed in amount of money spent or earned, kg these function are interrelated and each of them
milk produced, etc '~ can be derived from another.

A specific feature of survival analysis is that it . o . :
can accommodate censoring and in this way usgsz' Empirical estimation of the survivor function

information available on animals that are still alive. Empirical . funcii ) id bout
The most frequent type of censoring is right mpirical SUrvivor function gives an idea abou

censoring, for which the exact failure time is knownthe distribution of survival times. The empirical

to be larger than the observed value. Usual causes of
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survivor function can be computed using a Kaplaninfluence the culling process, afdis the vector of
Meier’s formula (Kaplan and Meier, 1958): regression coefficients.

Sy () = = G % 2.4. Estimation procedures
k‘T[k]<t k

Estimation of effects of particular covariates on
whereS,,, (1) is the value of the survivor function at survivor curve is usually based on maximum

time t, Ty representshe ordered failure times, from lkelihood  methods. The  construction of the
the first occurrence of the failure to the last opdsn likelihood function, however, requires a different

the number of animals at risk agTand ¢ is the ~&Pproach for parametric and semiparametric models.
For parametric models, it could be shown that the

.number of animals thgt z.actually died EM'_TSKM(_D contribution to the likelihood for an uncensored
is called the product-limit or Kaplan-Meier estimateppservation equals the value of the density function
of the survivor function. S, (t) is also the at failure time. The contribution to the likelihood

generalized maximum likelihood estimate of S(tffunction for a censored observation equals the value

over all possible distributions (Kaplan & Meier, Of the survivor function at censoring time (Ducrocq,
1958). 1987). The full likelihood function is then obtained

& . , by multiplying conditionally independent
From Sy (1) the empirical hazard function(t) can contributions for all records. The estimates of the
be computed. _ parameters are obtained by maximizing this function

Empirical estimates of S and are useful in o jts |ogarithm (Ducrocq, 1997). The parameters of

preliminary studies: they allow to reveal the generghe paseline hazard function are estimated jointly

they facilitate the choice of models for further g4 semiparametric models (Cox model) a

analyses, and enable to check the validity of theSgtterent approach must be used. The estimatidh of
models (Ducrocg, 1992). can be performed by maximizing a likelihood
function without making any assumptions about
Ao(t). Cox (1972) developed a concept of partial
. likelihood. A partial likelihood function is a part of

In many cases, the exact characteristics of thtﬁﬁe full likelihood function that does not depend on

survivor function or the _den_5|ty fF’”Ct'O” are nOt)\o(t). It can be obtained as the marginal likelihood of
known, but some information is available on how th‘?he ranks of failure imes

failure rate A(t) changes over time. Therefore, After maximizing the partial likelihood function,

Razard function, which measures the risk offailre of.S [e5uIing estimates @f can be used to compute
’ aseline hazard function or the baseline survivor

an individual at time t. A general assumption is that finction using an approach similar to that used in
hazard function for each animal has a common bas.%mputa;tion of the Kaplan-Meier estimator
form, called baseline hazard function, which is equa '
for all animals and represents, in some sense, tlﬁ% Proportional hazard model and its
overall mean. The baseline hazard function of aaéﬁeralizations
individual is modified by the influence of the effects
that supposedly influence the culling process, called
‘stress factors'.

A survival model in its general form can be
written as

2.3. Regression models

One of the most frequently used models in
analysis of productive life is a proportional hazard
model, for which the hazard of two animals A and B
remains proportional over the entire period of time
Mt Xj) = kg () expX'B) with a constant hazard ratio exp{xg)' 3. In most
cases, however, the assumption of proportional
whereA(t,x) is the hazard for animal Ao(t) is the  hazard does not hold, because the hazard for
baseline hazard function, describing the aginghdividual cows vary differently over time,
process of an animal and depending only on time. @epending on current culling criteria.
parametric models, the baseline hazard function is A possible alternative that retains the simplicity of
assumed to follow a certain exponential distributionthe proportional hazard model is known as
usually an exponential (exponential model) Oktratification. Stratification is characterized by
Weibull distribution (Weibull model). The baseline definition of a different baseline hazard function for
hazard function can also be left completely arbitraryeach stratum — a subclass of individuals with, e.g.,
as in semiparametric or Cox modelis the vector of same year of birth, herd, or production level.
explanatory variables (stress factors) that supposedly
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Another  powerful generalization of the The frailty component explains a portion of the
proportional hazard model is the induction of timevariance that cannot be accounted for by the model
dependent explanatory variables that account faontaining only fixed effects. A simple
variation in culling policy over time, such as herd bytransformation s = log w, allows the inclusion of the
year or lactation number. In this way, the time axis i$railty term in the term exp(B) of the usual
partitioned into several intervals. The assumption ofegression model. i represents the incidence vector
proportional hazard holds within each interval, bufor the random effecs={s,} the mixed survival
the hazard ratio changes from one interval to anothafodel can be written as
With time-dependent covariates, several levels of a

fixed effect can be associated with a single record of At x,2) = Ao()exp{x'B + 2's)

productive life. Traditionally, a gamma distribution has been
assumed for the frailty ternv because of its
2.6. Cox vs. Weibull model in animal breeding flexibility and mathematical convenience (Ducrocq

et al, 1988; Aslanidou and Dey, 1996).

Cox model has been repeatedly used in anim@nfortunately, a gamma distribution do not have the
breeding because it does not require knowledg@eoretical appeal of the normal distribution usually
about the distribution of survival times which is, inused in animal breeding under the assumption of the
many cases, unknown. However, when a Cox modéifinitesimal polygenic model (Ducrocq and Casella,
contains several time dependent covariates with B996). However, it can be shown that the estimates
large number of levels, the estimation of coefficientgbtained for the parameters of the gamma
in B may lead to extremely tedious computationsdistribution ofv are relatively large in dairy cattle
Such a model cannot be applied to usually very largsopulations. This means thathad an approximate
data sets used in a national sire evaluation. log-normal distribution, i.e.,s is approximately

But, when the baseline hazard function has @ormally distributed (Ducrocq et al., 1988).
known parametric form, the estimationfindAq(t) Therefore, it has been suggested to account for
is generally easier (Cox and Oakes, 1984)enetic relationships among animals by assuming a
Intuitively, the most appropriate parametric form ofmultivariate normal distribution fors (Ducrocq,
the baseline hazard function is a Weibull1997).
distribution. In a Weibull regression model, the A number of approaches has been proposed to
baseline hazard functiondo(t) = Ap(At)** is estimate parameters of the distribution wof so-
described by two parameteds,andp, which define called hyperparameters. For a Cox model, Klein
the scale and the shape of the baseline hazaf®92) suggested the use of an EM algorithm, with
function. iterative estimation ofv, fixed effectsf3 and the

The choice of the Weibull distribution resultsbaseline hazard function, followed by the estimation
from the simplicity of the Weibull survivor function of the distribution of frailty term given its estimates

So(t) = exp(-()\t)p) combined with its flexibility: a V. For a Weibull model, if a gamma distribution of

Weibull regression can model constapt £ 1), the frailty term is assumed, hyperparameters of its
increasing ¢ > 1), and decreasing € 1) hazard. If distribution can be obtained by exact algebraic
on_ approdmation o) s possile, furer CERED  Goidhers, 1068). This appronch has
analyses can greatly be facilitated. An additioniqa 9, ' PP

advantage of a Weibull model is its easy extension f£€" applied in Bayesian context by Ducrocq and
asella (1996). To estimate along with the

mixed survival models that can include correlateg; _ Loy C

random effects such as relationships among sir perparameters of its distribution, Monte Carlo

(Ducrocq and Casella, 1996). techniques ha\(e been suggested (e.qg., Korsgagrd,
1996), but their use on large data sets and with

complex models can computationally be very

demanding. Ducrocq and Casella (1996) proposed a

Proportional hazard models, either parametric dpayesian approach using a Laplacian approximation
semiparametric, can be extended to include randoftf theé marginal = posterior density of the
(e.g., genetic) effects. Such mixed survival model8YPerparameters of the distribution wfor s. This
are referred to as frailty models. The frailty terg v @PProach is applicable to both Cox and Weibull
describes the genetic effect which multiplicatively™0del. It has been proved very efficient for large
influences the hazard of each individual or a group giPpPlications.
individuals. For example, hazard for cow m can be
written as

A(t; Xm) = Ao(t) Vim €Xp Km'B).

2.7. Frailty models



2.7.1. Definition of heritability Table 1: Characteristics of Holstein data used for
genetic evaluation
A distribution attached to the elements gfov s,

when y; denotes the genetic, e.g. sire effect, aywd s Item
log v, naturally leads to a definition of heritability. 'O records (no) 224 847
The heritability of a survival trait on the logarithmic C€nsored (%) 19
scale is Left truncated (%) 5
Sires with daughters (no) 1 656
Izog _ 4Var(s) _ 4Var(s) MGS (no) 1 455
Var(logLPL) Var(s)+ﬂ—2 Total sires in pedigree (no) 3234
6 !Sire varianced?) 0.036
2
T0/6 is the variance of the extreme value distributio#?zIog g'ggj

corresponding to the error variance in survivalors
models. ! Sire variance was estimated in a separate analysis
Heritability on the original scale can beusing a subset of the data

approximated using a Taylor series expansion of

log(LPL) around its mean (Ducrocq, 1997). The The following Weibull mixed survival model was

heritability on the original scale amounts to 0.15 wused:

0.20 (Ducrocq and Solkner, 1998b). These values are _ ,

usual(ly highe? than on the Iogaritr)lmic scale and, in A =Aolt) exp hys(t) + fe; + palts) +Is(t,b)

particular, considerably higher than the heritability ~ * Mw(ty) + P(ty) + S}

Sgrjlenegf f:)o.rlno Ilr(lee-eér” mé)\?eerlzttth:: :’relilg%;ee-?ﬁi a_lhere)\(t_) is the hazard of the cow, t days after her

indicates that the survival analysis really provides rst ca.lvmg and: . _

better description of longevity data and a morgNo(t) is the baseline hazard function assumed to

complete extraction of the genetic variance. follow a Weibull distributionwith p = 1.53;

Consequently, a faster genetic progress can bdys(t) is the random time-dependent herd-year-

expected if longevity is included in selection season effect at calendar date t' with changes on

programs. March 1 and October 1 each year. The distribution
of the effecthys = {hys} was assumed to be log-

3. Example: Genetic evaluation for the length of gamma Yy), with y=375. This effect is

productive life in Swiss Holsteins considered to account for yearly and seasonal
changes in herd management and different culling
3.1 Material and methods policies in individual herds;

—fc; is the fixed time-independent effect of age at
Analysis of length of productive life (LPL) and first calving with 7 classes. This effect is included
estimation of breeding values was conducted usinghecause cows that first calved at older age are ex-
data provided by the Swiss Holstein Breeders'pected to have a shorter productive life;
Association. The data included all cows calved frompg 1)) is the fixed time-dependent effect of parity.

April, 1, 1980 onward. LPL was defined as the The effect of parity is considered to account for

number of days between the first calving and the lasfncreased risk of culling younger cows. Parities 1,
test day entered in the databank. Records on COW$ 3 4 and 5 were considered:

with last test day after February 1, 1998, changinglsl(tl
herds during their herd life or disappearing from the ¢ parity, t days after the first calving, and of stage
data file were considered as censored. For cows withy¢ |- ~t2tion 1 days after the current calving with
first calving before April 1, 1980, only the part of changes at;t: 0.30. 60 180 240 and 300. This

LPL corresponding to lactations started after thateffect is included to account for changing intensity
date was considered (left-truncated records).of culling during each lactation:

Breeding values were estimated for all sires having qtmm(tl) and p(t,) are the time-dependent effects of

least 6 daughters in the data. Also, m"Jltemalwithin—herd deviations for milk yield (5 classes) and
grandsires (MGS) of the cows were included. The ) y
sum of fat and protein content (5 classes) based on

gf?k:g:re?nz:g ;g(r:ne?srt'gresd all sires and two gem:'Watlonsage—adjusted 305d lactation records, with changes at

. . . ._each new calving date. Uncensored records on first
Characteristics of Holstein data used in genetic , ) .
. . . lactating cows with no lactation record are
evaluation are given in Table 1. N . S
arbitrarily assigned to class 2 for milk yield and
class 3 (average) for fat and protein content. The

tp) is the fixed time-dependent combined effect



effects of within-herd milk yield and fat and proteinfirst-lactating cows are at considerably higher risk of

content are included to account for culling becauskeing culled. This can be explained through changing

of poor milk production; intensity of selection, which is higher in the first than
-5, is the random effect of the sire of the cow. Siran later lactations. Cows aftef"4actation also have

effects s ={s,;} were assumed to follow a increased relative culling rates.

multivariate normal distribution with variance- The estimates for the effect parity x stage of

covariance matrixA o2 lactation for parities 1, 2, and 3 are shown in Figure

All computations have been conducted using thd- Relative culling rates increase linearly from the
software 'The Survival Kit 3.0' (Ducrocq andPeginning to the end of lactation, reaching the
Solkner, 1998a). After the sire variance had beeff@ximum 300 days after calving. This trend is in
estimated on a subset of data, the obtained value fcordance with the changing selection pressure

0% has been used in a subsequent genetic evaluatiofifing the lactation, and more intensive culling of
non-pregnant cows during the dry period. Only in the

first lactation, an increased risk of culling can be
observed during the first 30 days of lactation,
indicating intensive selection of heifers in the
eginning of lactation.

Figure 4 shows the influence of within-herd
eviation of milk yield on the relative culling rates.
- AWithin each lactation, cows producing less than 80%
a certain environmental or genetic effect, [6XJ(  of the herd average are at 3-4 x higher risk than their
and the average risk, which is usually set to ondierdmates with average production. High producing
[exp(0)]. In the model for genetic evaluation ofcows are less likely to be culled. These results
Holstein cows following effects have been set to onaeltlustrate the great influence of voluntary culling for
4™ group of age at first calving,"4parity, lactation low production.
stage from 181 to 270 days within each parity, and The influence of within-herd deviation of fat and
the 3 (average) within-herd class of milk yield andprotein content can be seen in Figure 5. Except for
fat and protein content within each lactation. the first lactation, in which the culling rates are

Figure 1 shows the relative culling rates formostly influenced by grouping animals without a
different ages at first calving. Although thelactation record, cows with a high fat and protein
differences among age groups are not large, a sligtontent are at slightly lower risk than those with fat
increase in culling risk can be observed for cowand protein content under the herd average.
with very old (> 37 mo) age at first calving. Differences among the classes are smaller than for
Figure 2 shows the estimates for the effect omilk yield.

parity. Compared with the average risK (dctation),

3.2. Results for fixed effects

To facilitate the interpretation, the results ar
expressed as relative culling rate, or relative risk o
being culled, defined as the ratio between th
estimated risk of being culled under the influence ?
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range of productive life, a more intuitive indicator of
sire's genetic value can be computed, namely, an
expected LPL of daughters in days. Breeders'
associations in Switzerland have chosen this
parameter to be published in sire catalogs. Sire
breeding values are expressed in deviations from a
fixed base of 1 018 days of LPL, which corresponds
to the average expected LPL of daughters of all
Holstein sires born between 1981 and 1985.

Relative culling rate

0+ t t t . age . . .
<94 w-97 98-101  102-106 >106 The reliability of sires' estimated breeding values
Rel. Within-herd fat + protein content (%) can be computed using the common formula:

2_ 2
Figure 5: Estimates of the effect of relative R°=ni/(n + (4-H/")

within-herd fat and protein content for where R is the reliability of the estimated breeding
lactations 1 @), 2 (O)and 3 0O value, n is the number of uncensored daughters, and
h? is heritability of LPL (0.184 for Holstein). The
3.3. Sire breeding values reliability can be increased through considering

relationships among sires.
The estimated sire effectsS) for 3 234 sires The reliability of breeding values for LPL
ranged from —0.57 to 0.44, corresponding to relativdepends on the number of uncensored daughters and

culling rates between 0.55 and 1.55. Negative valué®t on the total number of daughters. Therefore, sires

increased LPL of daughters. To enable easié€rainty earlier than other sires, because a greater
understanding of breeding values for LPL by théProportion of their daughters will be culled.

farmers, sire breeding values can be expressed in _ _

genetic standard deviation units, computed as 4 Conclusions and perspectives

s/\Jo? after changing the sign. One genetic Survival analysis is an appropriate method for
standard deviation unit corresponds to roughly 15@nalysis of longevity data. Survival analysis can be
days of productive life. considered to be the method of choice for genetic

Given the sire effecs, it is possible to compute evaluation of sires for LPL at national and
an expected survivor curve for daughters of each sirmternational level. With rapid development of
Figure 6 presents such a curve for three sires witowerful computers and appropriate software, it is
estimated breeding values of +1, 0, and —1 genetéxpected that in the future genetic evaluation will be
standard deviation units, assuming average levels based on animal model rather than current sire or
the effects of herd-year-season, age at first calvingire-MGS model.
and within-herd deviations for milk yield and fat and However, to make full use of survival analysis
protein content. The variations of culling rate duringechniques in animal breeding, further research is
each lactation are clearly indicated. needed. Future efforts should be focused on

The theoretical curves can be used to compute tl@provement of accuracy of the results for young
fraction of daughters still alive at any time after firstindividuals, obtained from data with an increased
calving. Cumulating these fractions over the wholgroportion of censored records.
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