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Abstract

Genetic evaluation for the length of productive life (LPL) in livestock species requires specific methods
because of following reasons: (i) some animals are still alive at the time of evaluation and their complete LPL
is not known, which implies that records of such individuals must be treated as censored; (ii) effects
influencing LPL do not act linearly and vary with time; and (iii) the distribution of LPL data is often unknown
and extremely skewed. Models based on survival analysis provide appropriate statistical tools for the analysis
of LPL. These models are based on a hazard function λ(t) which describes the risk of being culled at time t
conditional upon survival to time t. The hazard function of an animal is modeled as a product of a baseline
hazard function, λ0(t), describing the ageing process, and a vector containing explanatory variables that
supposedly influence the culling process and may depend on time. Because the form of λ0(t) is not always
known with certainty, λ0(t) can be left unspecified, as in a Cox model. However, with complex models and
large amount of data typical for national genetic evaluation, it is computationally advantageous to assume a
parametric, e.g., Weibull hazard function. Such a model can also be easily extended to include a random sire
or animal effect and enable estimation of genetic parameters for LPL. Routine genetic evaluation for LPL
based on a Weibull model has been implemented in many countries worldwide. This paper gives an example
of implementation of survival analysis techniques in dairy populations in Switzerland.

1. Introduction

In livestock production, in particular in dairy
cows, longevity of breeding stock is a highly
desirable trait that considerably affects overall
profitability. An increased longevity helps to reduce
costs associated with raising or purchasing
replacement females. Also, average herd production
is increased, due to higher proportion of mature
cows in later more productive lactations. An
increased longevity enables a greater selection
response, because fewer animals have to be replaced
and thus, higher selection intensity of females is
possible.

From the breeder’s perspective, a trait of
particular interest is functional longevity, which is
independent of production and reflects cow’s
fertility, health and overall fitness. The importance
of functional longevity in dairy breeding has
increased during last two decades because of its
increasing impact on production costs, and because
of growing need to improve functional longevity in
many dairy populations heavily selected only on
production.

However, considering longevity in breeding
programs and genetic evaluation of animals for this
trait are generally difficult. The main difficulty is

that a part of the animals is still alive in the moment
of genetic evaluation and only the lower bound of
their eventual productive life is known. To exclude
these records from the evaluation or consider them as
exact would lead to biased results. Therefore, such
records must be treated as censored. Several
researchers tried to circumvent this problem by using
indirect longevity indicators such as whether the cow
is still alive at certain age (Everett et al., 1976) or
lactation (Schaeffer and Burnside, 1974) or by
replacing censored records by so-called projected
records based on currently available information
(Van Raden and Klaaskate, 1993). Unfortunately, the
first method is associated with a great loss of
information. With the second method, the
information available to predict complete length of
productive life from partial records is extremely
limited (Ducrocq, 1997).

Another difficulty associated with genetic
evaluation for longevity is that the overall longevity
results from a product rather than from a sum of
effects influencing the trait (Beilharz et al., 1993);
when at least one of them is defective, the longevity
of an individual is impaired (Ducrocq and Sölkner,
1998). Therefore, evaluation methods based on
traditional linear models, such as BLUP, although
widely used in some countries, cannot properly
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account for nonlinearity of longevity data. Also,
some of the effects that influence productive life,
such as milk production, herd size or management,
vary with time.

Furthermore, the distribution of longevity data is
extremely skewed and often unknown. Thus,
methods based on assumption of normality have only
limited use in the analysis of longevity data (Egger-
Danner, 1993)

Survival analysis, a statistical method originally
developed for research in medicine and engineering,
can be used in analyzing longevity data. Survival
analysis combines information on dead (uncensored)
and alive (censored) individuals, enables a proper
statistical treatment of censored records and accounts
for nonlinear characteristics of longevity data.

Famula (1981) was the first author who proposed
survival analysis as a method to analyze length of
productive life in dairy cattle. Smith (1983) and
Smith and Quaas (1984) used survival analysis
techniques to estimate breeding values of sires based
on the length of productive life of their daughters.
The techniques were further developed and adjusted
for large scale applications by Ducrocq (1994) and
Ducrocq end Sölkner (1998). By now, routine
genetic evaluation of sires has been implemented in
France and research projects are underway in several
other European countries.

The aim of this paper is to give insight into basic
statistical techniques used in modeling of longevity
data and genetic evaluation for longevity in dairy
cows. Application of survival analysis in the routine
genetic evaluation of sires for the length of
productive life will be illustrated using an example
of Holstein population in Switzerland.

2. Statistical techniques of survival analysis

Statistical techniques used in survival analysis are
aimed at modeling and analysis of response times.
The response time of an individual is a positive
random variable describing a difference between a
given origin point and an end point. In analyzing
productive life of dairy cows, the origin point
corresponds to the first calving of a cow and the end
point (“failure”) corresponds to her death or culling.
The width of the interval is measured in days,
months, or years. Generally, the end point may
correspond to any type of event – e.g., recovery from
disease or success after insemination - and can be
expressed in amount of money spent or earned, kg of
milk produced, etc.

A specific feature of survival analysis is that it
can accommodate censoring and in this way uses
information available on animals that are still alive.

The most frequent type of censoring is right
censoring, for which the exact failure time is known
to be larger than the observed value. Usual causes of

right censoring are the absence of failure before the
end of the study, the loss to follow up or the loss of
competing risk. Observation is censored when a cow
is still alive at the end of data collection, when she
disappears from the herd due to sale to another herd
not under testing program, or when the whole herd is
withdrawn from the testing program.

Survival analysis can also accommodate left
truncated records, for which the origin point lays
outside the data collection period. The observation is
left truncated when the cow calves for the first time
before the data collection starts. Because no
information is available for the period prior to begin
of data collection, such cow is considered to be at
risk only from the beginning of data collection
onward. Truncated records are completed records, in
contrast to censored records which contain only
partial information.

Another type of censoring – left censoring – for
which failure occurs prior to a given origin point, is
not of interest for applications in animal breeding,
because animals that died before the data recording
starts are not considered in the analysis.

2.1 Failure time distributions

The analysis of survival data is based on the use
of special modeling distributions (Kalbfleisch and
Prentice, 1980):

The survivor function S(t):
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gives the probability that an animal survives at least
up to time T. S(t) is the proportion of animals still
alive at t. F(t) is the cumulative probability density
function.

The density function f(t):
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is a limiting probability that failure will occur
between t and ∆t.

The hazard function λ(t):
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is the conditional probability of an individual of
dying in the interval (t, t+∆t], given it was alive at
time t.
All these function are interrelated and each of them
can be derived from another.

2.2. Empirical estimation of the survivor function

Empirical survivor function gives an idea about
the distribution of survival times. The empirical
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survivor function can be computed using a Kaplan-
Meier’s formula (Kaplan and Meier, 1958):
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where � ( )S tKM  is the value of the survivor function at
time t, T[k] represents the ordered failure times, from
the first occurrence of the failure to the last one, nk is
the number of animals at risk at T[k], and dk is the

number of animals that actually died at T[k]. � ( )S tKM

is called the product-limit or Kaplan-Meier estimate

of the survivor function. � ( )S tKM  is also the
generalized maximum likelihood estimate of S(t)
over all possible distributions (Kaplan & Meier,
1958).

From � ( )S tKM  the empirical hazard function λ(t) can
be computed.

Empirical estimates of S and λ are useful in
preliminary studies: they allow to reveal the general
features of the underlying distributions of interest,
they facilitate the choice of models for further
analyses, and enable to check the validity of these
models (Ducrocq, 1992).

2.3. Regression models

In many cases, the exact characteristics of the
survivor function or the density function are not
known, but some information is available on how the
failure rate λ(t) changes over time. Therefore,
models for survival analysis are usually built from a
hazard function, which measures the risk of failure of
an individual at time t. A general assumption is that a
hazard function for each animal has a common basic
form, called baseline hazard function, which is equal
for all animals and represents, in some sense, the
overall mean. The baseline hazard function of an
individual is modified by the influence of the effects
that supposedly influence the culling process, called
‘stress factors’.

A survival model in its general form can be
written as

)'exp((t)«)«�W� 0i ¢xx =

where λ(t,xi) is the hazard for animal i. λ0(t) is the
baseline hazard function, describing the aging
process of an animal and depending only on time. In
parametric models, the baseline hazard function is
assumed to follow a certain exponential distribution,
usually an exponential (exponential model) or
Weibull distribution (Weibull model). The baseline
hazard function can also be left completely arbitrary,
as in semiparametric or Cox model. xi is the vector of
explanatory variables (stress factors) that supposedly

influence the culling process, and β is the vector of
regression coefficients.

2.4.  Estimation procedures

Estimation of effects of particular covariates on
survivor curve is usually based on maximum
likelihood methods. The construction of the
likelihood function, however, requires a different
approach for parametric and semiparametric models.

For parametric models, it could be shown that the
contribution to the likelihood for an uncensored
observation equals the value of the density function
at failure time. The contribution to the likelihood
function for a censored observation equals the value
of the survivor function at censoring time (Ducrocq,
1987). The full likelihood function is then obtained
by multiplying conditionally independent
contributions for all records. The estimates of the
parameters are obtained by maximizing this function
or its logarithm (Ducrocq, 1997). The parameters of
the baseline hazard function are estimated jointly
with the regression coefficients.

For semiparametric models (Cox model) a
different approach must be used. The estimation of β
can be performed by maximizing a likelihood
function without making any assumptions about
λ0(t). Cox (1972) developed a concept of partial
likelihood. A partial likelihood function is a part of
the full likelihood function that does not depend on
λ0(t). It can be obtained as the marginal likelihood of
the ranks of failure times.

After maximizing the partial likelihood function,
the resulting estimates of β can be used to compute
baseline hazard function or the baseline survivor
function, using an approach similar to that used in
computation of the Kaplan-Meier estimator.

2.5. Proportional hazard model and its
generalizations

One of the most frequently used models in
analysis of productive life is a proportional hazard
model, for which the hazard of two animals A and B
remains proportional over the entire period of time
with a constant hazard ratio exp(xA-xB)’β. In most
cases, however, the assumption of proportional
hazard does not hold, because the hazard for
individual cows vary differently over time,
depending on current culling criteria.

A possible alternative that retains the simplicity of
the proportional hazard model is known as
stratification. Stratification is characterized by
definition of a different baseline hazard function for
each stratum – a subclass of individuals with, e.g.,
same year of birth, herd, or production level.
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Another powerful generalization of the
proportional hazard model is the induction of time-
dependent explanatory variables that account for
variation in culling policy over time, such as herd by
year or lactation number. In this way, the time axis is
partitioned into several intervals. The assumption of
proportional hazard holds within each interval, but
the hazard ratio changes from one interval to another.
With time-dependent covariates, several levels of a
fixed effect can be associated with a single record of
productive life.

2.6. Cox vs. Weibull model in animal breeding

Cox model has been repeatedly used in animal
breeding because it does not require knowledge
about the distribution of survival times which is, in
many cases, unknown. However, when a Cox model
contains several time dependent covariates with a
large number of levels, the estimation of coefficients
in β may lead to extremely tedious computations.
Such a model cannot be applied to usually very large
data sets used in a national sire evaluation.

But, when the baseline hazard function has a
known parametric form, the estimation of β and λ0(t)
is generally easier (Cox and Oakes, 1984).
Intuitively, the most appropriate parametric form of
the baseline hazard function is a Weibull
distribution. In a Weibull regression model, the
baseline hazard function, λ0(t) = λρ(λt)ρ-1  is
described by two parameters, λ and ρ, which define
the scale and the shape of the baseline hazard
function.

The choice of the Weibull distribution results
from the simplicity of the Weibull survivor function

S0(t) = exp(-(λt)
ρ
) combined with its flexibility: a

Weibull regression can model constant (ρ = 1),
increasing (ρ > 1), and decreasing (ρ < 1) hazard. If
an approximation of λ0(t) is possible, further
analyses can greatly be facilitated. An additional
advantage of a Weibull model is its easy extension to
mixed survival models that can include correlated
random effects such as relationships among sires
(Ducrocq and  Casella, 1996).

2.7. Frailty models

Proportional hazard models, either parametric or
semiparametric, can be extended to include random
(e.g., genetic) effects. Such mixed survival models
are referred to as frailty models. The frailty term vm

describes the genetic effect which multiplicatively
influences the hazard of each individual or a group of
individuals. For example, hazard for cow m can be
written as

λ(t; xm) = λ0(t) vm exp (xm’β).

The frailty component explains a portion of the
variance that cannot be accounted for by the model
containing only fixed effects. A simple
transformation sm = log vm allows the inclusion of the
frailty term in the term exp(x’β) of the usual
regression model. If z represents the incidence vector
for the random effect s={sm} the mixed survival
model can be written as

λ(t; x,z) = λ0(t)exp{x'β + z's}

Traditionally, a gamma distribution has been
assumed for the frailty term v because of its
flexibility and mathematical convenience (Ducrocq
et al., 1988; Aslanidou and Dey, 1996).
Unfortunately, a gamma distribution do not have the
theoretical appeal of the normal distribution usually
used in animal breeding under the assumption of the
infinitesimal polygenic model (Ducrocq and  Casella,
1996). However, it can be shown that the estimates
obtained for the parameters of the gamma
distribution of v are relatively large in dairy cattle
populations. This means that v had an approximate
log-normal distribution, i.e., s is approximately
normally distributed (Ducrocq et al., 1988).
Therefore, it has been suggested to account for
genetic relationships among animals by assuming a
multivariate normal distribution for s (Ducrocq,
1997).

A number of approaches has been proposed to
estimate parameters of the distribution of v - so-
called hyperparameters. For a Cox model, Klein
(1992) suggested the use of an EM algorithm, with
iterative estimation of v, fixed effects β and the
baseline hazard function, followed by the estimation
of the distribution of frailty term given its estimates
v̂ . For a Weibull model, if a gamma distribution of
the frailty term is assumed, hyperparameters of its
distribution can be obtained by exact algebraic
integration of v from the likelihood function
(Follman and Goldberg, 1988). This approach has
been applied in Bayesian context by Ducrocq and
Casella (1996). To estimate v along with the
hyperparameters of its distribution, Monte Carlo
techniques have been suggested (e.g., Korsgaard,
1996), but their use on large data sets and with
complex models can computationally be very
demanding. Ducrocq and  Casella (1996) proposed a
Bayesian approach using a Laplacian approximation
of the marginal posterior density of the
hyperparameters of the distribution of v or s. This
approach is applicable to both Cox and Weibull
model. It has been proved very efficient for large
applications.
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2.7.1. Definition of heritability

A distribution attached to the elements of vq or sq,
when vq denotes the genetic, e.g. sire effect, and sq =
log vq, naturally leads to a definition of heritability.
The heritability of a survival trait on the logarithmic
scale is

6
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π2/6 is the variance of the extreme value distribution
corresponding to the error variance in survival
models.

Heritability on the original scale can be
approximated using a Taylor series expansion of
log(LPL) around its mean (Ducrocq, 1997). The
heritability on the original scale amounts to 0.15 -
0.20 (Ducrocq and Sölkner, 1998b). These values are
usually higher than on the logarithmic scale and, in
particular, considerably higher than the heritability
obtained from linear models that rarely exceeds a
value of 0.10 (e.g., Everett et al, 1976). This
indicates that the survival analysis really provides a
better description of longevity data and a more
complete extraction of the genetic variance.
Consequently, a faster genetic progress can be
expected if longevity is included in selection
programs.

3. Example: Genetic evaluation for the length of
productive life in Swiss Holsteins

3.1 Material and methods

Analysis of length of productive life (LPL) and
estimation of breeding values was conducted using
data provided by the Swiss Holstein Breeders'
Association. The data included all cows calved from
April, 1, 1980 onward. LPL was defined as the
number of days between the first calving and the last
test day entered in the databank. Records on cows
with last test day after February 1, 1998, changing
herds during their herd life or disappearing from the
data file were considered as censored. For cows with
first calving before April 1, 1980, only the part of
LPL corresponding to lactations started after that
date was considered (left-truncated records).
Breeding values were estimated for all sires having at
least 6 daughters in the data. Also, maternal
grandsires (MGS) of the cows were included. The
pedigree file comprised all sires and two generations
of their male ancestors.

Characteristics of Holstein data used in genetic
evaluation are given in Table 1.

Table 1: Characteristics of Holstein data used for
genetic evaluation

Item

Total records (no) 224 847
Censored (%) 19
Left truncated (%) 5
Sires with daughters (no) 1 656
MGS (no) 1 455
Total sires in pedigree (no) 3 234
1Sire variance (σ2

s) 0.036

h2
log 0.072

h2
orig 0.184

1 Sire variance was estimated in a separate analysis
using a subset of the data

The following Weibull mixed survival model was
used:

λ(t) = λ0(t) exp {hysi(t’) + fcj + pak(t1) + lsl(t1,t2)

+ mm(t1) + pn(t1) + so}

where λ(t) is the hazard of the cow, t days after her
first calving and:
− λ0(t) is the baseline hazard function assumed to
follow a Weibull distribution with ρ = 1.53;

− hysi(t’) is the random time-dependent herd-year-
season effect at calendar date t’ with changes on
March 1 and October 1 each year. The distribution
of the effect hys = {hysi} was assumed to be log-
gamma (γ,γ), with γ = 3.75. This effect is
considered to account for yearly and seasonal
changes in herd management and different culling
policies in individual herds;

− fcj is the fixed time-independent effect of age at
first calving with 7 classes. This effect is included
because cows that first calved at older age are ex-
pected to have a shorter productive life;

− pak(t1) is the fixed time-dependent effect of parity.
The effect of parity is considered to account for
increased risk of culling younger cows. Parities 1,
2, 3, 4, and 5 were considered;

− lsl(t1,t2) is the fixed time-dependent combined effect
of parity, t1 days after the first calving, and of stage
of lactation, t2 days after the current calving with
changes at t2 = 0, 30, 60, 180, 240, and 300. This
effect is included to account for changing intensity
of culling during each lactation;

− mm(t1) and pn(t1) are the time-dependent effects of
within-herd deviations for milk yield (5 classes) and
sum of fat and protein content (5 classes) based on
age-adjusted 305d lactation records, with changes at
each new calving date. Uncensored records on first
lactating cows with no lactation record are
arbitrarily assigned to class 2 for milk yield and
class 3 (average) for fat and protein content. The
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effects of within-herd milk yield and fat and protein
content are included to account for culling because
of poor milk production;

− so is the random effect of the sire of the cow. Sire
effects s ={so} were assumed to follow a
multivariate normal distribution with variance-
covariance matrix A σ2

s.
All computations have been conducted using the

software 'The Survival Kit 3.0' (Ducrocq and
Sölkner, 1998a). After the sire variance had been
estimated on a subset of data, the obtained value of
σ2

s has been used in a subsequent genetic evaluation.

3.2. Results for fixed effects

To facilitate the interpretation, the results are
expressed as relative culling rate, or relative risk of
being culled, defined as the ratio between the
estimated risk of being culled under the influence of

a certain environmental or genetic effect, [exp(¢̂ )],
and the average risk, which is usually set to one,
[exp(0)]. In the model for genetic evaluation of
Holstein cows following effects have been set to one:
4th group of age at first calving, 4th parity, lactation
stage from 181 to 270 days within each parity, and
the 3rd (average) within-herd class of milk yield and
fat and protein content within each lactation.

Figure 1 shows the relative culling rates for
different ages at first calving. Although the
differences among age groups are not large, a slight
increase in culling risk can be observed for cows
with very old (> 37 mo) age at first calving.

Figure 2 shows the estimates for the effect of
parity. Compared with the average risk (4th lactation),

first-lactating cows are at considerably higher risk of
being culled. This can be explained through changing
intensity of selection, which is higher in the first than
in later lactations. Cows after 4th lactation also have
increased relative culling rates.

The estimates for the effect parity x stage of
lactation for parities 1, 2, and 3 are shown in Figure
3. Relative culling rates increase linearly from the
beginning to the end of lactation, reaching the
maximum 300 days after calving. This trend is in
accordance with the changing selection pressure
during the lactation, and more intensive culling of
non-pregnant cows during the dry period. Only in the
first lactation, an increased risk of culling can be
observed during the first 30 days of lactation,
indicating intensive selection of heifers in the
beginning of lactation.

Figure 4 shows the influence of within-herd
deviation of milk yield on the relative culling rates.
Within each lactation, cows producing less than 80%
of the herd average are at 3-4 x higher risk than their
herdmates with average production. High producing
cows are less likely to be culled. These results
illustrate the great influence of voluntary culling for
low production.

The influence of within-herd deviation of fat and
protein content can be seen in Figure 5. Except for
the first lactation, in which the culling rates are
mostly influenced by grouping animals without a
lactation record, cows with a high fat and protein
content are at slightly lower risk than those with fat
and protein content under the herd average.
Differences among the classes are smaller than for
milk yield.

0.5

0.7

0.9

1.1

1.3

1.5

<26 26-27 28-29 30-32 33-34 35-37 >37

Age at first calving (mo) 

R
el

at
iv

e 
cu

lli
ng

 r
at

e

Figure 1: Estimates of the effect of age
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Figure 2: Estimates of the effect of parity
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Figure 3: Estimates of the effect of stage of
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Figure 4: Estimates of the effect of relative
within-herd milk yield for lactations 1 (zz), 2

({{) and 3 (∗)

3.3. Sire breeding values

The estimated sire effects (ŝ) for 3 234 sires
ranged from –0.57 to 0.44, corresponding to relative
culling rates between 0.55 and 1.55. Negative values
of ŝ indicate lower risk of culling and, thus,
increased LPL of daughters. To enable easier
understanding of breeding values for LPL by the
farmers, sire breeding values can be expressed in
genetic standard deviation units, computed as

2
s/ŝ σ  after changing the sign. One genetic

standard deviation unit corresponds to roughly 150
days of productive life.

Given the sire effect ŝ , it is possible to compute
an expected survivor curve for daughters of each sire.
Figure 6 presents such a curve for three sires with
estimated breeding values of +1, 0, and –1 genetic
standard deviation units, assuming average levels of
the effects of herd-year-season, age at first calving,
and within-herd deviations for milk yield and fat and
protein content. The variations of culling rate during
each lactation are clearly indicated.

The theoretical curves can be used to compute the
fraction of daughters still alive at any time after first
calving. Cumulating these fractions over the whole

range of productive life, a more intuitive indicator of
sire's genetic value can be computed, namely, an
expected LPL of daughters in days. Breeders'
associations in Switzerland have chosen this
parameter to be published in sire catalogs. Sire
breeding values are expressed in deviations from a
fixed base of 1 018 days of LPL, which corresponds
to the average expected LPL of daughters of all
Holstein sires born between 1981 and 1985.

The reliability of sires' estimated breeding values
can be computed using the common formula:

R2= n/(n + (4-h2)/h2)

where R2 is the reliability of the estimated breeding
value, n is the number of uncensored daughters, and
h2 is heritability of LPL (0.184 for Holstein). The
reliability can be increased through considering
relationships among sires.

The reliability of breeding values for LPL
depends on the number of uncensored daughters and
not on the total number of daughters. Therefore, sires
transmitting shorter LPL will be known with
certainty earlier than other sires, because a greater
proportion of their daughters will be culled.

4. Conclusions and perspectives

Survival analysis is an appropriate method for
analysis of longevity data. Survival analysis can be
considered to be the method of choice for genetic
evaluation of sires for LPL at national and
international level. With rapid development of
powerful computers and appropriate software, it is
expected that in the future genetic evaluation will be
based on animal model rather than current sire or
sire-MGS model.

However, to make full use of survival analysis
techniques in animal breeding, further research is
needed. Future efforts should be focused on
improvement of accuracy of the results for young
individuals, obtained from data with an increased
proportion of censored records.
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In this context, inclusion of some auxiliary traits,
such as type traits, should be considered. This
implies proper estimation of genetic covariances
between these traits and LPL, which might indicate
that multivariate survival analysis techniques are
needed. Survival models in the future should be
extended to other genetic model, e.g. to include
information on major genes or genetic markers.
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Figure 6: Expected survivor curve of sires with
breeding values of +1 (dashed line), 0 (solid line), and

–1 (thick line) genetic standard deviation units


