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Abstract

An alternative algorithm for solving random regression test-day models was developed to allow
use of those models for extremely large data sets such as the U.S. database for dairy records. The
algorithm also facilitates integration of data from 305-day records when no test-day records are
available and simplifies development of an index for lactation performance that includes genetic
differences in lactation curve (persistency) and genetic effects of parity (maturity rate). Equations
are solved in two iterative steps: 1) estimation or update of regression coefficients based on test-day
yields for a given lactation and 2) estimation of fixed and random effects on those coefficients.
Solutions were shown to be theoretically equivalent to regular solutions for this class of random
regression model. In a test computation with 57,034 first-lactation test-day milk yields from 7173
Holstein cows, correlations between solutions from the two solution methods were all >0.98 after
only two iterations on the two steps. In addition to the relative simplicity of the proposed method, it
allows several other techniques to be applied in the second step: 1) a canonical transformation to
simplify computations (uncorrelated regressions) by making use of recent advances in solving
algorithms that allow missing values; 2) a transformation to limit the number of regressions and
create variates with biological meanings such as total yield, persistency, and maturity rate; 3) more
complicated (co)variance structures than those usually considered in random regression models
(e.g., additional random effects such as interaction of herd and sire); and 4) accommodation of
additional traits for cows without test-day records.

1. Introduction between random regression and (co)variance
function models was shown (Meyer and Hill, 1997,
Random regression models (e.g., Schaeffean der Werfet al, 1998). Therefore, (co)variance
and Dekkers, 1994) that have been proposgdhction coefficients can be computed directly as
for analysis of test-day yields (Jamroeikal, (co)variance components of the equivalent random
1997) are computationally demanding, ancegression model. The equivalence between random
until now few algorithms existed that couldregression and (co)variance function models also
be used to simplify the computations. Acan be used to simplify computations of random
(co)variance function can be defined as megression models (van der Wetfal, 1998). The
continuous function that represents thebjective of this study was to develop an alternative
variance and (co)variance of traits measuredgorithm to solve a random regression test-day
at different points on a trajectory (Kirkpatrickmodel for use with extremely large data sets, such
et al, 1990; Kirkpatricket al, 1994; Meyer as the U.S. national database of dairy records.
and Hill, 1997). Recently, the equivalencédditional objectives were to facilitate the



integration of data from 305-day recordeffects per animal representing regression
when no test-day records were available amwefficients),Q is a covariate matrix linking and
to simplify the development of an index for and transforming time-dependent to time
lactation performance that includes genetindependentr, c is a vector of time-independent
differences in lactation curve (persistency)jxed effects (e.g., age-season of calving),is an
and genetic effects of parity (maturity rate). incidence matrix linkingr andc, a is a vector of
random additive genetic effectg is an incidence
matrix linking r and a, p is a vector of random
2. Equivalence Between Random nongenetic cow effects, amrds a vector of residual
Regression  And Infinite-Dimensional effects (e.g., measurement errors).
Models The means and covariance structurey,af, a,
p, ande can be summarized as
Consider the following model to represent
a special class of random regression models:
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a vector of time-independent random effects
(e.g., phenotypic cow effects with several
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whereK s andKp are coefficients of the genetic ~ wheret; represents a vector of cow-specific

and environmental covariance functions, effects that are observed for cow i.

respectively, and] is the Kronecker product The variance oft; then can be be

function. subdivided into genetic G; and
The random regression model also can be environmentalP; parts and modeled using

written to represent an infinite-dimensional  covariance functions:

model in whicht = Qr:

Var(ti) =G +P
y=Xb+t+e = QiKsQi+ QiKpQi
For every animal i with records, The regression covariate matri®Q is
defined in general and can have different
yi=Xib +tj+e structures. The easiest way to understand this

structure is through an example, e.g., the



analysis of milk, fat, and protein yields on first-
lactation test days. Then,
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where the milk, fat, and protein test-day yields
are ordered as observations within trait within
animal so thaQ can be split intd; blocks with

a different block for each of i animals. Each
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where @ is defined as the matrix of
regression variables associated with test-day
yields for milk (m), fat (f), or protein (p) for
animal i. Theg matrices for milk, fat, and
protein can be different, e.g., no protein
recorded or more observations for milk than
for component traits.

block is calculated as

3. Alternative Solution Algorithm

Solution of a random regression model
normally is done through mixed model
equations:
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Because those equations are large and densmecific to herd (e.g., herd test date) because
their solution is difficult for large populations.block inversion is possible (the order is equal to
However, the mixed model equations can ke herd-specific effects in).

subdivided into two sets of equations that can be The new estimate fop is obtained using
solved sequentially. The first set of equationsurrent estimates fdr, ¢, anda:

estimated andp; the second estimatesnda.

pUY =(QRIQ+I DK *QRy -

3.1 Estimation of b and p XKD — QW +Za®)]

At iteration k+1, the new estimate fdr is

Obta|ned us|ng current es“ma‘tes@a andp Wh|Ch a|SO |S del’lved from the m|Xed mOdel

equations. An advantage of this approach is that
solutions can be computed animal by animal
becauseR is block diagonal for every animal.
Therefore, direct inversion can be used in the
computations (the order of the inverted block is
which is derived from the mixed modelequal to the number of regressions per animal).
equations. Solutions can be computed directly The vectorr is then updated using current
herd by herd if fixed effects itb are defined estimates foc, a, andp:

pkHD =

(X'RX)y-Q(We® +za® + p®)]
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3.2 Estimation of ¢ and a

Solutions forc anda in iteration round k+1

making use of solution algorithms that allow
missing values (Ducrocq and Besbes, 1993)
as well as other generalized uses of this
transformation described by Ducrocq and
Chapuis (1997),

are obtained from equations that are similar o transformation to limit the number of

regular multivariate mixed model equations:
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regressions (Wiggans and Goddard, 1997),
which could create variates with biological
meaning (such as total yield, persistency, and
maturity rate) that could facilitate the
development of an index for lactation
performance,

» more complicated (co)variance structure than

those usually considered in random
regression models (e.g., additional random

Several solution techniques are possible effects such as interaction of herd and sire),
because the secondary-model is not completely and

specified:

e canonical transformation to  simplify

e additional traits (such as 305-day yield for

cows without test-day records).

computation (uncorrelated regression) by

3.3 Proof

To show that the solutions fds, ¢, and a

equivalent to those from the mixed model

from the alternative solution algorithm aresquations, first absorp into the mixed model

equations:

OXMX  X'MQW X'MQZ  ObO OXMy O
XMQX  WQMQW wWQMQZ b= BvomyD
0ZMQ ZQMQW Z'QMQZ+A*DK2HRE FZ'QMy B

whereM is the absorption matrix:

M=R7?-RIQQR™Q+I0K:})QR™
=[R+Q(OK)QT™

The back solution fop gives

pP=(QR™Q+IOK)'QR [y~
Xb-Q(We + Za)]
=(1 O0KHQ'M[y - Xb-Q(Wt + Z8)]

Next iterate on the mixed model equations
with p absorbed using two blocks:

6(k+1) —

(X'MX) X M[y-Q(We® +za® |

Both formulas are equivalent to estimatimgnd
p in the alternative solution algorithm at k+1
rounds of iteration, and
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Now the different blocks of the coefficient matrix can be rewritten as

W'QMQW = W'(I 0K W +[W'QMQW - W'(I 0K )W]
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After introducing those blocks, moving them to the right-hand side, and using the estintieégs of
iteration k+1 and o anda at iteration k,
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Then 3.4 Similarity to Method of van der Werf et
al. (1998)

@My - X + With inspection, the alternati
Lo ) ) ith cursory inspection, the alternative
(10K -Q'MQ)(we® +za") solution algorithm does not appear to resemble
=(1 0K He*D the equations of van der Weet al (1998).
Their derivation was based on a totally different
which is the same equation as that obtained BfpProach using a transformation yf whereas
including the alternative solution algorithmthe alternative  solution  equations  were
equation to updatb in the algorithm update of developed by subdividing a class of random
r. Therefore, solutions far anda obtained from regression models into two models. However,
the algorithm are equivalent to those from thie alternative solution algorithm can be shown
mixed model equations. to be a generalization of the van der Wetrfal.
(1998) equations by restructuring the same
equation that was used to demonstrate the



equivalence between the solutions from the algorithm and the mixed model equations:

PO =wel +za® + (QRIQ+I DK QR (y - Xb™® ™ —Qwe® +za®)]
=(QR™Q+1 UK QR (y-Xb* ) +
[ -(QR™Q+IOKHQRIQWe® +zal).

That generalization of the expression of van déndirectly, the derivation of the alternative
Werf et al. (1998) includes time-dependent fixedsolution algorithm also is a proof of the
effects, a general definition & andQ, and no equations of van der Weet al. (1998).

limitations on the covariance structures.

4. Possible Practical Uses
4.1 Expectation-Maximization Algorithm
Similar to the approach proposed by van déeration, a part of would be estimated once and

Werf et al. (1998), an expectation-maximizatioranother part updated based on current estimates
algorithm can be used to update During ofb, c, anda:

P =Q (y - XB*) + (1 -Q* Q(We + za®)
= Q* y _Q* Xﬁ(kﬂ) + (| _Q* Q(Wc(k) + Za(k))
effects, the need also to updatéeads to a

second method that is based on a two-step
approach.

whereQ =(QR™Q+IOKH)?IQR™. In
contrast to van der Werét al. (1998), who
voluntarily avoided time-dependent fixed

4.2 Sequential Solution

The equations from the alternative solution Values could replace estimates &for new
algorithm for estimatingp, p, r, ¢, anda can be animals. Therefore, the following scheme
directly used to develop a sequential solution Would be possible based on the equations in
scheme. For most practical situations, solutions the alternative solution algorithm:
from a former evaluat_ion are available and can 1. generateb with starting values from a
be us_ed as starting values. If genetic previous genetic evaluation.
evaluations are calculated every 3 or 6 months, _
the relative number of additional records 2. updater. The solutions fob and forr
compared with the total number of records updated usingb can also be obtained
would be at most 5 to 10%. For most animals, together through the following mixed
values fora andp are available, and pedigree model equations:
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3. solve forc anda in the alternative solution A model similar to the model of Genglet
algorithm equation by using starting valueal. (1999) was used except that fixed regression
from the last genetic evaluation. on third-order modified Legendre’s polynomials

(constant, linear, and quadratic) were added. The

three regressions wergz 1, b = 3, and b =

5. solve forp using the new estimates forc, (5/4°%3x® - 1), where x =-1 + 2[(DIM -
and a, and updater using the alternative 1)/305- 1)] and DIM = days in milk.
solution algorithm equation. The model used was

6. updatec anda using the solutions from the
previous round of current genetic evaluation Y =Hh +Ss+Q(Wc +Za +p) +e
as starting values.

7. Repeat from 4. until desired convergence Wherey is the vector of test-day records for
reached. milk, fat, or protein yield;h is the vector of

effects for class of herd test day and milking

This scheme obviously is approximate anfiequency;s is the vector of effects for class of
similar to the method proposed by Wiggans arPe, season, and lactation stage;the vector of
Goddard (1997). Such an approach also woduifed regression coefficients (threey; is the
be appropriate for advanced milk recording plangctor of genetic random regression coefficients
and continuous genetic evaluations. Thehree per animal)p is the vector of permanent
estimations ofo andr could be updated eachenvironmental random regression coefficients
time that data from a new test day are added féhree per cow with recordsg is the vector of
a given herd, thus allowing their use foresidual effects;H, S, W, Z are incidence
management purposes. The estimation afida Mmatrices; andQ is the covariate matrix for the
could then be updated for the whole populatioiggressions with three columns per animal.
on a scheduled basis (e.g., weekly, monthif\ssumed (co)variance structures were
quarterly).

4. updateb using the new estimates foanda.
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5.1 Material and Methods

Data (Table 1) were from a subset of the dai%'th _ R=1,0;, where Kg is the covariance
used by Gengler et al. (1999). A total of 57,03@atrix of the genetic random regressions, (the
first-lactation test-day records that were recordé@efficients of the genetic covariance function),
between 7 and 305 days in milk were obtaindfir is the covariance matrix of the permanent
for 7173 Holstein cows that calved from 199@nvironmental ~ random  regressions  (the
through 1996 in large herds in Pennsylvanigoefficients of the permanent environmental
Pedigree information was available from th&ovariance function)A is the additive genetic
Animal Improvement Programs Laboratoryelationship matrix among animald; is the
database.



Table 1.Numbers of cows with records, test-datarting with January, six 2-month calving
records, animals included in theseasons were defined. Twenty-two lactation
relationship matrixA™), and equations stages based on days in milk were defined: 7 to

used in the random regression model.

Category Number
Cows 7173
Test-day records 57,034
Animals inA™ 15,378
Equations 69,355

identity matrix of dimension ¢ (number of cows
or lactations), I, is the identity matrix of

dimension n (number of test-day yields) asgl

13, 14 to 20, 21 to 27, 28 to 34, 35t0 41, 42 to
48, 49 to 55, 56 to 62, 63 to 76, 77 to 90, 91 to
104, 105 to 118, 119 to 132, 133 to 146, 147 to
167, 168 to 188, 189 to 209, 210 to 230, 231 to
251, 252 to 272, 273 to 293, and 294 to 305.

(Co)variance  components were those
obtained previously by Genglext al (1999)
through REMLF90 (Misztal, 1998). All
computations were done on a Digital Equipment
Corporation  (Marlboro, MA) Personal
Workstation 433 with 512 megabytes of random
access memory.

5.1 Solution with Random Regression Model

Is the residual variance. For this example, classes

for age, season, and lactation stage were definedThe following mixed model equations were

so that small classes would be avoided, but sucbnstructed, stored in sparse matrix form, and
classes should be smaller for actual calculatiamlived by Gauss-Seidel iteration using the
of genetic evaluations. Calving ages were 20 BLUPF90 program (Misztal, 1997):

24, 25 to 26, 27 to 28, and 29 to 35 months.

HR'™H HR'S HRIQW HR'QZ HQR'Q [IhD OHR'y [
. SRS  SRIQW SR'QZ SR'Q %0 OSRY ¢
0 WQR'QW  WQR™QZ WQR'Q - WNQR 5
B Symmetric ZQR'QZ+A"DOKZ  QR™QZ D%D % QR 1y O
H QR™Q+I DK HPH HQR™Y

5.2 Two-Step Sequential Solution

1. Based on the alternative solution algorithm equationdfand p modified to two fixed

effects, Step 1 consists in solving
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and updatingr by computing: f ** =wg® +za® +p**D  The BLUPF90 program
(Misztal, 1997) was used to set up and solve the equations. Because in the initial estimation
of r, no information was available feranda, Step 1 was modified to:
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which is equivalent to estimation ofwith a Werfet al. (1998), the derivations were based on
regular random regression model under th#ifferent approaches: The alternative solution
assumption that all cows are unrelated. algorithm was developed by representing a
phenotypic random regression model through a
2. Based on the alternative solution algorithnmultitrait —submodel on the phenotypic
equation, Step 2 estimatesanda using the regressions, which was proved to be equivalent
regular  multitrait program MTJAAM to a class of random regression models.
(Gengler, 1998) with canonicalHowever, R in the alternative algorithm can
transformation. describe much more complicated residual
structures than can the diagonal matrix of van
der Werfet al. (1998).
6. Results and Discussion Test computations showed that even with
incomplete sequential solution, correlations with
Table 2 shows the correlations betweesolutions from the regular random regression
additive genetic solutions for the threenodel were all > 0.98 after only two iterations
regressions. After the first round of iteratio®n the two steps. Therefore, the proposed
under the assumption that animals wer@ethod based on sequential estimation of
unrelated, the correlations were already alegressions and effects on those regressions
>0.95. After an additional round of iteration, th&llows, in addition to its relative simplicity,
correlations were all >0.98, and four rounds afeveral other techniques to be applied in the
iteration yielded correlations that were all near se€cond step: 1) canonical transformation to
simplify computations (uncorrelated regressions)
Table 2. Correlations between solutions for additivddy making use of solution algorithms that allow
genetic regression coefficients obtained bynissing values; 2) transformation to limit the
random regression and through indirechumber of regressions and to create variates with
solution. biological meaning (e.g., total yield, persistency,
and maturity rate) that could facilitate the

Regressions . .
. development of an index for lactation
Iteration 1 2 3 performance; 3) more complicated (co)variance
1 0.965 0.975  0.957 structures than those usually considered in
2 0.983 0.991 0.983 random regression models (e.g., additional
3 0.992 0996 0.991 random effects such as interaction of herd and
4 0996 0.998 0.995 sire); and 4) accommodation of additional traits

— _ _ ~ (e.g., 305-day yield for cows without test-day
Ynitial computation was based on assumption that anim écords).

were unrelated to estimate
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