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ABSTRACT A fully Bayesian analysis using Gibbs sampling and data
augmentation in a multivariate model of Gaussian, right censored and grouped
Gaussian traits is outlined. The grouped Gaussian traits are either ordered
categorical traits (with more than two categories) or binary traits, where the
grouping is determined via thresholds on the underlying Gaussian scale, the
liability scale. Allowances are made for unequal models, unknown covariance
matrices and missing data. Having outlined the theory, strategies for implemen-
tation are reviewed. These include joint sampling of the location parameters;
efficient sampling from the fully conditional posterior distribution of augment-
ed data, a multivariate truncated normal distribution; and sampling from the
conditional inverse Wishart distribution, the fully conditional posterior distri-
bution of the residual covariance matrix between traits. The methodology has
been implemented in generally available software.

1 Introduction

In a series of problems it has been demonstrated that using the Gibbs sampler in
conjunction with data augmentation makes possible to obtain sampling-based
estimates of analytically intractable densities. The basic idea behind the Gibbs
sampler, and other sampling based approaches, is to construct a Markov chain
with a tractable transition mechanism and having the desired density as it-
s invariant distribution (Chan, 1993). The Gibbs sampler is implemented by
sampling repeatedly from the fully conditional posterior distributions of param-
eters in the model. If the set of fully conditional posterior distributions are
intractable, it may be advantageous to use data augmentation, which as point-
ed out by Chib and Greenberg (1996) is a strategy of enlarging the parameter
space to include missing data and/or latent variables.

Bayesian inference in a Gaussian model using Gibbs sampling has been con-
sidered by e.g. Gelfand et al. (1990) and with attention to applications in
animal breeding, by Jensen et al. (1994), Sorensen et al. (1994), Van Tassell
et al. (1995) and Wang et al. (1993, 1994). Bayesian inference using Gibbs
sampling in an ordered categorical threshold model was considered by Zeger
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and Karim (1991), Albert and Chib (1993) and Sorensen et al. (1995). In cen-
sored Gaussian and ordered categorical threshold models, Gibbs sampling in
conjunction with data augmentation (Tanner and Wong (1987) and Sorensen
et al. (1998)) leads to fully conditional posterior distributions which are easy
to sample from. This was demonstrated in Wei and Tanner (1990) for the to-
bit model (Tobin, 1958), and in right censored and interval censored regression
models. A Gibbs sampler for Bayesian inference in a bivariate model with a
binary threshold character and a Gaussian trait was given in Jensen (1994).
This was extended to an ordered categorical threshold character by Wang et al.
(1997), and to several Gaussian and ordered categorical threshold characters by
Van Tassell et al. (1998).

The purpose of this paper is to present a fully Bayesian analysis of an arbi-
trary number of Gaussian, right censored Gaussian, ordered categorical (more
than 2 categories) and binary traits. Allowances are made for unequal models
and missing data. Furthermore, strategies for implementation are reviewed.

2 The model without missing data

2.1 The model

Assume thatm1Gaussian traits, m2 right censored Gaussian traits, m3 categorical
traits with response in multiple ordered categories and m4 binary traits are ob-
served on each animal; mi ≥ 0, i = 1, ..., 4. The total number of traits is
m = m1 + m2 + m3 + m4. For example, in dairy cattle, if mi = 1 for all
i: Then the Gaussian trait could be milk yield. The right censored Gaussian
trait could be log lifetime (if log lifetime is normally distributed). For cattle
still alive, it is only known, that (log) lifetime will be higher than their cur-
rent (log) age, i.e. these cattle have right censored records of (log) lifetime.
The categorical trait could be calving ease score and the binary trait could be
the outcome of a random variable indicating whether or not mastitis occurred
in a given period. In general, data on animal i is (yi, δi), i = 1, ..., n, where yi =
(yi1, ..., yim1 , yim1+1, ..., yim1+m2 , yim1+m2+1, ..., yim1+m2+m3 , yim−m4+1, ..., yim),
and where δi is a m2 dimensional vector of censoring indicators of the right
censored Gaussian traits. The number of animals with records is n and data
on all animals with records is (y, δ). The observed vector of Gaussian traits
of animal i is (yi1, ..., yim1). For j ∈ {m1 + 1, ...,m1 +m2}, yij is the ob-
served value of Yij = min {Uij , Cij}, where Uij is normally distributed and
Cij is time of censoring of the j′th trait of animal i. The censoring indi-
cator δij is one iff Uij is observed (Uij ≤ Cij) and zero otherwise. ∆oj and
∆1j will denote the sets of animals with δij equal to zero and one, respectively;
j = m1 +1, ...,m1 +m2. The observed vector of categorical traits with response
in three or more categories is (yim1+m2+1, ..., yim1+m2+m3). The outcome yij ,
j ∈ {m1 +m2 + 1, ...,m1 +m2 +m3}, is assumed to be determined by a group-
ing in an underlying Gaussian scale, the liability scale. The underlying Gaussian
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variable is Uij , and the grouping is determined by threshold values. That is,
Yij = k iff τjk−1 < Uij ≤ τjk; k = 1, ...,Kj , where Kj (Kj ≥ 3) is the number
of categories and −∞ = τj0 ≤ τj1 ≤ · · · ≤ τjKj−1 ≤ τjKj = ∞. The observed
vector of binary traits is (yim1+m2+m3+1, ..., yim). As for the ordered categori-
cal traits, the observed value is assumed to be determined by a grouping in an
underlying Gaussian scale. It is assumed that Yij = 0 iff Uij ≤ 0 and Yij = 1 iff
Uij > 0.

Let Uij = Yij for j = 1, ...,m1, that is for the Gaussian traits, and let
Ui = (Ui1, ..., Uim)′ be the vector of Gaussian traits observed or associated with
the right censored Gaussian traits, ordered categorical traits and binary traits
of animal i. Define U = (Ui)i=1,...,n as the nm-dimensional column vector
containing the U′is. It is assumed that:

U|a,b,R = r,R22 = Im4 ∼ Nnm
(

Xb + Za, In ⊗
(

r11 r12

r21 Im4

))
where b is a p-dimensional vector of ”fixed” effects. The vector ai = (ai1, ..., aim)′

represents the additive genetic values of Ui, i = 1, ..., N ; a = (ai)i=1,...,N , is
the Nm dimensional column vector containing the a′is. N is the total number
of animals in the pedigree; i.e. the dimension of the additive genetic relation-
ship matrix, A, is N ×N , and R is the residual covariance matrix of Ui. The
usual condition that Rkk = 1 (e.g. Cox and Snell (1989)) has been imposed
in the conditional probit model of Yik given b and a, k = m −m4 + 1, ...,m.
Furthermore it is assumed that liabilities of the binary traits are conditionally
independent, given b and a.

2.2 Prior distribution

Let the elements of b be ordered so that the first p1 elements are regression
effects and the remaining p2 = p− p1 elements are ”fixed” classification effects.

It is assumed a priori that b|σ2
1 , σ

2
2 ∼ Np

(
0,
(

Ip1σ
2
1 0

0 Ip2σ
2
2

))
, where σ2

1 and

σ2
2 are known (alternatively, it can be assumed, that some elements of b follow

a normal distribution and the remaining elements an improper uniform). The
a priori distribution of the additive genetic values is a|G ∼NNm (0,A⊗G),
where G is the m×m additive genetic covariance matrix of Ui, i = 1, ..., N . A
priori, G is assumed to follow a m-dimensional inverted Wishart distribution:
G ∼ IWm (ΣG, fG). It is assumed that R conditional on R22 = Im4 follows
a conditional inverted Wishart distribution. The unconditional distribution of
R is assumed to be inverted Wishart: R ∼ IWm (ΣR, fR). All of ΣG, fG, ΣR

and fR are assumed known. A priori, it is assumed, that the elements of τj =(
τj2, ..., τjKj−2

)
are distributed as order statistics from a uniform distribution in

the interval
[
τj1; τjKj−1

]
= [0; 1], i.e.: p

(
τj2, ..., τjKj−2

)
= (Kj − 3)!1 (τj ∈ =j),
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where

=j =
{(
s2, ..., sKj−2

)
|0 ≤ s2 ≤ · · · ≤ sKj−2 ≤ 1

}
(Mood et al. 1974).

Concerning prior independence, the following assumption is made:

(a) A priori b, (a,G), R and τj , j = m1+m2+1, ...,m1+m2+m3 are mutually
independent, and furthermore elements of b are mutually independent.

2.3 Joint posterior distribution

For each animal augmented variables are U ′ijs of censored (δij = 0) right cen-
sored Gaussian traits and with liabilities of ordered categorical and binary traits.
The following notation will be used: URC

0 = {Uij : i ∈ ∆0j ; j = m1 + 1, ...,m1 +m2},
this is the set of U ′ijs of censored, right censored Gaussian traits. UCAT and
UBIN will denote the sets of liabilities of ordered categorical and binary traits,
respectively. The following will be assumed concerning the censoring mechanis-
m:

(b) Random censoring conditional on ω = (b,a,G,R, τm1+m2+1, ..., τm1+m2+m3),
i.e. C = (Ci)i=1,...,n, where Ci = (Cim1+1, ..., Cim1+m2) is them2 dimensional
random vector of censoring times of animal i, is stochastically independent
of U given ω.

(c) Conditional on ω, censoring is noninformative on ω.

Having augmented with URC
0 , UCAT and UBIN , it then follows, that the

joint posterior distribution of parameters and augmented data

ψ =
(
ω,URC

0 ,UCAT ,UBIN
)

is given by

p (ψ|y, δ,R22 = Im4) ∝ p (y, δ|ψ,R22 = Im4) p (ψ|R22 = Im4)

= p
(
y, δ,URC

0 ,UCAT ,UBIN |ω,R22 = Im4

)
× p (ω|R22 = Im4)

By assumption (a) it follows that the prior distribution of ω, conditional on
R22 = Im4 , is given by

p (ω|R22 = Im4) = p (b) p (a|G) p (G) p (R|R22 = Im4)

m1+m2+m3∏
j=m1+m2+1

p (τj)


4



Let xi (m× p) and zi (m×Nm) be the submatrices of X and Z associated
with animal i. Then, by assumptions (b) and (c), it follows that

p
(
y, δ,URC

0 ,UCAT ,UBIN |ω,R22 = Im4

)
up to proportionality, is given by:

n∏
i=1

m1+m2∏
j=m1+1

[1 (uij > yij)]
1−δij


×

n∏
i=1

m1+m2+m3∏
j=m1+m2+1


Kj∑
k=1

[1 (τjk−1 < uij ≤ τjk) 1 (yij = k)]




×
n∏
i=1

 m∏
j=m1+m2+m3+1

[1 (uij ≤ 0) 1 (yij = 0) + 1 (0 < uij) 1 (yij = 1)]


×

n∏
i=1

[
(2π)−m/2 |R|−1/2 exp

{
−1

2
(ui − xib− zia)′R−1 (ui − xib− zia)

}]
(Here the convention is adopted that e.g. [1 (uij > yij)]

0 = 1 and [1 (uij > yij)]
1 =

[1 (uij > yij)])

2.4 Marginal posterior distributions, Gibbs sampling and
fully conditional posterior distributions

From the joint posterior distribution of ψ, marginal posterior distributions of ϕ,
a single parameter of a subset of parameters of ψ, can be obtained integrating
out all the other parameters, ψ\ϕ, including augmented data. Here ψ\ϕ denotes
ψ excluding ϕ. This integration is implicitly performed using Gibbs sampling,
which is an iterative method for generating samples from a multivariate distri-
bution, and has its roots in the Metropolis-Hastings algorithm (Metropolis et
al., 1953; Hastings, 1970). Here we wish to obtain samples from the joint pos-
terior distribution of ω = (b,a,G,R, τm1+m2+1, ..., τm1+m2+m3). One possible
implementation of the Gibbs sampler is: Given an arbitrary starting value ψ(0),
(b,a)(1) is generated from the fully conditional posterior distribution of (b,a)
given data, (y,δ), ψ\(b,a) and R22 = Im4 , next

(
uRC0 ,uCAT ,uBIN

)(1) is gener-
ated from the fully conditional posterior distribution of

(
URC

0 ,UCAT ,UBIN
)

given data, ψ\(URC
0 ,UCAT ,UBIN)and R22 = Im4 , and so on up to τ (1)

Km1+m2+m3−2,
which is generated from the fully conditional posterior distribution of τKm1+m2+m3−2

given data, (y,δ), ψ\
(
τKm1+m2+m3

−2

) and R22 = Im4 , to complete one iteration

of the Gibbs sampler. After t iterations (t large) Geman and Geman (1984)
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showed that ψ(t) under mild conditions, is a sample from the joint posterior
distribution of ψ.

The fully conditional posterior distributions that define one possible imple-
mentation of the Gibbs sampler are: Let θ = (b′,a′)′, W = (X,Z), and D−1 =(

Ip1

(
σ2

1

)−1
0

0 Ip2

(
σ2

2

)−1

)
, then θ| (y,δ) , ψ\θ,R22 = Im4 ∼ Np+Nm (µθ,Λθ),

where

µθ = ΛθW′ (In ⊗R)−1 y (1)

and

Λ−1
θ =

(
X′ (In ⊗R)−1 X + D−1 X′ (In ⊗R)−1 Z

Z′ (In ⊗R)−1 X Z′ (In ⊗R)−1 Z + A−1 ⊗G−1

)
(2)

= W′ (In ⊗R)−1 W +
(

D−1 0
0 A−1 ⊗G−1

)
Define aM as the N×m matrix, where the j′th row is a′j , j = 1, ..., N . Then

G| (y,δ) , ψ\G ∼ IWm

([
Σ−1

G + a′MA−1aM
]−1

, fG +N
)

and the fully conditional posterior distribution of R conditional on data, ψ\R
and R22 = Im4 follows a conditional inverted Wishart distribution; where, un-
conditionally on R22 = Im4 , we have:

R| (y,δ) , ψ\R

∼ IWm

[Σ−1
R +

n∑
i=1

(ui − xib− zia) (ui − xib− zia)′
]−1

, fR + n


The following notation will be used for augmented data of animal i: Uaug

i

is the vector of those U ′ijs where j indices a censored (δij = 0) right censored
Gaussian trait, an ordered categorical or a binary trait. Therefore, Uaug

i may
differ in dimension for different animals, depending on the number of censored,
right censored Gaussian traits. The dimension of Uaug

i is naugi . The fully
conditional posterior distribution of Uaug

i given data, ψ\Uaug
i

and R22 = Im4

follows a truncated naugi -dimensional multivariate normal distribution on the
interval:

6



m1+m2∏
j=m1+1

[1 (uij > yij)]
1−δij (3)

×
m1+m2+m3∏
j=m1+m2+1


Kj∑
k=1

[1 (τjk−1 < uij ≤ τjk) 1 (yij = k)]


×

m∏
j=m1+m2+m3+1

[1 (uij ≤ 0) 1 (yij = 0) + 1 (0 < uij) 1 (yij = 1)]

Mean and variance of the corresponding normal distribution before trunca-
tion are given by(

xi(aug)b + zi(aug)a
)

+ Ri(aug)(obs)R
−1
i(obs)

(
ui(obs) −

(
xi(obs)b− zi(obs)a

))
(4)

and

Ri(aug) −Ri(aug)(obs)R
−1
i(obs)Ri(obs)(aug) (5)

respectively. xi(obs) and xi(aug) are the nobsi × p and naugi × p dimensional sub-
matrices of xi containing the rows associated with observed and uncensored
continuous traits, and those associated with augmented data of animal i, re-
spectively. Similar definitions are given to zi(obs) and zi(aug). The dimension of
observed and uncensored Gaussian traits, uobsi , is nobsi = m − naugi . Ri(aug) is
naugi × naugi and is the part of R associated with augmented data of animal i.
Similar definitions are given to Ri(aug)(obs), Ri(obs) and Ri(obs)(aug).

The fully conditional posterior distribution of τjk for k = 2, ...,Kj − 2 is
uniform on the interval

[max {max {uij : yij = k} , τjk−1} ; min {min {uij : yij = k + 1} , τjk+1}]

for j = m1 +m2 + 1, ...,m1 +m2 +m3.
Detailed derivations of the fully conditional posterior distributions can be

found in e.g. Korsgaard (1997).

3 Model including missing data

In this section allowance is made for missing data. First the notation is ex-
tended to deal with missing data. Let J (i) = (J1 (i) , . . . , Jm (i))′ be the vector
of response indicator random variables on animal i defined byJk (i) = 1 if the
k′th trait is observed on animal i and Jk (i) = 0 otherwise, k = 1, ...,m. The
observed data on animal i is (yi, δi)J(i), where (yi, δi)J(i) denotes the observed
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Gaussian, observed right censored Gaussian traits, with their censoring indica-
tors, observed categorical and binary traits of animal i. An animal with record
is now defined as an animal with at least one of m traits observed of the Gaus-
sian, right censored Gaussian, ordered categorical or binary traits. The vector
of observed y′s of animal i is yi(obs) = (yi)J(i), with 1≤ dim

(
yi(obs)

)
≤ m. Data

on all animals are (y, δ)J, where J = (J (i))i=1,...,n.
For missing data, the idea of augmenting with residuals (Wang et al., 1997)

is invoked. It is assumed that

 Ui(obs)

Ui(aug)

Ei(mis)

 |b,a,R,R22 = Im4

∼ Nm

 (
xi(obs)b + zi(obs)a

)(
xi(aug)b + zi(aug)a

)
0

 ,

 Ri(obs) Ri(obs)(aug) Ri(obs)(mis)

Ri(aug)(obs) Ri(aug) Ri(aug)(mis)

Ri(mis)(obs) Ri(mis)(aug) Ri(mis)


The dimensions of Ui(obs), Ui(aug) and Ei(mis) are nobsi , naugi and nmisi ,

respectively, and m = nobsi + naugi + nmisi . Ui(obs) is associated with observed
and uncensored Gaussian traits, Ui(aug) is associated with augmented data of
observed, censored right censored Gaussian and observed ordered categorical
and binary traits. Ei(mis) is associated with residuals on the Gaussian scale
of traits missing on animal i. The following will be assumed concerning the
missing data pattern:

(d) Conditional on ω, data are observed/missing at random in the sense, that
J is stochastically independent of (U,C) conditional on ω.

(e) Conditional on ω, J is noninformative of ω.

Under the assumptions (a)-(e), and having augmented with Ui(aug) and
Ei(mis) for all animals (i.e. with

(
URC

0 ,UCAT ,UBIN ,EMIS
)
), it then follows,

that the joint posterior distribution of parameters and augmented data ψ =(
ω,URC

0 ,UCAT ,UBIN ,EMIS
)

is given by:
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p (ψ| (y, δ)J ,R22 = Im4)
∝ p ((y, δ)J |ψ,R22 = Im4) p (ψ|R22 = Im4)

= p
(

(y, δ)J ,U
RC
0 ,UCAT ,UBIN ,EMIS |ω,R22 = Im4

)
p (ω|R22 = Im4)

= p
(

(y, δ)J ,U
RC
0 ,UCAT ,UBIN ,EMIS |ω,R22 = Im4

)
p (ω|R22 = Im4)

∝
n∏
i=1

m1+m2∏
j=m1+1

(
[1 (uij > yij)]

1−δij
)Jj(i)

×
n∏
i=1

m1+m2+m3∏
j=m1+m2+1


Kj∑
k=1

[1 (τjk−1 < uij ≤ τjk) 1 (yij = k)]


Jj(i)


×

n∏
i=1

 m∏
j=m1+m2+m3+1

[1 (uij ≤ 0) 1 (yij = 0) + 1 (0 < uij) 1 (yij = 1)]Jj(i)


×
n∏
i=1

[
(2π)−m/2 |R|−1/2 exp

{
−1

2
(ui − xib− zia)′R−1 (ui − xib− zia)

}]
where those rows of xi an zi associated missing data are zero, and where uij ,
for j associated missing data on animal i, is associated a residual, eij .

Deriving the fully conditional posterior distributions defining a Gibbs sam-
pler proceeds as in the model with no missing data and with modifications
according to the missing data pattern.

Further details related the derivation of the fully conditional posterior dis-
tributions can be found in e.g. Korsgaard (1997).

4 Strategies for implementation of the Gibbs
sampler

Strategies for implementation are outlined for the case without missing data,
and where a priori b conditional on σ2

1 and σ2
2 follows a multivariate normal

distribution.

4.1 Univariate sampling of location parameters

The fully conditional posterior distribution of θ given data, ψ\θ and R22 =
Im4 is p + Nm dimensional multivariate normal distributed with mean µ =
µθ and covariance matrix Λ = Λθ given in (1) and (2) respectively. Let β =
(1, ..., i− 1, i+ 1, ..., p+Nm), then using properties of the multivariate normal
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distribution and relationships between a matrix and its inverse, it follows, that
the fully conditional posterior distribution of each element in θ is:

θi| (y,δ) , ψ\θi ,R22 = Im4

∼ N1

(
µi + ΛiβΛββ (θβ − µβ) ,Λii − ΛiβΛ−1

ββΛβi
)

= N1

(
C−1
ii (ri −Ciβθβ) , C−1

ii

)
where ri is the i′th element of r = W′ (I⊗R−1

)
u and C = Λ−1 is the coeffi-

cient matrix of the mixed model equations given by Cµ = r. The solution to
these equations is µ = Λr and Ciβθβ = Ciθ−Ciiθi, where Ci is the i′th row of
the coefficient matrix and Cii is the i′th diagonal element.

4.2 Joint sampling of location parameters

Sampling univariately from the fully conditional posterior distribution of each
location parameter in turn, may give poor mixing properties. Garcia-Cortés
and Sorensen (1996) described a method to sample from the joint fully con-
ditional posterior distribution of θ given data, ψ\θ and R22 = Im4 , that can
avoid inverting the coefficient matrix C = Λ−1

θ of mixed model equations. The
idea behind this joint sampling scheme is, that a linear combination of normal-
ly distributed random variables again is normally distributed and proceeds as
follows: Let b∗1, b∗2, a∗ and e∗ be sampled independently from Np1

(
0, Ip1σ

2
1

)
,

Np2

(
0, Ip2σ

2
2

)
, NNm (0,A⊗G) and Nnm (0, In ⊗R) distributions, respective-

ly. Next let b∗ = (b∗′1 ,b
∗′
2 )′ and θ∗ = (b∗′,a∗′)′ and define u∗ as Wθ∗ + e∗,

then it follows that the linear combination of θ∗ and e∗ given by:

θ∗ + ΛθW′ (In ⊗R−1
)

(u− u∗)

= ΛθW′ (In ⊗R−1
)
u+

(
Ip − ΛθW′ (In ⊗R−1

)
W
)
θ∗ − ΛθW′ (In ⊗R−1

)
e∗

follows a Np+Nm (µθ,Λθ)-distribution. This is the fully conditional posterior
distribution of location parameters, θ, given data and ψ\θ. That is, having
sampled θ∗ and e∗, then θ̃ = ΛθW′ (In ⊗R−1

)
(u− u∗) can be found solving

a set of mixed model equations given by: Λ−1
θ θ̃ = W′ (In ⊗R−1

)
(u− u∗).

Finally θ∗ is added to θ̃ and the resulting value, θ∗+ θ̃ , is a sampled vector
from the fully conditional posterior distribution of θ given data and ψ\θ.

4.3 Sampling of augmented data

The fully conditional posterior distribution of augmented Gaussian traits,(
URC

0 ,UCAT ,UBIN
)
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given data, ψ\(URC
0 ,UCAT ,UBIN) and R22 = Im4 will be sampled jointly. The

dimension of
(
URC

0 ,UCAT ,UBIN
)

is
∑n
i=1 n

aug
i . Realising that Uaug′

i s of d-
ifferent animals are independent conditional on ”fixed” and random effects, it
follows that joint sampling of augmented Gaussian traits can be decomposed
into n steps. One step is to sample from the fully conditional posterior dis-
tribution of Uaug

i given (yi, δi) and ω conditional on R22 = Im4 . This is a
naugi -dimensional multivariate truncated Gaussian distribution on the interval
given in (3). Before truncation, mean and variance are given by (4) and (5),
respectively.

Let ξ and Σ be shorthand notation for the mean and variance of the fully
conditional posterior distribution of Uaug

i before truncation. Then first uaugi1

is sampled from a N1 (ξ1,Σ11)-distribution, truncated to the relevant interval.
Next uaugi2 is sampled from the fully conditional posterior distribution of Uaugi2

given Uaugi1 = uaugi1 , this is from a truncated N1

(
ξ2 + Σ21Σ−1

11 (uaugi1 − ξ1) ,Σ22·1
)

-distribution. Finally, proceeding this way, uaug
inaugi

is sampled from a truncated
univariate normal distribution with mean and variance before truncation given
by

ξnaugi
+ Σnaugi (1:naugi −1)Σ−1

(1:naugi −1)




uaugi1
...

uaug
i(naugi −1)

−
 ξ1

...
ξ(naugi −1)




and

Σnaugi naugi
− Σnaugi (1:naugi −1)Σ−1

(1:naugi −1)Σ(1:naugi −1)naugi

respectively.
Different ways can be chosen to sample from a univariate truncatedN1

(
µ, σ2

)
-

distribution on the interval I = ]s1; s2]. One possibility is sampling indepen-
dently from the untruncated N1

(
µ, σ2

)
-distribution and then only accept sam-

pled values that belong to the interval I. Let Y ∼ N1

(
µ, σ2

)
, if P (Y ∈ I)

is very small this procedure is inefficient. The following procedure (e.g. De-
vroye, 1986) that avoids rejections is implemented. First x is sampled from a
R (0, 1)-distributed random variable, X. Next, let z be given by

z = F−1
Y (FY (s1) + x (FY (s2)− FY (s1)))

where FY is the distribution function of Y , then z is a realised value from the
truncated N1

(
µ, σ2

)
-distribution on I. The proof follows from (6) given below,

where Z is the random variable from which z is generated; z is a value between
s1 and s2:
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P (Z ≤ z) = P
(
F−1
Y [FY (s1) +X (FY (s2)− FY (s1))] ≤ z

)
(6)

= P (FY (s1) +X (FY (s2)− FY (s1)) ≤ FY (z))

= P

(
X ≤ FY (z)− FY (s1)

FY (s2)− FY (s1)

)
=

FY (z)− FY (s1)
FY (s2)− FY (s1)

4.4 Sampling of covariance matrices

The fully conditional posterior distribution of the residual covariance matrix,
R, of Ui, is conditional inverse Wishart distributed. The conditioning is on
a block diagonal submatrix, R22, equal to the identity matrix of the inverse

Wishart distributed matrix, R =
(

R11 R12

R21 R22

)
. Note, that if the number

of binary traits is equal to zero, the fully conditional posterior distribution of
R is inverse Wishart distributed. In order to obtain samples from the condi-
tional inverse Wishart distribution, the method described in Korsgaard et al.
(1999) is implemented. The method relies on well-known relationships between
a partitioned matrix and its inverse, and properties of Wishart distributions.
The method is as follows: Let R ∼ IWm (Σ, f) and let V = R−1, where V
by definition is Wishart distributed, V ∼ Wm (Σ, f). Next R is expressed in

terms of V: R=

(
V−1

11 +
(
V−1

11 V12

)
V−1

22·1
(
V−1

11 V12

)′ − (V−1
11 V12

)
V22·1

−V22·1
(
V−1

11 V12

)′
V−1

22·1

)
,

where V22·1 = V22 − V21V−1
11 V12 = R−1

22 . From properties of the Wishart
distribution, it is known that V11 ∼ Wm−m4 (Σ11, f),

(
V−1

11 V12

)
|V11 = v11 ∼

N(m−m4)×m4

(
Σ−1

11 Σ12,v−1
11 ⊗ Σ22·1

)
, where Σ22·1 = Σ22 −Σ21Σ−1

11 Σ12 and that
V22·1 ∼ Wm4 (Σ22·1, f − (m−m4)). Furthermore

(
V11,V−1

11 V12

)
is stochasti-

cally independent of V22·1. Realising that R22 = Im4 , is equivalent to V22·1 =
Im4 , it follows that a matrix sampled from the conditional inverse Wishart dis-
tribution of R given R22 = Im4 can be obtained in the following way: First
v11 is sampled from the marginal distribution of V11. Next t2 is sampled
from the conditional distribution of

(
V−1

11 V12

)
given V11 = v11. The matrix

r =
(

v−1
11 + t2t′2 −t2

−t′2 Im4

)
is then a realised matrix from the conditional in-

verse Wishart distribution of R given R22 = Im4 .
In order to obtain samples from a Wishart distribution, the algorithm of

Odell and Feiveson (1966) is implemented. The basic idea in their algorithm
can be summarised as follows: Let V ∼ Wm (Σ, f) and let LL′ be a Cholesky
factorisation of Σ, i.e. Σ = LL′. A realised matrix, v, can be generated from

12



the distribution of V, by sampling w from a Wm (Im, f)-distribution, then v
given by LwL′ is a realised matrix from the desired Wishart distribution.

Using successively the properties already given of the Wishart distribution,
a realised matrix, w, from W ∼Wm (Im, f) can be generated as follows:

w11 is sampled from W11 ∼W1 (1, f) = χ2 (f)
t2 is sampled from W−1

11 W12|W11 = w11 ∼ N1

(
0, w−1

11

)
w22·1 is sampled from a W1 (1, f − 1)-distribution

w22 given by
(

w11 w11t2
(w11t2)′ w22·1 + t′2w11t2

)
is then a realised matrix from

the distribution of W22 ∼W2 (I2, f).
For i = 3 and up to m, the dimension of W, we proceed as follows:
ti is sampled from Ti = W−1

(i−1)(i−1)W(1:i−1)i|W(i−1)(i−1) = w(i−1)(i−1) ∼

Ni−1

(
0,w−1

(i−1)(i−1)

)
. W(1:i−1)i is used as notation for the ((i− 1)× 1)-dimensional

vector of elements (Wji)j=1,i−1 of W and W(i−1)(i−1) is the (i− 1)-dimensional
square matrix of W, with elements (Wjk)j,k=1,i−1

wii·(i−1) is sampled from a W1 (1, f − (i− 1)) = χ2 (f − (i− 1))-distribution

wii given by
(

w(i−1)(i−1) w(i−1)(i−1)ti(
w(i−1)(i−1)ti

)′
wii·(i−1) + t

′

iw(i−1)(i−1)ti

)
is then a re-

alised matrix from the distribution of Wii ∼Wi (Ii, f).
At the end w = wmm is a realised matrix from the distribution of W ∼

Wm (Im, f).

5 Conclusion

A fully Bayesian analysis of Gaussian, right censored Gaussian, categorical and
binary traits using the Gibbs sampler and data augmentation has been outlined.
The method has been implemented as a module to DMU (Jensen and Madsen,
1994) following the strategies for implementation outlined. In the program it is
possible to choose between univariate or joint sampling of all location param-
eters. Augmented data are sampled jointly, using the method of composition,
from their truncated multivariate normal distribution. Covariance matrices are
sampled from inverted or conditional inverted Wishart distributions depending
on the absence or presence of binary traits, respectively. The Gibbs sampler
has only been outlined for models with additive genetic effects. It is easy to
generalise to more independent random effects and this has been implemented.
The models are also allowed to include maternal effects correlated with animal
effects. For models including binary traits, the residuals of liabilities of binary
traits are assumed to be independent. In cases with two or more binary traits
included in the analysis, this is a restriction. It is not a restriction with only one
binary trait included in the analysis and in this case, the method implemented
avoids the ad hoc scaling procedure described in Van Tassell (1998).
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6 Appendix

The convention used for Wishart and inverted Wishart distributions follows
Mardia et al. (1979). Let M ∼Wp (Σ, f), the density of M is up to proportion-
ality given by (for Σ > 0 and f ≥ p):

p (M) ∝ |Σ|−
f
2 |M|

(f−p−1)
2 exp

{
−1

2
tr
(
Σ−1M

)}
The mean and variance of M are given by: E (M) = fΣ and V ar (M) =

2fΣ⊗ Σ.
Let U = M−1, then U is said to have an inverted Wishart distribution. The

density of U is up to proportionality given by:

p (U) ∝ |Σ|−
f
2 |U|−

(f+p+1)
2 exp

{
−1

2
tr
(
Σ−1U−1

)}
The mean of U is given by E (U) = Σ−1/ (f − p− 1) if f ≥ p+ 2.
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