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Abstract

Accurate prediction of breeding values is of great importance for cattle improvement programmes.  The
prediction of breeding values requires knowledge of the magnitude of the variances and covariances of
random effects.  This paper gives a short review of methods of estimation of genetic variance parameters,
contrasting analytical estimates with iterative and sampling based methods.

1. Introduction

A recent GIFT workshop had two papers
that discussed future dairy cattle research.
The two papers (Goddard, 1998 and Hill,
Visscher and Brotherstone (1998)) were in
good agreement of the future statistical needs.
These included methods for test day models,
international comparisons, non additive
variance, non-linear models and individual
gene models.  They also highlighted a trend to
more sophisticated analysis leading  to less
biased predictions and more progress at the
expense of greater variance or risk.  Cost of
analysis was suggested to be small compared
to the cost of collection of data.  There was a
concern that uncertainties in parameters might
erode possible gains.  There was also a hope
that prediction were robust to bad luck.
Variance parameter estimation plays an
integral role in several of these topics.  We
therefore intend to review this area hoping to
identify themes that will lead to more rapid
change.

2. Variance component estimation

We consider a linear model

eZuXby ++=

with RZZGy +′=)(var , Gu =)(var ,

.)(var Re =  The matrices G and R are often
linear functions of unknown genetic
parameters such as genetic and phenotype
variance. Estimation of variance and
covariances by Residual Maximum
Likelihood (REML) (Patterson and
Thompson, 1971) is often the method of
choice. The log-likelihood is of the form

XVXVbXyVbXy 1−− ′−−−′− loglog)̂()̂( 1αL

This is different from the usual likelihood
form in that it is a function of error contrasts –
contrasts that do not tell us about fixed
effects. This difference has two consequences:
The use of the weighted least squares estimate
of b, b̂  given by

yVXbXVX 11 −− ′=′ ˆ

The term in XVX 1−′ that is sometimes
thought of as a penalty function because the
fixed effects are not known. Mixed model
equations (Henderson, 1973) pay an
important part in the analysis process. These
are of the form
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Terms derived from these include
prediction error variances found from writing
the mixed model equations as

Cs = r

so that
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It is often useful to express relevant
quantities in terms of the projection matrix

1−−−−− ′′−= VXX)VXX(VVP 1111

This lets us to rewrite the log likelihood

XVXVyPy 1−′−−′ loglogαL

Estimation of a variance parameter θi involves
setting to zero the first derivatives
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These could be thought of as equating a
function of the data to its expectation.
Normally finding a maximum of the
likelihood requires an iterative scheme. One
suggested by Patterson and Thompson (1971)
is based on the expected value of the second
differential (Einf) that has terms such as
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This is called the Expected Information.
Then we can update θ using

All the terms in the update can be found
from the solution of MME and C–1.  Whilst
this development is very direct, later
developments have tried to take account of
the structure of the model to reduce the
computational effort.  For example
eliminating u from the mixed model
equations gives weighted least squares
equations for b̂ , and û  can be calculated as

)̂ˆ bX(yRZ)GZRZ(u 1111 −′+′= −−−−  and
similarly  the required part of C-1 can be
found from
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where the second term is a correction for the
uncertainty in .̂u  The trace of this correction
term contributes to the first differential. By
applying the rotation rule it can be written as

[ ]XRZ)GZRZZ(RXX)VX 111111 −−−−−−− ′+′′′ 2(tr

This shows that not all the elements of C-1

need calculation in order to form the first
differential. (Thompson, 1977a).

An alternative algorithm was suggested by
Dempster, Laird and Rubin (1977). This
Expectation maximization (EM) algorithm is
based on thinking of the random effects
`missing’.

The estimation is based on
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by writing this as
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we see this as a manipulation of equating first
differential to zero. It can be also written as)(ˆ 1 θθθ ∂∂+= − LEInf
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with Inf representing the information on the
complete data. An advantage of this method is
that g

2σ stays in the parameter space, i.e.,

02 ≥gσ .
Another advantage is that there is an

increase in likelihood in each iteration.
Disadvantages are that the method can be
slow to converge (indeed this method is said
to be the most widely used in terms of
numbers of iterations) and to attain
Var( )̂uu −  it requires the inversion of C in
each iteration.

An important development was the
introduction by Smith and Graser (1985) of an
alternative form for the likelihood that
naturally leads to sequential formation of the
likelihood:

PyyCGR ′−−−= logloglogL

If we write equations for n+1 variables in the
form
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then the contribution from the (n+1)th term to
xy /2=′Pyy  and to log C = log(x). Using

regression coefficients xr nnn /11 ++ =x  a
correction to 11 * ++−= nnnnnnn rxXX , and to

1+−= nnn r*yyy  can be formed, and the

procedure is repeated with 1.nn −=  If 1+nnx
is sparse then this can lead to a reduction in
calculations, especially if it is taken to reorder
equations to keep nnX  sparse.

To maximize the likelihood with one
parameter Smith and Graser (1986) suggested
to use a quadratic approximation. With more
than one parameter the simplex methods
become a popular flexible alternative as they
avoid calculating derivatives. The methods

were used for Animal and Reduced Animal
Models, both for univariate and multivariate
data (Meyer, 1989). Biologically more
appropriate models with genetic components
naturally fitted into their framework
including, maternal models with both
Willham and Falconer terms (Koerhuis and
Thompson, 1997) and models with mutation
terms (Wray, 1990).

However it was realized that the
computational effort for derivative-free
methods increased dramatically as the number
of variance parameters increased.

An important advance was the rediscovery
(Misztal and Perez-Enciso, 1993) of an
algorithm (Takahashi, et al. 1973) that
allowed the calculation of the `relevant’ terms
in the inverse of C required forming the first
differentials without calculating all the
elements of the inverse.  Meyer and Smith
(1996) introduced an alternative way of
calculating these first differentials by
performing the `automatic’ differentiation of
the Cholesky decomposition of C.  These
techniques requiring twice the computational
effort of forming the likelihood were derived
using properties of Cholesky decompositions.
An alternative derivation in terms of
sequential of C-1 parallels the sequential
formation of the likelihood (Thompson et al.,
1994).  If Xnn

-1 contains the partition of C-1

for the first n elements, then the terms in C-1

for the first n+1 elements are given by
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with cn+1n  = xn+1 n  Xnn –1

and c = 1/x + cn+1n xnn+1
Terms in cn+1 only need calculating if the
terms xn+1n are non-zero leading to a major
reduction in computation.

This result allowed the implementation of
EM algorithms to estimate variance
parameters for more complicated models
(Misztal, 1994). These were an improvement
on derivative free methods but could still be
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slow to converge. It is possible to calculate
second differentials using the automatic
differentation ideas of Smith (1995) but the
calculation of each second differential
requires the computation of the order of six
likelihood calculations (Smith 1995) and this
becomes more costly as the number of
parameters increase. There are various
suggestions on approximating the second
differential. Mäntysaari and Van Vleck (1989)
suggest accelerating the EM algorithm based
on the observed geometric rate of
convergence. Neumaier and Groeneveld
(1998) suggest quasi-Newton scheme using
first differential values to build up an
approximate second differential. A third
suggestion by Thompson and co-workers
(Johnson and Thompson, 1995, Gilmour et
al., 1995, and Jensen, et al., 1997) is based on
manipulation of the alternative information
matrices.

The second differential of L with respect to
θi and θj.
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Both these terms often called observed and
expected information are difficult to calculate
but the average, which we can call average
information (AI)
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can be calculated by using PyV

iθ∂
∂ and

PyV

jθ∂
∂ as working variables and obtaining

the residual cross product between these
working variables.  This calculation is much
simpler than calculating either the observed
and expected information.

A synthesis of comparisons of these
methods was carried out by Hofer (1998) and
is updated in Table 1. These show the
expected improvement of EM methods over
the derivative free methods.  They also show
that most second differential methods
converge in relatively small number of
iterations.  Rather embarrassingly I think that
theoretical calculations suggest that the
Jensen et al. (1997) execution times for the AI
method can be improved dramatically.

In some cases transformations can aid in
estimation.  If we have multivariate data with
two ( pp × ) variance matrices to estimate, say
G and R, then a canonical transformation
(Thompson, 1977b, Meyer, 1985) can help in
reducing one pp ×  estimation into p
independent analyses.  There are
modifications using the EM algorithm that
allow the same techniques  to be used with
missing values (Ducrocq, 1993) and with
different designs with different variates.
(Ducrocq and Chapuis, 1997).

A related problem is that often we require
G and R to be positive definite and schemes
based on second differentials do not
necessarily lead to positive definite matrices.
One suggestion is to use transformed
parameters for example σ or log σ instead of
σ2, or multivariate analogues such as
Cholesky transformations (Lindstrom and
Bates, 1988, and Groeneveld, 1994).  Recent
work on EM algorithms (Foulley and Quass,
1995, Meng and Van Dyk, 1998) have
suggested that this Cholesky or linear
parameterization has a natural interpretation
and can lead to faster convergence.
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Table 1.Results of empirical comparison of REML algorithms with regards to rounds of iteration (function
evaluations for DF and total time (h) to convergence a .

Refb MMEc Pard DF EM NR/AI
F.Eval Time Rounds Time Rounds Time

1 4895 3 26 0.01 24 0.05
9790 9 238 0.31 33 0.26

14685 18 583 1.77 45 1.02
2 6192 9 699 1.27 6 0.45

10230 12 1236 2.33 8 0.90
14274 18 4751 11.10 18 3.33

3 5731 5 169 0.34 6 0.07
4 8765 6 927 70.6 109 1.14 7 1.86
5 5073 2 39 0.02 23 4.97 5 0.02

10146 6 472 0.52 9 0.09
6e 233796 55 37021 2083 185 40.1
7 46581 12 1435 15.2 1006 88.6 6 0.58

55410 19 5813 30.6 6 1.00

a  Updated from Hofer (1998).
b References 1 Misztal (1999);  2  Meyer and Smith (1996);  3  Johnson and Thompson

(1995);  4  Gilmour et al. (1995);  5  Madsen et al. (1994);  6  Neumaier and Groenevald
(1998);  7  Jensen et al. (1997).

c Dimension of mixed model equations (MME).
d Number of (co)variance components.
e `DF’ = quasi Newton using finite differences.

`NR/AI’ = quasi-Newton using computed analytic differences.

For example, Foulley and Quass (1995)
use a model y = Xβ + σGZu*+e and given σ
predict u with natural mixed model equations.
Regression of y on σ and Zu* (taking into
account uncertainty of u) gives a natural way
of updating σ (keeping σ2

G  within the
parameter space).  For a balanced sire model
Foulley and Quass (1995) note that the rate of
convergence depends on (n /(n+α)) with α =
σe

2 /σG
2.  For (n/(n+α)) = 0.2, 0.5, 0.8 the

rates of convergence for σG using an EM
algorithm are 0.27, 0.45, and 0.31, compared
with 0.03, 0.25, and 0.63 for a scheme based
on updating σG

2, showing the advantage of
the σG parameterization for small values of
(n/(n+α)).

A more recent development is the
suggestion of Lui et al. (1998) who suggest a
parameter extension or PX-EM algorithm.  In
our case it involves estimating σ2

G = (σG1)2

σ2
G2 and σG1 estimated by the linear scheme

and σ2
G2 by the quadratic scheme.  At first

sight this scheme seems counter-initiative in
that σ2

G2 are confounded, but it has a rate of
convergence that again depends on n/(n+α)
and is faster than the two previous schemes.
With rates of convergence of  0.30, 0.60, 0.80
for  (n/(n+α)) = 0.2, 0.5 and 0.8.  In one sense
missingness helps to avoid redundancy and
the σG1 parameter is perhaps analogous to
parameters in conjugate gradient methods that
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decide the optimal distance to travel in a
specified direction.

We have concentrated on exact method of
analysis because other papers (Korsgaard et
al., 1999; Janss and de Jong, 1999) have
discussed Bayesian and Markov Chain Monte
Carlo (MCMC) methods. In a sense there is a
direct analogy between direct and iterative
methods in linear estimation and exact and
sampling based methods in quadratic
estimation. I tend to think of Gibbs sampling
methods as adding noise at every step of a
simplified exact analysis.  For instance
estimate b and add noise, estimate u and add
noise, form sums of squares for u and add
noise to give an estimate of σG

2.  One does
not need to be Bayesian to use MCMC
methods and so Guo and Thompson (1994)
use the above paradigm with the estimation of
σ2

G given by an EM step.  In a sense the
difficulties of calculating prediction error
variances is replaced by sampling them,
Thompson (1994) and Groeneveld and
Garcia-Cortes (1998) have pointed out that
the sampling error can be reduced when σ2

G is
updated taking account of the variance of the
noise added to u although this is simpler to do
for uncorrelated effects.  One can also get
nearer to exact methods by using block
updating but this leads to more complicated
variance correction formula.  It is not always
clear which computational scheme, exact,
Gibbs sampling or intermediate will minimize
computational effort.

A recent suggestion by Clayton and
Rasbash (1998) for data augmentation can
also reduce the computational effort.  In our
model, their idea suggests fitting two models.

)1(~ eXbuZy +=− and

)2(~ eZubXy +=−

In (1) we fit b̂  and construct b~ as b̂ plus

noise.  In (2) we adjust y for b~ , estimate σ2
G

and σ2
e , fit û and add noise to get u~ . Then y

is adjusted for uZ~  and the procedure

repeated. After burn in the averages 2
Gσ  and

2
eσ provide estimates of σ2

G and  σ2
e in the

spirit of Gibbs sampling but avoiding some of
the noise in u~  when σ2

G and  σ2
e are

estimated.

3. Conclusions

We have shown that the area of genetic
parameter estimation has advanced
tremendously over the last thirty years
allowing more appropriate models to be fitted
to larger data sets. There are still challenging
problems to be solved that we think will build
on existing knowledge.

References

Clayton, D., and G. Rasbash. 1998.
Estimation in large crossed random effects
models by data augmentation. Presented at
Royal Statistical Society Meeting on
Multilevel Modelling.

Dempster, A.P., N.M. Laird and D.B. Rubin.
1977. Maximum likelihood from
incomplete data via the EM algorithm. J.
R. Stat. Soc., Series B 39: 1-38.

Ducrocq, V. 1993. Solution of multiple trait
animal models with missing data on some
traits.  J. Anim. Breed. Genet., 110, 81-92.

Ducrocq, V. and H. Chapuis. 1997.
Generalizing the use of the canonical
transformation for the solution of
multivariate mixed model equations.
Genet. Sel. Evol., 29, 205-224.

Foulley, J.L. and R.L. Quaas. 1995.
Heterogeneous variances in Gaussian
linear mixed models. Genet. Sel. Evol., 27,
211-225.

Gilmour, A.R., R. Thompson and B.R. Cullis.
1995. Average information REML: An
efficient algorithm for variance parameter
estimation in linear mixed models.
Biometrics, 51, 1440-1450.



7

Goddard, M. 1998. Advances in dairy cattle
breeding research. Interbull Bull., 19, 37-
49.

Groeneveld, E. 1994. A reparameterization to
improve numerical optimization in
multivariate REML (co)variance
component estimation. Genet. Sel. Evol.,
26, 537-545.

Groeneveld, E. and A. García-Cortés. 1998.
VCE4.0, a (co)variance component
package for frequentists and bayesians.  In:
Proc. 6th World Congr. Genet. Appl.
Livest. Prod., Armidale, Vol. 27, pp. 455-
456.

Guo, S.W. and E.A. Thompson. 1994. Monte-
Carlo estimation of mixed models for large
complex pedigrees. Biometrics, 50, 417-
432.

Henderson, C.R. 1973. Sire evaluation and
genetic trends. In: Proc. Animal Breeding
and Genetics Symposium in Honor of Dr.
Jay L. Lush, Am. Soc. Animal Sci. and Am.
Dairy Sci. Assoc., Champaign, Illinois, pp.
10-41.

Hill, W.G., P.M. Visscher and S.
Brotherstone. 1998. Black and white spots
in the application of genetics to dairy cattle
breeding.  Interbull Bull., 19, 51-58.

Hofer, A. 1998. Variance component
estimation in animal breeding: a review. J.
Anim. Breed. Genet., 115, 247-265.

Janss, L. and G. de Jong. 1999. MCML based
estimation of variance components in a
very large dairy cattle data set. Interbull
Bull., 20.

Jensen, J., E.A. Mäntysaari, P. Madsen and R.
Thompson. 1997. Residual maximum
likelihood estimation of (co)variance
components in multivariate mixed linear
models using averge information. J. Indian
Soc. Agr. Stat. 49:215-236.

Johnson, D.L. and R. Thompson. 1995.
Restricted maximum likelihood estimation
of variance components for univariate
animal models using sparse matrix
techniques and average information. J.
Dairy Sci., 78, 449-456.

Korsgaard, I.R., M.S. Lund, D. Sorensen, D.
Ganda, P. Madsen and J. Jensen. 1999.
Multivariate Bayesian analysis of
Gaussian, right censored Gaussian, ordered
categorical and binary traits – using Gibbs
sampling. Interbull Bull., 20.

Koerhuis, A.N.M. and R. Thompson. 1997.
Models to estimate maternal effects for
juvenile body weight in broiler chickens.
Genet. Sel. Evol., 29, 225-299.

Lindstrom, M.J. and D.M. Bates. 1988.
Newton-Raphson and EM algorithms for
linear mixed-effects models for repeated-
measures data. J. Am. Stat. Assoc., 83,
1014-1022.

Lui, C., D.B. Rubin and Y.N. Wu. 1997.
Parameter expansion to accelerate EM:
The PX-EM algorithm. Biometrika, 85,
755-770.

Madsen, P., J. Jensen and R. Thompson.
1994. Estimation of (co)variance
components by REML in multivariate
mixed linear models using average of
observed and expected information. In:
Proc. 5th World Congr. Genet. Appl.
Livest. Prod., Guelph, Vol. 22, pp. 19-22.

Mäntysaari, E.A. and L.D. Van Vleck. 1989.
Restricted maximum likelihood estimates
of variance components from multitrait sire
models with large number of fixed effects.
J. Anim. Breed. Genet., 106, 409-422.

Meng, X.L. and D.A. Van Dyk. 1998. Fast
EM-type implementation for mixed effects
models.  J.R. Stat. Soc. B., 60, 559-578.

Meyer, K. 1983. Maximum likelihood
procedures for estimating genetic
parameters for later lactations of dairy
cattle. J. Dairy Sci., 66, 1988-1997.

Meyer, K. 1985. Maximum likelihood
estimation of variance components for a
multivariate mixed model with equal
design matrices. Biometrics, 41, 153-165.

Meyer, K. 1989. Restricted maximum
likelihood to estimate variance components
for animal models with several random
effects using a derivative-free algorithm.
Genet. Sel. Evol., 21, 317-340.



8

Meyer, K. and S. Smith. 1996. Restricted
maximum likelihood estimation for animal
models using derivatives of the likelihood.
Genet. Sel. Evol. 28:23-50.

Misztal, I. 1994. Comparison of computing
properties of derivate and derivate-free
algorithms in variance component
estimation by REML. J. Anim. Breed.
Genet., 111, 346-355.

Misztal, I. and M. Perez-Enciso. 1993. Sparse
matrix inversion for restricted maximum
likelihood estimation of variance
components by expectation-maximization.
J. Dairy Sci., 76, 1479-1483.

Neumaier, A. and E. Groeneveld. 1998.
Restricted maximum likelihood estimation
of covariances in sparse linear models.
Genet. Sel. Evol., 30, 3-26.

Patterson, H.D. and R. Thompson. 1971.
Recovery of inter-block information when
block sizes are unequal. Biometrika, 58,
545-554

Smith, S.P. 1995. Differentiation of the
Cholesky algorithm. J. Comp. Graph Stat.,
4, 134-147.

Smith, S.P. and H.U. Graser, H.-U. 1986.
Estimating variance components in a class
of mixed models by restricted maximum
likelihood. J. Dairy Sci., 69, 1156-1165.

Takahashi, K., J. Fagan and M.S. Chin. 1973.
Formation of a sparse bus impedance
matrix and its application to short circuit
study. In: Proc. 8th Inst. PICA Conf.,
Minneapolis, p. 63.

Thompson, R. 1977a. The estimation of
heritability with unbalanced data.
Biometrics, 33, 485-504.

Thompson, R. 1977b. Estimation of
quantitative genetic parameters. Proc.
International Conf. Quantitative Genet.
Eds. O. Kempthorne, E. Pollock and T.
Bailey. Iowa State University Press, Ames,
Iowa, 639-657.

Thompson, R. 1994. Integrating best linear
unbiased prediction and maximum
likelihood estimation. Proc. 5th World
Congr. Genet. Appl. Livest. Prod., 18, 337-
340.

Thompson, R., N.R. Wray and R.E. Crump.
1994. Calculation of prediction error
variances using sparse matrix methods. J.
Anim. Breed. Genet., 111, 102-109.

Wray, N.R. 1990. Accounting for mutation
effects in the additive genetic variance
covariance matrix and its inverse.
Biometrics, 46, 197-186.


