
MCMC based estimation of variance components
in a very large dairy cattle data set

Luc Janss1 and Gerben de Jong2

1Institute for Animal Science and Health (ID-DLO) P.O.Box 65,
8200AB Lelystad, The Netherlands

2Dutch Cattle Syndicate (NRS),P.O. Box 454, 6800AL Arnhem, The Netherlands

Abstract

Bayesian MCMC methods, like Gibbs sampling, are often considered specialised tools for small scale
data analysis. However, due to certain computational differences with e.g. REML, these methods also apply
well to large scale data analyses which are practically infeasible by REML. The main attraction for very
large data sets is that the basic computational algorithm for Gibbs sampling looks like an Gauss-Seidel
iterative BLUP scheme, which can indeed be applied well to very large data sets.

To illustrate this case, heritabilities for milk production and milk components were estimated in Dutch
Friesian (DF) dairy cattle, (being) upgraded to Holstein Friesian (HF). The data contained 1 122 088
lactations of 585 785 cows and a total of 684 512 animals. Multiple lactations were analysed using a
repeatability model. Fixed effects included were herd-year-season-parity (120 509 classes), month of calving
(12 classes), permanent environmental effects for the 585 785 cows and regressions on fraction heterosis and
fraction recombination loss to allow for the effects of crossing with HF.

As can be expected from using such large amounts of data, estimated genetic parameters have an
astonishing high accuracy. Heritabilities for milk, fat and protein were 0.401 (min 0.394, max 0.407), 0.362
(0.350-0.370) and 0.356 (0.352-0.365). Repeatabilities found were between 0.60 and 0.64 and the regression
on heterosis was 293 kg milk. Using only first lactations, heritability for milk was significantly higher
(0.464) and a breed difference between HF and DF of 570 kg was found.

1. Introduction

Genetic evaluations, e.g. in dairy cattle, are
nowadays obtained by large scale
computation of BLUPs (Best Linear Unbiased
Predictions) using all information available
within a country. However, “true” BLUP is
never performed, as BLUP requires to know
the variance components (e.g. expressed as
heritabilities and repeatabilities), whereas in
practice only estimates of variance
components will be available. Gianola et al.
(1986) have shown that in this practical
situation, the expected merit of selected
animals is maximised when BLUP is
performed based on REML estimates of
variance components based on the same data.
This ideal situation however is usually not
found in dairy cattle evaluations: variance
components used are not based on all data as

available for BLUP, and genetic parameters
usually are not continuously updated when
more or different data becomes available. In
fact, current computationally methodology
does not allow to perform REML estimation
of variance components using all data.
Currently, in the Netherlands, variance
components used for BLUP are mainly based
on a study of Van der Werf (1990) based on
first lactations. Genetic evaluations, however,
are based on a repeatability model including
up to three lactations.

The aim of this study was to show the
feasibility of variance component estimation
in much larger data sets than currently
feasible with REML approaches. This
alternative is based on Gibbs sampling, which
can be implemented on an iterative BLUP like
algorithm, by which scaling up to much larger
analyses is indeed possible. Gibbs sampling
can be applied in several inferential



procedures. Here, it will be used for a
Bayesian inference that is taylored to closely
mimic REML, by using a joint posterior
distribution of variance components that is
mathematically equal to the REML
likelihood. Computational aspects will be
explained, and especially the close
relationship between iterative BLUP and
Gibbs sampling.

2. Methods

A general mixed model and iterative BLUP

Consider a general mixed model:

y = Xβ + Wa + Zu + e (1)

where y is a vector with observations, X, W
and Z are incidence matrices, β is a vector
with levels for a fixed effect, a is a “simple”
random effect (with a diagonal variance
structure), and u are random animal genetic
effects. First, inclusion of only one fixed
effect, one simple random effect and one
animal genetic effect is considered. Variance
components for a, u and e are denoted σa

2,
σu

2 and σe
2. The mixed model equations can

be expressed as the following set of
equations:

X’Xβ +X’Wa+ +X’Zu = X’y (2a)

W’Xβ +(W’W+kI)a+W’Zu = W’y (2b)

Z’Xβ +Z’Wa +(Z’Z+λA-1)u= Z’y (2c)

where the simultaneous solutions for β, a and
u are BLUEs and BLUPs. In (2b) k=σe

2/σa
2

and in (2c) λ=σe
2/σu

2 and A-1 is the inverse of
the numerator relationship matrix. The mixed
model equations can be solved iteratively by a

Gauss-Seidel scheme, which can be written
using (1) as:

X’Xβk+1 = X’(e + Xβk)    (3a)

(W’W+kI)ak+1 = W’(e + Wak)  (3b)

(Z’Z+λA-1)uk+1 = Z’(e + Z’uk)    (3c)

Equations (3abc) show a similar structure
for solving each block of equations, involving
only the design matrix for the respective
effect, the vector of errors and the old
solutions. For (one) fixed and (one) simple
random effect, the left-hand side involves a
diagonal matrix, which allows simple solving.
The equations for animal genetic effects (3c),
however, also contain off-diagonal elements
in the left-hand side matrix; solving these
equations by Gauss-Seidel requires to store
list of progeny by parent (e.g. by sorting
progeny codes on parents) in order to be able
to construct all required off-diagonal terms.
Solving mixed model equations in this
manner allows to build flexible software that
allows to fit any number of fixed and (simple)
random effects by simply repeating the
blocks. The block of animal genetic effects,
however, can not simply be repeated (e.g. to
allow for multiple trait analyses), because
covariances between blocks then arise and
result in a variable number of different terms
to be added to the equations (3c).

Gibbs sampling

A Gibbs sampling scheme that allows
estimation of variance components is
implemented based on the equations for
iterative BLUP (3abc). When, for each single
parameter, the equation to be solved is
expressed as diβi = ri then Gibbs samples are
generated by sampling:

βi* ~ N(ri/di , σe
2/di )



and similarly for all ai and ui (see e.g. Wang
et al., 1993). The Gibbs sampling scheme is
completed by sampling variance components
from inverted chi-square distributions based
on obtained sampled vectors for a, u and e.
Here, flat priors are used which is
implemented by using “-2” degrees of
freedom for the prior (see Wang et al. 1994).
The Gibbs samples generated, once the Gibbs
chain has convcerged, will show the
unconditional uncertainty about each
parameter, i.e. information which otherwise
could only be obtained by (partly) inverting
the mixed model equations. The simple
quadratic u’A-1u can thus be used for
estimation of genetic variance.

Comparison to REML

The above scheme that results in a
Bayesian inference on variance components
will give estimates very similar to REML. In
fact, the mode of joint posterior distribution
f(σa

2, σu
2, σe

2 y) corresponds exactly to
REML, as, with flat priors, this joint
distribution takes the same mathematical form
as the REML likelihood. In the application
presented here, not this joint mode was
computed from the Gibbs samples, but the
means of the marginal posterior distributions
of variance components. In large analyses, as
presented here, there will be virtually no
difference between these marginal means and
the joint mode. Anyhow, these Bayesian
inference will have the same desirable
property as REML of accounting for the
estimation of fixed effects; in Bayesian terms

this is accomplished by marginalising with
respect to fixed effects.

3. Material

Data of up to three lactions available from
a period of 18 years (1978-1995) were
collected, provided that per farm at least 42
lactations per year and 500 lactations in total
were present. Data consisted of 305 day
yields for milk, fat and protein. Only data
from cows that were Dutch Friesian (DF) or
Holstein Friesian (HF), or crosses between
these two, was included. In the period studied,
(most of) the DF cows were being crossed
with HF, resulting in various crosses. For
each animal, the HF blood-share and the
expected fractions heterosis and
recombination loss could be computed. In
total, 1 122 088 lactations were available
from 585 758 cows. About 42% of the
lactations were first lactations, 33% were
second lactations and 25% were third
lactations.

Models: The main fixed effects in the
model were Herd-Year-Season-Parity (HYSP)
classes, calving months and regressions on
heterosis fraction, fraction recombination loss
and (optionally) HF blood-share. As random
effects, apart from random error, were
included animal genetic effects, and
permanant environmental effects to account
for repeated lactations. The effects and their
levels for the main model are:

Effect Levels
Animal Genetic (random with relationships) 684 512
Herd-Year-Season-Parity (fixed) 120 509
Permanent Environment (random) 585 758
Calving Month (fixed) 216
Heterosis% (regression) 1
Recombination Loss% (regression) 1
Total 1 390 997



Some variations on the main analysis were
used: a seperate analysis was performed using
only first lactations. In this case, permanent
environmental effects could be dropped from
the model. Finally, also an analysis was
performed that included a regression on HF
blood-share to estimate the difference
between the DF and HF breed. All models
were applied to the analysis of milk, fat and
protein yield.

The Gibbs sampler was run for 15 000
cycles for the main model and for 12 000
cycles for variations on the main model. From
the Gibbs samples, posterior mean, minimum
and maximum were reported. The minimum
and maximum supply a rough, probably quite
stringent, confidence interval.

4. Results

Results for the main analysis, combining
information from three lactations, are
presented in Table 1. Heritability for milk
yield was estimated as 0.40; heritabilities for
fat and protein yield were 0.36. The rough
confidence intervals, obtained as the
minumum and maximum value in the Gibbs
samples, was <0.02, which shows that these

heritabilities were estimated with large
precision. Repeatabilities were all above 0.60
with rough confidence intervals <0.01.
Heterosis was estimated as 293 kg for milk
yield, 14.8 kg for fat yield and 12.2 kg for
protein yield. The values for recombination
loss are all about half of the values for
heterosis and estimates are considerably less
precise than the estimates for heterosis.

The same parameters, but based on first
lactations only are in Table 2. For first
lactations, heritabilities are a little higher
(0.03 to 0.06), heterosis is somewhat lower
and recombination loss is higher than the
average of all three. Due to the large precision
of these estimates, these differences are
statistically significant, except the difference
in heterosis for milk yield.

In a third analysis, a regression on HF
blood-share was also included in the model.
Estimated variance components and
regressions on heterosis and recombination
loss were very similar to the values given in
Table 1 (not presented). The estimated
regression on fraction HF, which represents
an estimate of the difference between DF and
HF was 570 kg for milk yield, 22.4 kg for fat
yield and 17.6 kg for protein yield.

Table 1. Results for the main analysis: heritability, repeatability and estimated regression
on fraction heterosis and recombination loss. Presented figures are the posterior means and
(in parenthesis below) the minimum and maximum value found in the Gibbs samples,
supplying a confidence interval.

Milk Fat Protein
Heritability 0.401 0.362 0.360

(0.394 - 0.407) (0.350 - 0.370) (0.352 – 0.365)

Repeatability 0.635 0.604 0.629
(0.632 - 0.639) (0.601 - 0.607) (0.626 – 0.631)

Heterosis [kg] 293 14.8 12.2
(282 – 305) (14.2 – 15.3) (11.8 – 12.6)

Recomb loss [kg] -140 -5.37 -5.15
(-176 - -105) (-6.55 - -3.33) (-6.06 - -3.41)



Table 2. Results for analysis of first lactations only: heritability and estimated regression on
fraction heterosis and recombination loss. Presented figures are the posterior means and (in
parenthesis below) the minimum and maximum value found in the Gibbs samples,
supplying a confidence interval.

Milk Fat Protein
Heritability 0.464 0.417 0.399

(0.451 - 0.480) (0.406 - 0.432) (0.385 – 0.411)

Heterosis [kg] 272 12.8 10.3
(256 – 288) (12.0 – 13.5) (9.77 – 10.9)

Recomb loss [kg] -204 -7.18 -6.41
(-253 - -155) (-8.84 - -5.54) (-7.69 - -3.31)

5. Discussion

Variance components were estimated with
a model that is also used for the Dutch genetic
evaluations, i.e. a repeatability model with at
maximum 3 lactations. All data from the
larger farms in a period of 18 years was used,
amounting to more than 1 million lactation
records. Effects of heterosis and
recombination loss which are applied as pre-
corrections in the genetic evaluations were
included here as a part of the model. Results
showed higher values for heritabilities,
repeatabilities and regressions on heterosis
and recombination loss than currently in use
in the genetic evaluations, based on Van der
Werf (1990). The values currently in used for
milk yield are a heritability of 0.35 (here
0.40), repeatability of 0.55 (here 0.64),
heterosis effect 120 kg (here 293) and
recombination loss –60 kg (here –140).
Heritability of milk yield based on first
lactations was found 0.46. With an average
heritability for milk yield over all lactations of
0.40, heritability in later lactations should be
below 0.40, while heritability in first
lactations is clearly above 0.40.

Gibbs sampling proved a useful tool to
obtain variance components in very large data
sets. Although computations are still
intensive, i.e. days of computing are required,
these analyses are feasible, whereas
traditional REML estimation would have been
impossible. Typically, memory and
computing requirements increases
quadratically for REML, whereas for Gibbs
sampling memory requirements and
computing time (per Gibbs cycle) increase
linearly. Gibbs sampling, when implemented
on an iterative BLUP scheme as done here,
requires to store the data, levels of fixed and
random effects, and several working vectors;
for the analysis performed here this amounted
to about 100 Mb.

The feasibility to perform variance
component estimation on large data sets, may
allow to put into practice the ideal described
by Gianola et al. (1986) to base BLUP on
REML estimates from the same data. The
close computational resemblence between
(iterative) BLUP and MCMC based
estimation of variance components can be
very useful in this respect. For instance,
parallel to computing BLUP, one could
compute an MCMC chain, sharing the



building of the mixed model equations
required for both applications.
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