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Abstract
Markov Chain Monte Carlo (MCMC) methods make possible the use of flexible Bayesian models that would
otherwise be computationally infeasible. In essence, MCMC methods involve sampling from a particular
posterior distribution by simulating a Markov Chain with that posterior as its stationary density. However, one
must decide when to stop the iterations, or more precisely, judge how close the underlying algorithm is to
convergence after a specified number of iterations. Furthermore, an MCMC simulation converges to a target
distribution, rather than a target point, and inferences are based on moments of that target distribution.  Problems
in mixtures arise because the mixing distribution is unknown and, in Bayesian nonparametric analysis, it is
considered as a random distribution function which is usually given a Dirichlet process prior. This paper
examines the performance of an L1 distance convergence diagnostic which assesses the convergence of the joint
density of a Gibbs Sampler algorithm in a discrete finite mixture model. Basically, the convergence diagnostic
method measures the difference between distributions of a fixed number of replications sub-sampled from
independent Markov chains by (over)estimating the total variation distance between the densities. Initially, the
problem of determining the probability that a given data point is assigned to a given component in a mixture is
addressed. Then the convergence diagnostic is illustrated and interpreted using simulated data. It is shown, that
this diagnostic has advantages over many existing convergence diagnostics in terms of consistency, applicability,
computational expense, and interpretability.

1. Background

Mixture distributions (Everitt, 1981;
Titterington et. al, 1985; Ferguson, 1983), are
typically used to model data in which each
observation is assumed to have arisen from one
of a number of distinct sub-populations.  In
situations where the number of components is
unknown, mixture densities of the form
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have  found their widest applications as a model
based clustering procedure; jπ  is the

probability that observation iy  comes from the
thj  component of the mixture. Herein θ  will

denote the set of all unknown parameters and

( )..   p  is used to denote a generic conditional

probability density function.
 A mixture of two normal densities was first

considered by Pearson in 1894 with parameter
estimates obtained from the method of
moments and involved the solution of a ninth-
degree polynomial. The seminal paper on the
EM algorithm (Dempster, Laird and Rubin,
1977)  has greatly stimulated work on finite
mixtures of distributions. Applications of
mixture models reported by Titterington, Smith
and Makov (1985) and McLachlan  and
Basford (1988) use the Expectation
Maximization (EM) algorithm.  Its
disadvantages include:

1) extreme slowness of convergence
when the proportion of missing data is high;

2) absence of standard errors from the
information matrix at convergence.

Competitors of EM are Gauss-Newton (Lois,
1982; Aitkin et al, 1994), Fisher Scoring (Rao,
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1948), and Differential Evolution (Price and
Storn, 1997). The Gauss-Newton (GN)
algorithm, is not guaranteed to converge when
the log-likelihood is not concave but when it
does converge, this rate of convergence is
usually quadratic, compared to linear from EM.
A hybrid EM-GN was proposed and
implemented by Aitkin et al (1994).

A Bayesian analysis of mixture models
presents certain advantages over the classical
approaches. In theory, quantities of interest are
written down as integrals of the form

( ) θθ dypGyG kk )  ()()( ∫ Θ=ΘΕ [2]

where )(ΘG  is the kernel distribution given the

data, kyG )(Θ . In practice these integrals

cannot be evaluated by traditional numerical
methods. When the number of groups is
assumed known, Markov Chain Monte Carlo
(MCMC) methods such as the Gibbs sampler
can be used to perform the integration.  These
methods rely on the construction of a Markov
chain { })(tΘ  with the property that the sample
path average
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is a consistent estimator for ( )kyG )(ΘΕ , in that

it converges to ( )kyG )(ΘΕ  as ∞→     N . Such

a markov chain can be constructed in situations
where it is not possible to sample from

)( kyp θ  directly, as is usually the case in

mixture models.
It is a well-known problem in finite mixture

models that the parameters are fundamentally
not identifiable in that the likelihood parameters
corresponding to the k components is
unchanged by permutations of the component
labels k  ,...  ,1 . In a Bayesian analysis, this

typically leads to a joint density of the
parameters which is highly multimodal which
causes label-switching in the Gibbs sampler
output and makes inferences for individual
components of the mixture meaningless.  A
common practice is to impose identifiability
constraints on the model parameters such as

kσσσ <<<  ...    21  but this is often not a

satisfactory solution (Diebolt and Robert,
1994). Stephens (1997) suggests a general
solution which involves permuting samples
from the parameter posterior density so as to
remove as much multimodality as possible and
allows interpretations for groups to be
discovered rather than imposed.

Problems with mixture distributions can
arise when one combines information on a
given trait from several herds which are
distributed across a wide range of environments
or when, over time, the trait of interest varies
greatly when measured on a given animal such
as milk yield in a lactation. We certainly should
be concerned about mixture distributions when
we combine information from several countries.
Therefore, for many economically important
dairy cattle traits, it seems appropriate to
consider the distribution of the data as a
mixture of parametric densities such as in [1].
However, this approach is not suitable for
overdispersed categorical traits such as  culling
or survival rates.  Such traits can be modeled as
a discrete distribution on a finite number of
mass points using nonparametric finite mixture
models (Escobar, 1995).

In a Bayesian nonparametric analysis, the
mixing distribution )(ΘG  is unknown and it is
usually given a Dirichlet process prior
(Antoniak, 1974; Ferguson, 1983; Petrone,
1997).  It has been shown that Markov chains
resulting from Gibbs sampling for
nonparametric mixtures are uniformly ergodic
(Petrone et al, 1998). However, in the absence
of any general techniques for apriori prediction
of run lengths, it is necessary to carry out some
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form of statistical analysis in order to assess
convergence. A number of useful methods for
apriori exploration of the target distribution
have been proposed (see Brooks and Roberts;
1998). Several of the methods have problems
with interpretability and are problem specific
thus requiring different code to be written for
each problem in order to produce the required
output.

Brooks et al (1997) suggest an approach to
diagnosing the convergence which attempts to
obtain the upper bound on the 1L  distance
between full dimensional kernel estimates from
different chains.  They illustrate how it can be
applied to continuous distributions and indicate
that it also applicable to MCMC algorithms for
the analysis of discrete distributions. To the
knowledge of the author no such application
has been advanced in the literature.

The objective of this study was to examine
the performance of an 1L  distance convergence
diagnostic in a Bayesian analysis of discrete
finite mixture models.

2. Bayesian discrete finite mixture model

The Estimation problem
Practical approaches for implementing

Dirichlet process models have been developed
by Escobar and West (1995) and MacEachern
and Müller (1998).  The model applies to data

ikii yyy   ...,  ,    1=  which are assumed to be

exchangeable, or as being independently drawn
from some unknown distribution. The iy  may

be multivariate with components that are real-
valued or categorical and are seen as
realizations of corresponding random variables

ikii YYY   ...,  ,    1= . Suppose we have observed or

are interest in N of these vectors. We wish to
find the predictive distribution for one or more
of the unknown attributes given the values of
the known attributes.

The Model
Assume that the parameters (θ ) of the

process generating the data are stable, and that
given knowledge of these parameters,  the
distribution from which the iy  are drawn is a

mixture of distributions of the form ( )θF  with
the mixing distribution over θ  being )(ΘG .
Let the prior for this mixing distribution be a
Dirichlet process (Ferguson, 1973), with
concentration parameter α  and base
distribution )(0 ΘG . The discrete finite mixture

model is (Neal, 1998):
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Here gφ is the probability of a

mechanism )(0 Θ= Gg  being used,  υψ ,, jg  is the

probability that a mechanism )(0 Θ= Gg  will

produce value υ  for attribute j , and it is

customary to set Nj =β . Realizations of the

Dirichlet process are discrete with probability
one (Ferguson, 1983). Integrating over )(ΘG  in
model [4],  provides a  representation of the
prior distribution of the iθ  in terms of

conditional distributions of the form (Blackwell
and MacQueen, 1973):
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where  ( )θδ  is the distribution concentrated at
the single point θ .

The Gibbs Sampler
Exact computations for a Dirichlet process

mixture model is infeasible when the number of
observations is large. We can sample from the
posterior distribution of the ni θθ  ..., ,  by

repeatedly drawing values of each iθ  from its

conditional distribution given both the data and
the jθ  for ij     ≠  (written as i−θ ). From [6]  the

conditional distribution for ii −θθ is,
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The full conditional distribution is,

( ) ii
ij

jjiiii H  rq y, +∑
≠

− θδθθ ,~ [8]

where iH  is the posterior distribution for θ
based on the prior )(0 ΘG  and iy ;  Values for

jiq ,  and ir  are defined as

)(,
k

ji ypbq θ= [9]

∫ Θ= )()( 0dGypbr k
i θα [10]

Here b is a normalizing constant such that
1, =+∑

≠
i

ij
ji   rq . Computation of

∫ Θ)()( 0dGyp kθ  is possible when )(0 ΘG  is

the conjugate prior. Neal (1998) proposes the
following auxilliary variable Gibbs sampling
algorithm:

Let the Markov chain consist of  nc,c   ,...  1

and ( )nφφφ   ...,  ,1= .  Repeatedly sample as

follows:
• For n,i   ...,  1= : Let −k be the number of

distinct jc  for ij ≠ , and let rkh   += − ;

here 1  ≥r . Label the jc with values in

{ }−k  ...,  ,1 . If ji cc =  for some ij ≠ ,

draw values independently from )(0 ΘG

for those cφ  for which hck ≤<− .  If

ji cc ≠  for all ij ≠ ,  let ic  have the label

1+−k , and draw values independently
from )(0 ΘG  for those cφ  for which

hck ≤<+− 1 . Draw a new value for ic

using the following probabilities:
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where cin ,−  is the number of jc  for ij ≠
that are equal to c , and b is a normalizing
constant. Change the state to contain only
those cφ  that are currently associated with

one or more observations.
• For all { }nc,cc   ...,      1∈ : Draw a new

value from ic y  φ  subject to .cci =  Thus,

the update to cφ  must leave this

distribution invariant.
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f1 f2

Figure 1. Illustrating the L1 distance densities f1 and f2

3. The total variation convergence diagnostic

The L1 (total variation) distance between two
probability measures 1f and 2f  is given by
(Dellaportas, 1995),

( ) ( ) .
2

1
21 dxxgxfff ∫

∞

∞−
−=− [11]

In [11], f1 and f2 admit
( )mLLL ppp  , ],1,0[    ]1,0[    Β== , where Β  is

the Borel σ –algebra and m is Lebesgue
measure. This definition covers probability
density functions for distributions encountered
in dairy cattle breeding research. Figure 1
below provides an illustration of the L1 distance
between two densities f1 and f2. The L1 distance
is the area defined by the clear region.

Brooks et al. (1997) suggest that we run m
independent chains and split each chain into l
blocks of 0n  observations, with )(t

iΘ  denoting

the state of chain i  at time t . For the Gibbs
Sampler, the Rao-Blackwell estimator for  the
density of Θ in l th block and i th chain is,
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where ( ))1()( , −ΘΘΚ t
i

t
i  is the one-step transition

kernel for the chain moving from state )(t
iΘ  to

)1( −Θ t
i .  The mean between chain distance is
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A characteristic jump point in lB  value from 1

to 0 in a relatively small number of steps
suggests convergence to the stationary
distribution. This manifestation is consistent
with the "cut-off phenomenon" of Diaconis
(1988). Overdispersed starting points for each
chain allow for better comparisons between
increasing within-sequence variance and the
decreasing between-sequence variance.

4. Example

Simulated data

Binary data were simulated  from the
Binomial distribution. Each case was composed
of ten binary attributes. The distribution of
these binary vectors was a mixture of four
component distributions, in each of which the
ten attributes were independent. The four
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components each had probability 0.25 of being
chosen to generate a case.  The probabilities for
each component for each binary attributes were
as shown in Table 1. Each row gives the
probabilities of each of the attributes being '1'
for one component of the mixture. The columns
are for the ten binary attributes in each case.
The vectors generated in this way can be seen
as coming from one of four "patterns":
0000011111, 0111100001, 1001100111, and
1110011001, but with each bit of the chosen
pattern having a small probability of being
switched (ranging from 0.1 to 0.3) in any
particular case. Five hundred cases were
generated from this distribution. This data
structure was designed to give a finite number
of components in the mixture distribution.  The
ten binary attributes can be taken to represent
records on ten animals. The four patterns could
represent four traits measured on the ten
animals.

The simulated data were modeled  as a
mixture of four components. Thus, each
component of the mixture defines a joint
probability for the 10 sets of target attributes.

Three independent Markov chains were
simulated using the priors in Table 2.

The probability that each component of the
mixture would give each target attribute a "1"
or "0" was determined from the logistic
function:

( ) ( ))exp(    1

1
        1Pr

offset
ci −+

==

The offset parameters for each attribute
were given vague Gaussian prior distributions
with means and standard deviations that were
variable hyperparameters to favor convergence
to a stable process. Specifically, the priors for
the top-level and  lower-level standard
deviations for the offset were  from

independent ( )5.  ,05.Gamma  and

( )2.  ,05.Gamma , respectively; the prior for the
mean component offsets was 10.

In each of the three chains, the 500 cases
from the simulated data were used as a training
set to generate 1000 states for each of the
parameters. Then a Markov of chain of length
5000 was simulated.

Table 1. Probabilities for each of four components for each of ten binary attributes.
Data for each component were generated from the Binomial distribution using these
probabilities.

Attribute
Component 1 2 3 4 5 6 7 8 9 10
1 .1 .2 .2 .2 .2 .8 .8 .8 .8 .7
2 .1 .8 .8 .8 .8 .2 .2 .2 .2 .7
3 .9 .2 .2 .8 .8 .2 .2 .8 .8 .7
4 .9 .8 .8 .2 .2 .8 .8 .2 .2 .7

Table 2.  Priors for the concentration parameter of the Dirichlet distribution.
Chain α Interpretation
1 1/4 unequal mixing proportions
2 2/4 mixing proportions in either direction
3 3/4 equal mixing proportions
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Table 3. Posterior means and SD’s (in brackets) for model
parameters following from three parallel chains.

m =  1 m = 2 m = 3
θ 1 0.298

(0.022)
0.297

(0.020)
0.297

(0.021)
θ 2 0.561

(0.021)
0.561

(0.020)
0.561

(0.022)
θ 3 0.806

(0.019)
0.805

(0.018)
0.806

(0.018)

5. Results

Under the prior specifications for all model
parameters, the corresponding posterior means
and standard deviations for three of four
parameters are presented in Table 3.  Data for
one of the components are not presented
because the kernel estimates for that parameter
stabilized and remained constant at 1.

We note that the posterior means and

 standard deviations for the parameters from
the three parallel chains are very similar. Trace
plots of the raw p values and the kernel density
plots for the three parameters are shown in
Figure 2. The trace plots suggest evidence of
mixing in the chains. We observe that posterior
marginal distributions were skewed to the left
for θ 1 but were skewed to the right for θ 2  and
θ 3 thus confirming that the joint posterior
distribution was multi-modal.

1θ

1θ

2θ

2θ

3θ

3θ

Trace plots for 1θ Kernel density plots for 1θ

Figure 2.  Traces of the raw p values and the kernel density estimates for three components in a
discrete finite mixture model.
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Figure 3 displays the total variation
diagnostic. Brooks et al. (1998) point out that if
n0  is small the total variation diagnostic may
not indicate convergence when it is achieved.
For this example, the sharp drop in lB  at l ≈ 7 is

a clear indication that convergence was
achieved by this point. This jump is a
manifestation of the “cut-off phenomenon”.
However, these plots are hard to interpret.
Hence, when n0 is small relative to the length of
the parallel chains, trace plots of a widowed
mean of the lB  values could provide more

interpretable results. The plots in Figure 2
support the total variation diagnostic because
the raw p values for all 3 chains settled to the
same time that the diagnostic indicated
convergence.

Figure 4  shows the performance of the
diagnostic with n0 = 50. This plot confirms that
convergence had been attained at l < 50. We
also note that values for the diagnostic
stabilized at lB ≈ .16 for  n0 = 5 while values for

lB  were ≈ .025 when n0 = 50.  We can see that,

in spite of the volatility of the  lB  statistic,

values for lB  were smaller when the block

length was increased.
Most of the existing convergence diagnostics

are based on output analysis. The Geweke
(1992) diagnostic looks at trace plots of z-
scores for the first and last segment of the
simulation.  Trace plots of the first segment in
the states for the 3 parallel chains are presented
in Figure 5.

1θ
2θ

3θ

5
0

=n

lB

lB

Figure 3.  Total variation diagnostic for parameters with a small block length, n0 = 5.
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1
θ

2
θ

3θ

lB

lB

500 =n

Figure 4. Total variation diagnostic for parameters with a large block length, n0=50.

1θ

2θ

3θ

m = 1 m = 2 m = 3

Figure 5. Trace plots for the Geweke (1992) convergence diagnostic.
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For these data and the underlying probability
model, the Geweke diagnostic does not give
consistent results thus making it difficult to
diagnose convergence.  It is apparent at l ≈
4040 that the first chain (m = 1) jumped to a
new and less stable state. Observe that the
output is much harder to interpret and that only
part of the available information was used.

In Figure 6, plots for the Gelman and Rubin
(1992) convergence diagnostic support the total
variation diagnostic. Convergence was apparent
at l ≈ 5 which is consistent with the plots for the

lB  statistic in Figure 2. However, this method

is based on output analysis.

1θ 2θ

3θ

Figure 6. Trace plots for the Gelman and Rubin (1992) convergence diagnostic.

6. Discussion

We have demonstrated that in a Bayesian
analysis of discrete finite mixture models,
where the posterior surface may be less well
understood,  sampling from the conjugate priors
can lead to stationary posterior distributions.
The auxilliary-variable Gibbs sampler provides
consistent estimates of the unknown
parameters. Factors affecting the performance

of the Bayesian discrete finite mixture model
include: 1) size of the training sets; larger
training items have enough data to force most
of the probability to the region near the true
parameter values; 2) starting values for the
hyperparameters; 3) number of parallel
sequences; 4) slow and poor mixing in the
markov chains.

The performance of an L1 distance
convergence diagnostic was examined. The
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main advantages of this diagnostic are: 1) it
provides interpretable output; 2) The “cut-off”
makes it easy to assess convergence; 3) it elicits
some mathematical interpretation; Bl stabilizes
around 0.025; 4) it is based upon multiple
replications and a joint density; 5) it makes full
use of all available information; 6) it can be
easily adapted to provide a convergence
diagnostic for the parallel Gibbs Sampler.

Disadvantages of the total variation
diagnostic include: 1) computational expense;
2) it requires transition probabilities from the
target distribution which is not  a problem when
full conditionals are available; 3) choice of the
block length, n0 . Experience is required to pick
a suitable value.

This paper demonstrates that methods are
available to handle overdispersed traits. It is
postulated that these methods can be useful in
international genetic evaluations where records
are from pooled from heterogeneous
environments. The convergence diagnostic
examined in this paper can be applied during or
after an MCMC simulation which involves at
least two independent parallel chains.  Further
work is needed to compare Dirichlet process
mixture models with existing approaches for
handling overdispersed data.
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