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Abstract

Experiences with adapting and running a Fortran 77 program for stochastic simulation of a mass selection
program in fish breeding for parallel processing are presented.

Little rewriting of the program was required to assign different replicates of the simulations to different
processors. In order to study the speedup according to number of processors, a case of 20 replicates, requiring
2 000 s using one processor, was run. Wall clock time for the program (without initial input) using 1, 2, 4, 10
and 20 processors were obtained.

The saved computer time increased considerably with increased number of processors. Wall clock time was
17 times lower on a Cray  T3E using 20 parallel processes compared to sequential execution  (116 s versus
2000 s). This is expected to be improved for a more realistic and demanding case.

1. Introduction

Stochastic simulations are very useful for
optimising selection breeding programs with
respect to genetic gain and inbreeding. They
are however demanding with respect to
computing time, especially when inbreeding
coefficients of all individuals and many
replicates are required. Super computers with
multiple processors may therefore be very
efficient for running such programs.

The objective of this paper was to present
our experiences with adapting and running a
Fortran 77 program for stochastic simulation
of mass selection on a Cray T3E with parallel
processing.

2. Material and methods

Simulation programme fisksim

A Fortran 77 computer programme was
developed for simulating mass selection in a
fish breeding programme over a number of
generations. Stochastic simulations were
applied to study genetic changes and rates of
inbreeding for various family structures,
various numbers of families up to 100, family

sizes up to 150 and various sets of genetic
parameters. The output file with records of
breeding values and inbreeding for all
individuals made the basis for these studies.
Although a fast subroutine was applied for
calculation of inbreeding coeffisients, this
made up most of the computing time.

Parallelisation of Fisksim

The fish breeding program, «Fisksim» was
parallelised employing functional
decomposition or work sharing. This strategy
shares work between processors, each
processor working on independent data.

Work sharing is often simpler to implement
than data or domain decomposition, but tend
to duplicate data among processors and hence
increase the total need for memory.

On physically distributed memory
computers, as used here, available node
memory is often a limited resource. The work
sharing approach may then limit the usefulness
of employing a large number of processors to
solve larger problems since each piece of work
may grow out of local node memory.
However, Fisksim has moderate per node
memory requirements, so this is not an issue
for the application studied here.
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Co-Array Fortra (CAF) [1,2] is chosen to
parallelise the program. This could easily be
done with other approaches like MPI
(Message-Passing Interface) [3], but CAF was
chosen because it is available on the target
system and caused a minimum of distortions to
the sequential program.

Each invocation of Fisksim runs a number
of replicates (NREPL), where
each replicate contains a number of
generations (NAAR):

     DO IREP = 1, NREP
      repseed = update_repseed()

cycleseed = repseed
init_cycle()

DO IAAR = 1, NAAR
   perform_cycle(IAAR)
END DO ! IAAR

   END DO ! IREP

Fisksim employs two different random number
generators (RNG's). The first RNG generates
the starting seed of the second RNG employed
to cycle through the specified number of
generations of fish breeding (NAAR). When
running in parallel, the update_repseed is
replicated on every processor so that the cycle
seed sequence is identical with that of a
sequential execution. Except for the initial
input each replicate cycle (IREP) is an
independent piece of work. Having read the
simulation parameters and initial seed from the
input file, the parallelisation strategy is to
replicate the update_repseed() across every
processor. Work sharing of replicates across
processors is done as follows:

MYIMG = THIS_IMAGE()
NIMG = NUM_IMAGES()
...
DO IREP=MYIMG,NREPL,NIMG

...
END DO ! IREP

In the pseudo code above, NIMG is the
number of processors, or images, and
MYIMG = 1...NIMG designates an individual
image.

Of course this approach will have poor load
balancing if the number of replicates is not

divisible by the number of processors
employed. This is a minor limitation, however.
Due to the simple strategy of parallelisation
with minimal interprocessor communication,
Fisksim should also perform very well on a
Beowulf system (cluster of PC's).

Test case

In order to study the speedup  according to
number of processors, a case of 50 families
and 30 progeny per family bred for 15
generations was run. For running 20 replicates
using one processor, it required 2 000
seconds. Wall clock time for the program
without initial input using 1, 2, 4, 10, and 20
processors were obtained. Speedup for N
processors was calculated as the wall clock
time using one processor (Time1) divided by
the wall clock time using N processors
(TimeN): Speedup = Time1/TimeN.

Regression analysis

In order to test the linearity of the speedup,
a simple linear regression analysis was carried
out. The regression of speedup on number of
processors was analysed, and regression
coeffisient, standard error, predicted speedup
and standard error of predicted values were
obtained.

3. Results and discussion

As shown in Table 1 and Figure 1, the
computing time was considerably reduced
with increased number of processors. Wall
clock time was 17 times lower on a Cray  T3E
using 20 parallel processes compared to
sequential execution.
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Table 1. Wall clock time for simulating 20 replicates and speedup according to number of
processors

No.
processors

Wall clock time, s Speedup

1     2 000 1.00
2 1 039 1.92
4  487 4.11
10 208 9.64
20 116 17.29
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Figure 1. Wall clock time for simulating 20 replicates according to number of processors.

Obtained speedup is shown in Table 1 and
depicted in Figure 2. As can be seen it deviates
little from a linear speedup  with slope equal
to 1. The deviation is however larger for 20
processors. At 20 processors, queuing on
output resources start to become significant
compared to the computing time. Nothing has
been done to optimise output for a large
number of processors. This could be done, but
will only be of little interest in real cases
compared to our small scale benchmarking
case. For this small case, the simultaneous
output from 20 processors therefore made a
larger proportion of the computing time than
from fewer processors. Hence, the
performance is expected to be improved for a
more realistic and demanding case, as the
output will make up a smaller proportion of
the job.

The regression of speedup on processor
number was estimated to 0.86 ± 0.03. Due to

the observation of 20 processors, it was a little
lower than unity. Predicted speedup  with
99 % confidence interval is shown in Figure 3.
As can be seen the linear speedup with slope
of unity is also within the confidence interval.

4. Conclusions

Little rewriting of the program was
required to assign different replicates of the
simulations to different processors. The
computer time decreased considerably with
increased number of processors with an almost
linear speedup. The wall clock time was
approximately 17 times lower on a Cray  T3E
using 20 parallel processes compared to
sequential execution. The slope of the speedup
obtained was close to unity.
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Figure 2. Obtained speedup and linear speedup with unity slope according to no. processors.
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Figure 3. Predicted speedup  according to no. processors with 99 % confidence interval. Linear speedup
with slope equal to 1 is also indicated.


