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1. Introduction

The complexity of models used for or
considered for use in genetic evaluation is
increasing. Examples of new models are test-day
models in dairy cattle, growth models in beef
cattle, and models with dominance or/and QTL
effects. These models are usualy linear but
analyses of some traits may require nonlinear
models, which are usually more complicated to
write and test. More complicated models may
require a larger data set. In the future we may
expect new types of models that will be used to
analyze even larger data sets.

In order to support new models, the
computer programs need to be upgradeable and
therefore easy to understand or simple.
Programs in a matrix language are usualy
simple but inefficient and cannot work with
larger data sets. In order to support large data
sets, programs need to be efficient, which
usually means complicated and hard to modify.

Traditionally, mixed model packages
available in animal breeding were written with
efficiency in mind. Although they are useful a a
time when they are developed, they become
outdated. For example, none of the packages
available in 1994 (Misztal, 94) supported the
now-popular random regressions. Some of these
packages have been updated to include random
regressions, but some may be too complicated
to update.

Two developments can lead to simple yet
efficient programs:. increase in computer power
and programming languages with object-
oriented features. Greater computer power
allows avoidance of optimizations that would
complicate programs. Better programming
languages allow to express the same agorithms
simpler but as efficient.

2. Softwar e complexity and Optimization

Software complexity is a function of the
number of variables, subroutines, and subroutine
interfaces. A large number of variables and
subroutines increases the time to learn meaning
of each variable and subroutines, and makes it
easer to confuse them. A large number of
parameters in each subroutine/function makes it
hard to understand their functionality and makes
undesirable side effects more likely. Time to
learn decreases if names in programs have
intuitively obvious purpose and the program
flow is clear. Time to learn increases if
optimization makes the programs flow
complicated.

Time to learn does not increase if an
operation with large complexity is hidden either
inthe system or in the library. For example, very
complex algorithms may implement arithmetic
operations in a matrix language, but the user is
not involved in learning them.

In programs, the mgjority of time is usually
spent in a few areas called the bottlenecks. In
REML programs, bottlenecks are sparse matrix
factorization and inversion. In programs solving
by iteration on data, reading the data repeatedly
could use 95% of the time. In Gibbs-sampling
type of programs, the mgjority of time can be
spent in updating the mixed model equations
repeatedly. For each of these applications, it
makes sense to optimize their bottlenecks only
and keep other parts of the program as smple as
possible. As shown later, the bottlenecks can be
encapsulated into modules to make them appear
smple.



3. Opportunity from Hardware
I mprovements

According to Moore' s law computer power
increases doubles every 18 months. This
increase results from faster processor speed,
increased memory and disk capacity. A dual-
Pentium with 1024 Mbytes of memory cost
about $5000 in 1998. IBM 3090 with similar
capabilities in 1988 could cost 1000 times more.
Some of the new computer power could be
used to eliminate optimizations that make
programs more complicated. For example,
availability of larger memory reduces the need
for memory optimization by allowing to use
simpler but more memory intensive algorithms.
Current computers utilize memory hierarchies,
with a very fast on-chip cache memory and a
relatively sow external memory. Operations
with data that fit into the cache are much faster
than that those that require external memory.
Subsequently, low-level optimizations such as
pre-inverting residua (co)variance matrices or
in-lining subroutines are not as important as
before. Large disk space makes coding to
conserve disk space less critical.

4. Programming L anguages

Previously, most programming in animal
breeding has been done in Fortran 77 (F77).
This language leads to efficient but complex
programs. Because of few control and data
structures available, non-numerical computing
required programming “tricks‘, which made
programs in F77 even more complicated.
Computer language C has also been used in
animal breeding. It has a richer collection of
data and control structures but aso involves
more details and may be less convenient and
efficient for numerical computing. Currently,
programming moves towards object oriented
languages. Two features of such languages are
especially useful to reduce complexity. First,
encapsulation alows packaging of complicated
operations on complicated data structures into

libraries/classes/modules. Details of operations
in the module can be hidden from the user.
Subsequently, the number of arguments in
subroutine/function names can be fewer. For
example, operations on matrices would not have
to involve dimensions of the matrix, or in sparse
matrices, implementation details. Second,
overloading, the wuse of a single
function/subroutine name with logically similar
but physicaly different data structures, can be
used. For example, the same subroutine name
can be used to print matricesin single or double
precison, and in full or half-storage.
Overloading alows areduction in the number of
subroutine/function names to remember, and it
allows better diagnostics.

The most popular programming language
with object oriented features at this time is a
follower of C, C++. This language is refined
and free compilers are available. C++ also has
an overwhelming number of features, but it does
not alow easy use of old but tested Fortran
subroutines. A very comprehensive package in
C++ for mixed model and dtatistical
computations called MATVEC has been
developed by Wang (personal communication,
1994). Due to a number of issues including
problems related to its large size, MATVEC has
not been officialy released.

Another language with object-oriented
featuresis afollower of F77, Fortran 90 (F90).
It’s new data and control structures now match
those of C, as it supports data structures,
pointer and allocatable arrays, and endless loop
and case statements. Matrix operations result in
smpler code, and internal functions allow easy
decomposition of the main program into
logically independent blocks. Interfaces allow
the reduction in the number of parameters
passed to subroutines and to use one subroutine
name for one operation with different data
types. Complex operations can be packaged into
modules, where the program complexity is
hidden from the user. Besides a range of new
features, FO0 language supports old F77
subroutines/functions. Thus, if efficient and
reliable subroutines exist in F77, they can be



adopted into fortran 90 programs directly, or
even better, wrapped into F90 code to make
their use much easier.

5. Design of BLUPF90

BLUPF90 is amixed model program written
in Fortran 90. This program was developed step
by step in my graduate level courseinitidly asa
teaching tool but soon was generalized into a
research tool. The design goals were:

1) support for alarge range of models,
2) easy extensbility if necessary,

3) new code programming in Fortran 90,
4) maximum use of legacy Fortran 77
subroutines/functions via modules,

5) avoidance of proprietary codein
subroutines/functions.

All variables and constants necessary to
describe amodel are defined in a module model.
There, each effect is either a cross-classified
variable, covariable, or nested covariable. For
smplicity, in multiple traits, the equations are
blocked within traits. Each effect needs to be
defined for each trait but the same effect can
have a different design for each trat. In
particular, an effect with a“null* design matrix
results in support for different models by trait.
Multiple groups of correlated random effects

are alowed. Each group includes one or more
random effects and is one of the following
types. additive sire-maternal-grandsire, additive
animal with options for unknown parent groups
and inbreeding, and parental dominance. Groups
of random effects are independent, and two
groups of random effects with the same type are
possible. This is useful, for example, in some
crossbreeding models, where support for two or
more different additive effects is needed.
Generality of random groups enables new types
of models, as for example arandom regression
model with dominance effect and support for
crossbred populations.

Solutions in BLUPF90 were obtained by the
following methods: by successve over
relaxation (SOR) iteration within memory or by
gparse matrix package FSPAK. For smplicity,
all large-matrix manipulation is encapsulated in
modules SPARSEM and FSPAK90.

6. Modules
Module SPARSEM

Module SPARSEM includes definitions of
data structures and functions and subroutines
to manipulate on these structures. Four matrix
formats are available.

Name Type of Matrix Comments
DENSEM dense square easy operations
DENSE_SYMM dense symmetric; upper-stored | approximately only half memory

reguirements of the dense square

SPARSE_HASHM | symmetric sparse triple

upper-stored

accessed by hash algorithm;

efficient format for set-up and for
iterative-solving of sparse matrices

SPARSE_[JA
stored

symmetric Sparse | JA; upper

memory-efficient format for sparse
meatrices used by sparse matrix
packages; cannot be set up directly




For more information on these formats see Duff
et a. (1989), George and Liu (1981), or my
class notes (Misztal, 1999).

A popular format that is not included hereis
linked list. This format is efficient for creating
and computing with sparse matrices provided
that the number of nonzero elements per row is
not too high and the matrix is not too large.
However, the combination of HASH plus1JA is
generally more efficient.

To create a particular matrix structure, let
the program know to use the sparsem module,
and then decleare a variable:

Program ABC
use sparsem

type (densem)::A

As declared, the structure takes only a
minimal amount of storage. Matrices are
manipulated mainly via subroutines and
functionsin SPARSEM. To initidize and zero a
matrix of nx n:

call zerom(A,n)

This will initilize the internal structure of
whatever format A was defined. If matrix A was
initialized previoudly to a different dimension, it
isreinitialized. To add a scalar p to A, use

call addm(p,i,j,A)

Finally, assuming that the matrix A as well as
the vector of right hand sides b are set up, the
solution to the system of equations. Ax=b can
be obtained by iteration:

call solve_iterm(A,b,x)

Formats of matrices can be changed without
changing the remainder of the code, just by
changing the type of matrix A. If amatrix A is
defined as DENSEM, the largest matrix that can
be stored in 200 Mbytesis 5000 x 5000. If A is
changed to SPARSE_HASHM, the largest
matrix that can be stored will depend on its
sparsity but it could be 1,000,000 x 1,000,000
or larger.

Structure SPARSE_IJA cannot be set up
efficiently. It can be converted to
SPARSE_HASHM asfollows:

type (sparse_hashm) ::A
type (sparse_ija)::A_ija

;:.éllll zerom(A,n)
call addm(...,A)
A ija=A

Conversions between al the formats involve
only (=). Please note that the explicit
initialization of A_ijais not needed asit is done
during the conversion.

Many other operations useful in animal
breeding research have been defined, such as
selecting matrix blocks from matrices,
computing quadratic forms or traces, setting and
accessing individual elements of a matrix, and
printing.

Sparse matrix module SPARSEOP
(FSPAK90)

FSPAK (Perez-Enciso et a., 1994)) is a
popular choice in animal breeding for sparse
matrix factorization and inversion as well as
calculation of the determinant. Unfortunately, it
is aso difficult to use. To solve and obtain a
gparse inverse, the following was needed:



integer m1/100000/,& I guess maximum number of equations
m2/100000/,& I guess number of nonzero elements
m3/200000/ I guess maximum amount of working storage

integer ia(ml1+1),ja(m2) ! declare components of IJA structure
real*8 a(m2)
integer mem(m3) I declare working storage

I ordering
call fspak(10,n,ia,ja,a,sc,flag,6,99,mem,mem_needed,work,i,..,rank_o)
I symbolic factorization
call fspak(20,n,ia,ja,a,sc,flag,6,99,mem,mem_needed,work,i,..,rank_o)
I solve
call fspak(50,n,ia,ja,a,sol,flag,6,99,mem,mem_needed,work,i,..,rank_o)
I sparse inverse
call fspak(61,n,ia,ja,a,sc,flag,6,99,mem,mem_needed,work,i,...,rank_o)

FSPAK90 (Misztal and Perez-Enciso, 1998) is a Fortran 90 interface to FSPAK that accepts matrices
in SPARSE _IJA format and handles sequencing of operations, alocation of memory and error handling.
The code below is equivalent to the code above:
type (sparse_hashm):: x

call fspak90(x,'inverse’)

FSPAK has afew other options, many of which use optional arguments,

call fspak90(’solve’,A,b,x) I solve system AX=b
call fspak90('det’,ija,det=d) I obtain determinant d
call fspak90(’ldet’,ija,det=Id) I obtain log determinant Id
call fspak90(.....,rank=r) I obtain rank r with any operation
call fspak90(’factor’,ija) I force new factorization
call fspak90(‘reset’) I deallocate internal memory
Other Modules
Module IOUNF

Module IOUNF automates fast unformatted I/0O necessary for implementations of iteration on data
algorithms. For every unit opened, a large buffer is created within IOUNF. When small vectors are
written to or read from IOUNF, transfers involve mostly the buffer. Actual 1/0 transfers occur only
when the buffer is empty for reading or full for writing. Many units can be opened simultaneously. For
typical reads, IOUNF could be 10 times faster than formatted 1/0 and 3 times faster than unformatted
transfers of small vectors. Module IOUNF could be used as shown below.



use iounf
ééll iob(iob_open,8) I unnamed file attached to unit 8
call iobuff(iob_write,8,x) | write X to unit 8
;:.éll iobuff(iob_rewind,8) I rewind unit 8
ééll iobuff(iob_read,8,x,stat=status) I write, status #0 if end of data
call iobuff(iob_delete,8) | erase file

Module Gibbs

Module GIBBS provides basic operations for Gibbs sampling. These include: a) functions generating
multivariate normal and inverted Wishart distributions that also work for scalar arguments, b)
subroutines to fast update the coefficient matrix of the mixed model equations, and c) subroutines to
solve and update by blocks of equations. An example of a code with module GIBBS is shown below.

use gibbs

I setup mixed model equations

convert matrix in format sparse_hashm to sparse_ija using links
call link_hash_ija(xx,xx_ija)

I generate random samples for effects
do i=1,neq,ntrait
firsteq=(i-1)*ntrait+1; lasteq=i*ntrait
call solve_iterm_block(xx_ija,xy,sol,firsteq,lasteq,diag,’solve’)
sol(firsteq:lasteq)= &
gen_normal(sol(firsteq:lasteq),inverse(diag)),seedl)
call solve_iterm_block(xx_ija,xy,sol,firsteq,lasteq,diag,'update’)
enddo

I generate random samples for variance components (except residuals)

g(l ,-)=gen_invwishart(g(i,:,:),df,seed?2)

Module DENSEOP module is primarily designed for matrix
operations where timing and memory

Module DENSEOP implements matrix requirements are not critical.
operations on dense general and symmetric For symmetric matrices, each of the
matrices. Each subroutine/function is overloaded functions/subroutines accepts full-stored and

to work with several types of arguments. This packed (half-stored) matrices. Each matrix or



vector can be in single or double precision.
However, in one function/subroutine, al
arguments need to be of the same precision, and
all matrices should be stored the same way. For
symmetric matrices , the following subroutines
are defined :

call chol(A,rank)  Cholesky decomposition
call inverse_s(A,rank) Generalized inverse:
Al =A

call eigen(A,d,V) Eigenvalues and eigenvectors: A

=V diag(d) V'

call solve_s(A,b,x) Generalized solutions x: Ax=b

Optional variable rank returns the rank of the
matrix. Most of the subroutines are aso
available as functions:

fchol(A)
finverse_s(A)
fsolve_s(A,b)
fdet(A)

Cholesky decomposition
Generalized inverse
Generalized solve
Determinant of A

For general matrices, the following
subroutines and functions are available:

call inverse(A)  Inverse: Al =A™
call solve(A,b,x) Solvex: Ax=b

Al=finverse(A)
x=fsolve(A,b)

Returnsinverse: Al = A
Computes x: Ax=b

Finally, printing of any of the formats
supported by DENSEOP is done by:

call printmat(matrix, text, fmt)

which prints any type of matrix using the
specified format fmt and preceded by text. Both
text and fmt are optional.

The following subroutines and functions
operate on only double precison arguments and
full-stored matrices:

call pos_def(A,text,min_eig,status)

If A is not semi-positive definite, it makes it

such by setting negative eigenvalues to .0001
(or optionally min_eig) times the largest
eigenvalue, and optionaly by printing a
message text and by setting status=.true.

A=diag(d)
d=diag(A)

makes diagonal matrix
extracts diagonal elements

Development of the DENSEOP module
raised issues of how to obtain low-level
software for dense matrices and for calculations
of eigenvalues and eigenvectors. Subroutines
from Numerical Recipes (Press et a., 1992)
would be sufficient and compact, but they are
not in public domain. We eventually decided to
use appropriate routines from LAPACK90
(Miller, 1999). However, after eliminating
unnecessary code, these routines consisted of
almost 10,000 lines of code as opposed to about
300 from Numerical Recipes (Press et a.,
1992). In the past, this large size would be a
major issue because of long compilation time
and increases in executable codes. Now,
however, with fast compilers and large disks,
we view the selection of LAPACK90 as an
acceptable choice.

In Fortran 90, internally a separate routine is
needed for each different matrix format. With
four types of matrices, one needs to replicate
one routine 4 times. In DENSEOP, Al
computations are done with double precision
fully-stored matrices, and operations involving
other formats are supported by conversions.

7. Programs

The initial goal for the project was a BLUP
program caled BLUPFO0 that calculated
mixed-model solutions only using equations
stored in memory. To reduce the complexity, no
attempts were made to create a superpackage,
but different versions of the same program have
been created for different tasks. REMLF90 was
created for estimation of variance components
using the EM REML algorithm (Dempster et
al., 1977) with acceleration. BLUP90THR is a



bivariate linear-threshold model. BLUP90IOD
is an iteration on data program that uses a
preconditioned conjugate gradient. The last
algorithm as documented for animal breeding by
Lidauer and Stranden (1998), is an ideal match
for this family of programs because it is very
smple yet reliable and fast. All of the mentioned
programs are functional but are being improved.
For example, REMLF90 is being upgraded to
support the Average Information (Jensen et a,
1997) algorithm.

8. Experiences
Modules and programs

Initial development of the SPARSEM library
was fast mainly because the implementation for
the DENSEM format was easy using f90 matrix
operations. Subsequently, testing information
was available for the remaining formats.
Debugging the BLUPF90 program was also
fast. Development of REMLF90, which was
created mainly by adding a subroutine REML to
BLUPF90, was more complex for severd
reasons. In multiple traits, it was found that
unsymmetric blocks of symmetric matrices are
not correctly extracted in sparse matrix formats.
A complete extraction was deemed to expensive
to implement in format SPARSE_IJA, and
separate functions to extract a block and then
create a trace were replaced by one combined
function. Later, a memory leak was found,
which caused the program to allocate more
memory each round. Such problems are
common to programs that use pointer variables
with dynamic memory alocation. However, the
majority of development time was spent in
understanding formulas for residual variancesin
EM REML; such formulas are quite complicated
when traits are missing (Mantysaari and
VanVleck, 1988).

Another problem was found during the
development of the threshold-linear program.
An out-of bound access of an array local to a
routine that calculated thresholds caused

SPARSEM to crash. Thus the modules may
not be immune from programs that use them.
Occasionally, problems were associated with
the modules. In such cases, a problem could be
caused by incorrect arguments passed to a
function or subroutine in a module (need better
diagnostics), by incomplete understanding of
functionality of a module (need Dbetter
documentation), or by a bug. Currently, the
modules have only minimal diagnostics. While
programming using modules seems to be
relatively easy, localizing and correcting a bug
in a module can be a major undertaking. This
underscores the need for the availability of
software support as well as the need for
documentation on internals of each module.
Hopefully, with time the modules will become
relatively error free and better documented.

Fortran 90 Compilers

The code was initialy developed under
MSDOS and later continued under various Unix
systems including Linux. [Initialy, many
different problems were encountered with
different compilers, but most of these problems
disappeared when compilers were upgraded to
the latest version. In one case, a compiler bug
required a separate version of the FSPAK90
module. When purchasing a compiler for
serious development in Fortran 90, it is
important to select a vendor with good
customer support so that problems that appear
to be compiler related can be diagnosed rapidly.

Efficiency

In the BLUPF90 program, the bottleneck
was the solution routine, which was optimized
as a low level subroutine. Thus, no extra
optimization was needed. The same wastruein
the REMLF90 program, where the bottleneck
was in sparse matrix factorization and inversion
by FSPAK. When BLUPF90 was converted to
iteration on data using preconditioned conjugate
gradient with fast 1/0 by IOUNF, the majority
of the CPU time was spent in a function



caculating addresses of equations. Simple
optimization to this function cut the running
time in haf. Further optimizations were
hampered by the lack of aline-level profiler that
would point to additional bottlenecks. Currently,
the iteration-on-data program seems to be fast
enough and memory efficient to handle the
largest evaluation at the University of Georgia
(about 2.5 million beef cattle for 3 traits) in a
reasonable time (half a day).

9. Conclusions

Fast computers and Fortran 90 create
opportunity to produce software that can be
amost as easy to write as in a matrix language
and almogt as efficient asin Fortran 77. This can
be done by writing programs as general as
possible, by limiting low-level optimization, and
by encapsulating parts of the program that are
essential  for efficiency (bottlenecks) into
modules. An important part of such
programming is creation of modules that have
intuitive interface, are adequately documented,
and are efficient and reliable. Modules that
include highly optimized code with possible
support for parallel processing do not increase
the complexity of programs using these
modules.

Further optimization is justified only if
models for analyses are already selected and
when performance without the optimization is
insufficient.  After extensive optimization,
including the support for parallel processing,
programs will operate faster with the selected
models but may become very hard to modify.

Most of the programs mentioned here are
available at ftp://num.ads.uga.edu/blupfo0, or at
http://nce/ads.uga.edu/ignacy. They are free for
research use.
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