
Parallel benefits in test-day evaluations

I. Strandén
Agricultural Research Centre - MTT,

Animal Production Research, 31600 Jokioinen, Finland

Abstract
One of the goals in the HPBREEDING project was to reduce computing time using parallel computing.

Parallelization focused on the following aspects: 1) each of the processors should have about an equal amount
of work, 2) communication between the processors should be kept small, 3) memory requirements per
processor should be as small as possible.

The parallel implementation was tested with a small and a large random regression test-day model having
about 7.28 and 21.7 million unknowns in the mixed model equations, respectively. The iterative solver method
was iterated 50 rounds on Cycle Ultra AXmp and SGI Origin 2000 computers. Testing with the smaller
(larger) model on the Cycle computer yielded speedups 1.97 and 3.86 (1.98 and 3.60) with 2 and 4 processors,
respectively. Speedups for the iterating the smaller system on the SGI Origin 2000 were 1.65 and 3.06 with 2
and 4 processors, respectively. Increasing number of processors increased speedup almost linearly up to 8
processors, after which speedup increased slower than linearly due to increased communication.

1. Introduction

Random regression test-day models have
become an active research field in dairy cattle
breeding. Full benefits of this model can be
realized in continuous evaluation. Hence, fast
computing time is of great interest.
Continuous evaluation using random
regression test-day model for the Finnish dairy
cattle industry requires heavy computing.
Number of unknowns in the mixed model
equations (MME) will increase from about 3.5
million in the current evaluation model to
20-60 million depending on the model
adopted. It was estimated that the DMUIOD
software (Lidauer et al., 1998a) designed to
do this task would have required almost a
month to solve the three production traits of
interest using test-day model.

Parallel computing has been advocated as
a cost effective way to increase computing
capacity. Ideally, the computation time is
reduced by the same factor as the number of
engaged processors. Unfortunately existing
parallel solvers cannot be used because the
coefficient matrix cannot be stored in the core
memory and iteration on data technique needs
to be used (Schaeffer and Kennedy, 1986). In

addition, the structure of the coefficient matrix
(e.g. relationship matrix) makes parallelization
difficult.

Madsen and Larsen (1998, 1999), Lidauer
and Strandén (1998b), Strandén and Lidauer
(1999) were the first to report experiences
with a parallel implementation of an iteration
on data breeding value estimation program in
animal breeding. The latest results of work by
Madsen and Larsen are described during this
workshop. Their implementation used
Gauss-Seidel and second-order Jacobi in the
solving algorithm. It was designed for a
distributed memory architecture and used
parallel virtual machine (PVM) library.
Objective of this paper is to describe the latest
developments in parallel computing strategies
in the Finnish HPBREEDING project.

2. Material and methods

Parallel computing cannot be considered as
a separate tool in decreasing computing time.
It is well known that slow programs tend to
show high benefits from parallel computing.
So, first, we questioned the solver algorithm in
DMUIOD which used Gauss-Seidel and

2

second order Jacobi algorithms. We decided
to go to preconditioned conjugate gradient
(PCG) method because it would be easier to
parallelize. We also had some expectation on
it to be superior to the algorithms in
DMUIOD especially when a good
preconditioner is used. Martin Lidauer
explained results from our choice during this
workshop.

The second important decision was finding
a suitable parallel computing library (or
environment). We decided to use message
passing interface (MPI) as our parallel library
because it is a standard, so it is likely to run on
several computers without changes. In
addition, it is publicly available (http://www-
unix.mcs.anl.gov/mpi/).

In the following, we will describe shortly
basics on parallelization, the iterative
algorithm, the parallelization approach, our
data set, and measures of parallelization.

Basic parallel concepts

In parallel computing the work is divided to
be done by many processors. In practice, it is
not possible to make all of the work parallel
and there is some penalty for making the
program parallel. A simple formula for the
execution time of the parallel code with

 pN processors is

()ppparallelserialN NCNTTT
p

++= [1]

where serialT = time of the serial part of code,

parallelT = time of the parallel part of code,

().pNC = communiacation and other work due
to paralellization. Performance of the parallel
code with increased number of processors is
often described by speedup which is ratio of
execution time using one processors code
divided by parallel code, i.e.,

pp NN TTS 1= .

Ideal speedup is when pN NS
p

= .

According to formula [1] making the one
processors program faster, i.e., having

parallelserial TT + smaller, always benefits
parallelization as well as long as the serial time
proportion ()parallelserialserial TTT + is not
increased too much. So, optimization of
performance of a program is benefitial.

A side effect of optimization is that the
quicker the one processor program the lower
the speedup may be because optimization does
not affect time due to communication or extra
work due to parallel code. Hence, poorly
optimized program may show better speedup.
However, overall performance of the code is
poorer.

If we compare speedup results of the same
program in different parallel computers then
different computers may give different results
because of work on communication and other
work due to parallel code may have a different
weight.

Parallelization

The PCG method (e.g. Shewchuk, 1994)
was used for two reasons. First, it is easily
applied to parallel processing. Second, it is
superior over previously used solving
algorithm when applied to dairy cattle
breeding for Finnish data (Martin Lidauer
during this workshop).

The parallel program code was developed
from the optimized single processor program.
The PCG algorithm was parallelized using
MPI libraries. In practice, there are several
strategies for parallelization of the PCG
algorithm. Our experience lead to the
implementation in Figure 1. Each processor
performed all calculations for its part of the
data set. Hence, each processor had its own
part of the data and preconditioner files.
Effective parallelism can be achieved when the
processors have equal amount of work and
communication between the processors is
minimized. Consequently, development work
concentrated on the following three aspects:

3

INITIALIZE k ⇐ 0 MPI operations:
() ()0 0r b Cx⇐ − ; global sum vector r
() ()0 1 0d M r⇐ − ; send d

() ()enew ⇐ ′r d0 0 ; global sum scalar enew

DO UNTIL CONVERGENCE
()w Cd⇐ k ; global sum vector w

()s k⇐ ′d w ; global sum scalar s

α ⇐ e
s
new ; () () ()k 1 k k+ ⇐ +x x dα

IF k is divisible by 100: () ()k 1 k 1+ +⇐ −r b C x ; global sum vector r
ELSE: () ()k 1 k+ ⇐ −r r wα

()w M r⇐ − +1 1k ; send w
()e e eold new new
k⇐ ⇐ ′ +; r w1 ; global sum scalar enew

β ⇐ e
e

new

old

; () ()k 1 k+ ⇐ +d w dβ

k k⇐ + 1

Figure 1. Implemented parallel preconditioned conjugate gradient algorithm.

Equal amount of work on processors
Preliminary analysis of the code in solving

test-day models indicated that most work is
done in multiplication of the vector by the
coefficient matrix of the MME. Consequently,
the data was partitioned to processors by
making the least-squares part computations as
even as possible. Natural criterion in
partitioning of the data was number of
records. Pedigree and the preconditioner
information were partitioned according to the
partitioning of the least-squares part.

Minimization of required random access
memory per processor
In practice, only those values that are

required by the processor need to be stored.
However, a general sparse vector may be
inefficient both in memory usage and
computing time. A better sparse vector
storage method exploits structure of the
MME. The MME was ordered such that in
each processor most of the non-zero values

were in two continuous vector blocks. The
rest of the values were stored in a sparse list.

The equations of the MME were
renumbered by cow family blocks (see talk by
Martin Lidauer). The rest of the equations
(attributed to sires, bull dams, and some fixed
effects) are equations that “link” herds. The
cow family blocks were assigned to processors
making clusters of cow family blocks. The
clusters were almost independent from each
other; they were linked only by cows having
records in different clusters (observations or
progeny in herds that were in different
clusters), and by the above mentioned
equations that link herds.

Sparse vector presentation of the large
vectors (d, r, x, w) had three parts: private
area having values associated with equations
in the cow family block cluster; common area
having equations that link herds and are
accessed by all processors; sparse list having
values that are used by at least two processors

4

and are not in the common area. In our
application, common area contained phantom
parent groups, sires, dams of sires, and across
herd fixed effects. Private area had rest of the
effects.

Minimization of message passing
The memory minimization described above

decomposed the vectors into private and
non-private areas. This translates naturally
into local and communicated data.
Communication was done in order to have the
sparse list and the common area to be equal in
all processors.

Application

Breeding values were estimated in the
Finnish dairy cattle population using two
random regression test-day models. The
smaller model had 6,732,765 first lactation
test-day records on milk yield from 24,321
herds. The larger model included 8,381,093,
3,933,460, and 3,933,556 first lactation test-
day records on milk, fat, and protein yields
from 26,312 herds. There were about 7.28 and
21.7 million unknowns in the MME of the
small and large model, respectively.

Two computers were used: Cycle Ultra
AXmp workstation (Sun clone at Agricultural
Computing Centre) with at most 4 processors,
and SGI Origin 2000 super computer (at
CSC) with at most 24 processors. The future
genetic evaluations in Finland are going to be
calculated on the Cycle computer. The
program was tested with both data sets using
the two and four available processors. SGI
Origin 2000 was used to illustrate scalability
of the program up to 16 processors. Tests on
SGI were performed with the small model
using 2, 4, 8, 12, and 16 processors.. Data
was read from the disk in all of the program
runs.

Two parallel programs were compared.
Both make the same communication and are in
general terms the same. However, the
programs differ in having a different data
structure for the sparse vectors. The difference

from programming point of view is a minor
one. The mix99p program has physically
separated the common area into the sparse list
and continuous vector common area. In the
mixp program these two vector areas were
combined into one. There is still a separate
sparse list area and a continuous vector block
area. However, they reside physically in the
same vector. As a consequence, number of
communication calls is less although amount
of communication is the same.

Measures of parallelization

All performance measures in Cycle were
based on the wall clock time because we are
interested in real time benefits of the parallel
code. On the SGI we had to rely on sum of
system and user time because there were other
users that made wall clock time an unreliable
measure. Speedup was calculated from the
execution times. The one processor program
used in this calculation was MiX99 that was
introduced in talk by Martin Lidauer. It does
not require parallel environment. The parallel
solvers mixp and mix99p were tested as single
processor programs as well. Because they are
parallel solvers, their compilation and
execution was done as normal parallel
computing would require.

3. Results and discussion

Speedup on Cycle was close to 2 with 2
processors in solving either of the models
(Table 1). With mix99p program speedup was
even above 2 when solving the smaller model.
However, the parallel program executed in a
single processor mode was faster than the
original serial code. Reason for this result is
unclear. It may be due to better data locality
that allowed better use of the cache memory.
On the other hand the code is somewhat
structurally different so that the compiler may
have had it easier to optimize. Results with 4
processors are not as good but very good as

5

Table 1. Speedup and time when using two and four processors on SGI Origin 2000, and Cycle
Ultra AXmp computers. Time is system+user time for the SGI, and wall clock time for the Cycle
computer. Size of data set is in parenthesis.

Number of
processors: SGI (small) Cycle (small) Cycle (large)
 program Time (min) Speedup Time (min) Speedup Time (h) Speedup
1: mix99s
 mix99p
 mixp
2: mix99p
 mixp
4: mix99p
 mixp

22.27
-

23.47
13.48
14.03
7.43
7.27

1.00
-

0.95
1.65
1.59
3.00
3.06

54.68
50.13
52.35
27.02
27.79
14.06
14.15

1.00
1.09
1.04
2.02
1.97
3.89
3.86

2.30
2.26
2.34
1.18
1.16
0.65
0.64

1.00
1.02
0.98
1.95
1.98
3.53
3.60

the computing time is less than 28% of the
serial program for both the smaller and larger
model. SGI Origin 2000 gave smaller speedup
values. This may be due to disk I/O. However,
there may be other reasons related to the
compiler or the computing architecture.

Speedups on SGI Origin 2000 in solving
the problem up to 16 processors showed an
increasing trend (Figure 2). The mixp solver
had a better speedup with larger number of
processors than with smaller when compared
to execution time using the mix99p program
(Figure 1). In general, increase in speedup was

not as good when the number of processors
was above 8. This is likely be due to increased
communication between processors.
Communication increased linearly as number
of processors was increased. Communication
increased from about 3 Mb between two
processors to about 72 Mb with 16
processors. Total amount of messages sent
between the processors was about 1.3% and
31% of the amount needed to store all
solutions in a vector in the 2 and 16 processor
cases, respectively.

5.03
5.96 6.25

3.06
1.59 5.02 5.67 5.94

1.65
3.00

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

Number of processors

Ideal
mixp
mix99p

Figure 2. Plot of speedup versus number of processors on SGI Origin 2000 for the smaller data.
The figures above (below) the curves correspond to mixp (mix99p).

6

0
50

100
150
200
250
300
350
400
450
500

2 4 6 8 10 12 14 16

Number of processors

Total Memory

Max memory per
processor
Communication

Figure 3. Total memory (in mega bytes) used over processors, maximum amount of memory per
processor, and amount of communication per iteration on SGI Origin 2000 for the small data.

4. Conclusions

Parallel implementation of an iteration on
data program using preconditioned conjugate
gradient as solving algorithm yielded a good
speedup. This was especially so for the Cycle
computer having at most 4 processors.
Parallelization of all steps of the algorithm and
minimization of communication between the
processors were mainly responsible for this
result. Different computers showed different
speedups. It seems that there are computer
specific tricks that lead to better performance
depending on the platform.

When the project was started it was
estimated that it would take almost a month to
calculate genetic values of three production
traits for the Finnish dairy cattle population.
Currently we expect this task to take about
three days on Cycle using one processor. The
results from this study suggest that the task
can be made within 24 hours using 4
processors. So, in practice, this would allow
doing the calculations during weekend while
during week days the computer could be used
for other purposes, e.g., accumulating new
test day information.

Acknowledgement

This work has been supported by the
European Commission’s Esprit programme on
High-Performance Computing and
Networking (Esprit project 23770).

References

Lidauer, M., E.A. Mäntysaari, I. Strandén, A.
Kettunen, J. Pösö. 1998a. DMUIOD: A
multitrait BLUP program suitable for
random regression test day models. 6th

WCGALP. Armidale, 27:463.
Lidauer, M., I. Strandén. 1998b. Experiences

in using parallel computing to solve large
test-day models. 49th Annual Meeting of
EAAP, Warsaw, August 24-27, 1998.

Lidauer, M. et al. 1999. Improving
convergence of iteration on data applied on
large random regression test-day models by
using preconditioned conjugate gradient.
Submitted.

Madsen, P., M. Larsen. 1998. A parallel
solver for multi-trait animal models.
Interbull Open Meet., Rotorua, New
Zealand, Bulletin 17: 96-99.

7

Madsen, P., M. Larsen. 1999. Monthly
evaluation for better genes. CSC News
1/99: 9-11.

Schaeffer, L.R., B.W. Kennedy. 1986.
Computing strategies for solving mixed
model equations. J. Dairy Sci. 69:575-579.

Shewchuk, J.R. 1994. An introduction to the
conjugate gradient methods without the
agonizing pain. Tech. Rep. CMU-CS-94-
125. Carnegie Mellon Univ., Pittsburgh.

Strandén, I., M. Lidauer. 1999. The good
breed. CSC News 1/99:6-8.

Strandén, I., M. Lidauer. 1999. Solving Large
Mixed Linear Models Using Preconditioned
Conjugate Gradient Iteration. Submitted.

