
Attacking the problem of scalability in parallel Gauss-Seidel
and Jacobi solvers for mixed model equations.

Per Madsen1 and Martin Larsen2

1Danish Institute of Agricultural Sciences (DIAS), Department of Animal Breeding and Genetics,
Research Centre Foulum, P. O. Box 50, DK-8830 Tjele, Denmark

2UNI•C, Danish Computing Centre for Research and Education, DTU, Bld. 304, DK-2800 Lyngby, Denmark

Abstract
The history of the CEBUS project and some of its early experiences was described in: “The CEBUS proj-

ect: History and overview” by Larsen and Madsen (This workshop).
Test of the second implementation showed that parallel speedup could be achieved, but communication

among the processors could limit the parallel speedup substantially. An analysis of amount and pattern of
communication indicates that it should be possible to reduce communication at the expense of a little more
computation. This is achieved in a third implementation by splitting the MMEs in a local and a global subset,
as described below.

Common to all tree implementations are the following: To obtain data parallelism (DP), records are
sorted according to level codes of one of the effects in the model. Typically effects as herd-year-season or
management group is used to obtain DP. Initially the master processor distributes disjoint sets of records to
the slave processors. In the same pass through data, diagonal blocks for all effects except the one used to
obtain DP are built, inverted and stored. In every round of iteration, each slave processor processes its part of
the data, solve for the DP effect by Gauss-Seidel and accumulate contributions to the corrected right hand
sides for all other effects in a local vector. When all data has been processed a complete corrected right hand
side (crhs) can be build by summing over processors. In the first two implementations a global reduce op-
eration was used to obtain the global crhs. In the third implementation only a small subset of the global crhs
is needed. Each processor then solves for a part of the remaining effects by second order Jacobi.

The third implementation is characterised by a split of the system in equations within a processor (local
equations) and equations across processors (global equations). The local equations only receive contributions
from data on the processor in question, while the global equations receive contributions from data on more
than one processor. This approach has been programmed, and test runs on models of dimensions between 1.2
and 30.1 mio. equations has shown close to linear scalability and in some cases super linear scalability.

1. Introduction

The use of Animal Models for prediction
of breeding values, have led to the need for
solving large systems of simultaneous linear
equations. Although the Mixed Model Equa-
tion (MME) for an Animal Model is very
sparse, it is in many practical applications too
large to build and solve directly even in
sparse format. Taking the Danish Dairy Cattle
population as an example, the number of
equations per trait is approx. 10 mio. A half-
stored sparse representations of the coefficient
matrix is approx. 500 GB, while the data is
only 2 GB. Schaeffer and Kennedy (1986)

described an iterative procedure for solving
the MME without constructing the equations
explicitly. This procedure is known as “Itera-
tion on Data”.

In many animal breeding programs, there
is a trend to use more complex models for
prediction of breeding values, i. e. going from
single- to multi-trait models, changing to
models with random regressions, or including
more factors in the operational model. All
these changes increase the dimension and
complexity of the MME. At the same time,
there is a requirement for more frequent
evaluations. One way to overcome this com-
putational challenge is to distribute the com-

2

putations on several computers, i.e. use par-
allel computations.

Previous Danish attempts to parallelise a
solver for MME’s based on “iteration on
data” and a combination of Gauss-Seidel and
Jacobi iteration, have shown that a parallel
speedup could be achieved, but communica-
tion among the processors could limit the
speedup substantially. For a detailed descrip-
tion of these experiences see Larsen and Mad-
sen (1999).

This paper describes an attempt to attack
the scalability problem by utilising the struc-
ture of the MME system to minimise commu-
nication.

2. Model

For reference purpose, let the general mul-
tivariate linear mixed model be:

eaZuZXXy ai
r

1i
i2211 ++++= ∑

=
ββ (1)

where y is a vector of observations on t traits,
β1 and β2 are vectors of fixed effects, ui , i=1,
2,… ,r are vectors of random effects, a is a
vector of random additive genetic effects and
e is a vector of random residuals. X1, X2, Zi,

i=1, 2,… , r, and Za are known incidence ma-
trices.

Assumptions for the random vectors are:

0]eCov[a,i0]a,Cov[u
i0]e,Cov[uji0]u,Cov[u
IRRV[e]0E[e]

AGGV[a]0E[a]

iIGG]V[u
i0]E[u

i

iji

0

0a

0ii
i

a

i

=′∀=′
∀=′≠=′
⊗===

⊗===

∀⊗==
∀=

, ,
,, ,

,,
,,

,
, ,

where G0i, , i=1, 2,… ,r are (co)variance matri-
ces for the traits influenced by the i’th of the
r random effect other than animal, G0a is the
additive genetic (co)variance matrix for the t
traits, R0 is the residual (co) variance matrix
for the t traits and A is the additive genetic
relationship matrix.

Let:

]uuu[u

],ZZ[ZZ,GG

r21

r21i

r

1i

′′′=

==⊕
=

ΜΛΜΜ

ΜΛΜΜ

Then the MME for (1) is:



















′
′
′
′

=


















×


















+′′′
′+′′′
′′′′
′′′′

−

−

−

−

−−−−−

−−−−−

−−−−

−−−−

yRZ
yRZ
yRX
yRX

a
u

GZRZZRZXRZXRZ
ZRZGZRZXRZXRZ
ZRXZRXXRXXRX
ZRXZRXXRXXRX

1
a

1

1
2

1
1

2

1

1
aa

1
a

1
a2

1
a1

1
a

a
111

2
1

1
1

a
1

2
1

22
1

21
1

2

a
1

1
1

12
1

11
1

1

ˆ
ˆ

ˆ
ˆ

β
β

(2)

The blocks 1XRX 1
1

−′ and 11 GZRZ −− +′ con-
sists of even smaller diagonal blocks, with
blocks of dimensions equal to the number of
traits affected by the respective fixed or ran-
dom effects. The diagonal block for the re-
maining fixed effects (2

1
2 XRX −′) is rela-

tively dense, but in most practical applications
it is of limited size. The diagonal block for the
animal equations (1

aa
1

a GZRZ −− +′) is sparse,

but have a complex structure due to 1
aG− . The

off diagonal blocks shown in (2) are sparse,
but can in principle contain nonzero elements
anywhere.

A possible implementation of “Iteration
on data” goes as follows:

1. Chose the fixed factor with the largest
number of levels (typically a management

3

group effect) as fixed factor 1 (β1). In a
pre-processing step, data are sorted on
level codes of that factor, and equation
numbers are assigned to all factors a f-
fecting the records. The relative dense d i-
agonal block 2

1
2 XRX −′ are formed and a

LU-factorisation of this block is com-
puted and stored. Also the small diagonal
blocks in 11 GZRZ −− +′ and

1
aa

1
a GZRZ −− +′ are formed, inverted and

stored.

2. The sorted data are processed in blocks
corresponding to one level code of fixed
factor 1 (a GS-group). These records
generate one equation in single trait and t
equations in multi-trait applications for
the first fixed factor. Effects of all other
factors affecting the records in this GS-
group are absorbed into a corrected right
hand side (crhs) based on the k th iterates
of β2, u and a. New iterate(s) (k+1) for the
unknown (t unknowns) in β1 is calculated
by multiplying the element(s) in crhs with
the inverse of the corresponding diagonal
element (block) of 2

1
2 XRX −′ . The block

of records also contributes to elements for
the other factors. These contributions
times the appropriate components of β1
from the current (k+1)th round of iteration
and β2, u and a of iterates from the prev i-
ous (k)th round of iteration are accum u-
lated in crhs. When all data are processed,
a new (k+1) iterate for the complete β1
vector has been calculated.

3. The pedigree file is processed for acc u-
mulation of contributions corresponding
to off-diagonal elements in

1
aa

1
a GZRZ −− +′ .

4. After this the equations for β2, u and a are
on a (block) diagonal form. Iterate k+1for
β2 is obtained by back solving based on
the stored LU-factorisation. New iterates
for u and a are calculated by multiplying

elements in crhs with inverse diagonal
elements (in multi trait cases t elements of
crhs are multiplied by the inverse of the
corresponding d iagonal block).

Step 2 to 4 are repeated until a stopping crit e-
ria is met.

In the CEBUS1 project there has been two
earlier approaches of implementing a parallel
solver for MME’s based on the principles
described above. The parallelisation used data
parallelism obtained by distributing the data
on several processors. Larsen and Madsen
(1999) describe the two implementations in
detail.

3. Limitations in previous implementations

In implementation #1, a standard text book
recursive doubling technique was used for
summing and distributing the vector of co r-
rected right hand sides (crhs). This method
lead to an enormous amount of communic a-
tion in each round of iteration. In a test exam-
ple with 9.5 mio. equations, the amount of
communication were approximate 1.3, 3.7
and 9.5 GB when executed on 4, 8 or 16
processors respectively.

In implementation #2, each slave processor
had a compressed crhs containing only el e-
ments that receive contributions from data on
that slave. During the initial data distribution,
mapping vectors were generated for each
slave processor. Each slave processor had a
mapping vector from the global to the local
addressing space. The master processor had
mapping vectors for each slave processor, to
map from the slaves local to the global a d-
dressing space. The global reduce of crhs was
implemented as follows: Each slave sends its
compressed crhs to the master. The master
unpack and sum the contributions from each
slave. Then disjoint parts of the global crhs
needed for the Jacobi iteration was sent to the
slaves.

1Continuous Estimation of Breeding values Using
Supercomputers. Esprit Project no. 24721

4

This approach lead to a considerable r e-
duction in the amount of communication. For
the example mentioned above the amount was
0.5, 0.7 and 1.3 GB. This corresponds to a
reduction in communication of 62, 81 and 86
% respectively.

Extensive timing of the second approach
on systems of different sizes showed, that
parallel speedup could be achieved in some
cases, but that communication still limited the
speedup.

4. How to improve scalability

Based on experience from implementation
#2, and inspired by the methods used for i n-
corporating external information’s into
MME’s (Henderson, 1975, Bonaiti and Bo i-

chard, 1995), a new approach has been pr o-
grammed. In this implementation (#3), the
MME’s are rearranged into local and global
equations. Local equations have direct links to
data on one processor only. Global equations
have direct links to data on more than one
processor. The global equations would typ i-
cally be equations for fixed effects other then
the one solved by Gauss-Siedel, animal equ a-
tions for sires and bull dams and equations for
cow’s in herds, that are distributed on more
than one processor. In order to keep the nu m-
ber of global equations as low as possible, all
data from a herd should always be on the
same processor. The structure of the MME in
(2) distributed on a master and 3 slave proce s-
sors and after rearrangement is illustrated in
Figure 1.

0 0 0

0 0

0 0

0

0

 × =

Master Slave 1 Slave 2 Slave 3 All slaves

Figure 1. Structure of rearranged MME distributed on a master and 3 slave processors. The arrows
 ()indicates where commun ication is needed.

Symmetric

5

Implementation #3 has the following steps:

1. Data distribution, where the master sends
disjoint sets of data to a number of slave
processors and collects information on
which equations that are linked to data on
each of the slave processors. When all
data are distributed, equations linked to
data on more than one slave are classified
as a global equation, while the remaining
equations are local to the slave having the
data they are linked to. Each slave proce s-
sor then pass through its part of data and
convert class codes into a local addressing
space, and at the same time build a ma p-
ping vector between the local and the
global addressing space. A subset of the
pedigree file containing all animals with
data on that slave and all their ancestors is
extracted on each slave processor.

2. Each slave perform the Gauss-Seidel step
on its subset of data as outlined in step 2
on page 3.

3. Each slave processor process its subset of
the pedigree file

4. Each slave sends the parts of its crhs
vector that corresponds to global equ a-
tions to the master. The master sums over
processors, and broadcast the summed
crhs for global equations to all slave pro c-
essors.

5. On the master, a new iterate for β2 are
obtained by back solving based on the
stored LU-factorisation and it is broadca r-
sted to the slaves. On each of the slave
processors, new iterates for the local and
global part of u and a are calculated and
the new iterate for β2 are received.

6. Step 2 to 5 are repeated until a stopping
criteria is met.

7. Finally the complete solution vector is
build based on solution vectors and ma p-
ping vectors from each of the proce ssors.

It is important to notice that in this impl e-
mentation it is only the global equations that
generate communication in each round of
iteration. The amount of communication for
the examples used above are 17.6, 35.5 and
70.2 MB respectively. Compared to impl e-
mentation #2 the amounts of communication
is reduced by 96, 95 and 94 % respe ctively

5. Test runs

Implementation #3 has been tested on the
following four data sets:

1. Protein yield for all Red Danish dairy
cows (RD)

2. Protein, fat and milk yield for all Red
Danish dairy cows (RD3)

3. Protein yield for all dairy cows in De n-
mark (AC)

4. Protein, fat and milk yield for all dairy
cows in Denmark (AC3)

The model used for the RD was the same as
used in the routine evaluation as described by
Pedersen et al. (1999). For AC the multi-
breed model proposed by Madsen et al.
(1997) was used. For the multi-trait models,
the model from the corresponding single-trait
analysis was used for each of the traits, and
genetic and residual correlation’s among the
traits was included. The dimensions of the
MME to solve were 1.2., 4.3, 9.5 and 30.1
mio. for RD, RD3, AC and AC3 respectively.

The computer environment was an IBM
RS/6000 SP at UNI•C. This computer has 80
processors (48 with 512 MB and 32 with 256
MB memory) for parallel computation. The
timing of the new approach was made on
processors with 512 MB. The elapse time per
round of iteration for the four test examples is
shown in Fig. 2.

6

0

25

50

75

100

0 4 8 12 16 20
No. of processors

RD
RD3
AC
AC3

Time (sec).

Figure 2. Elapse time per round of iteration for the four test example on varying number of proce ssors.

A measure of parallel speedup is relative
speed, which is defined as the reciprocal of
elapse time. If speedup is 100% then relative
speed is doubled when the number of proce s-
sors are doubled. The relative speed for the
four test examples is in Fig 3. In order to

 make the curves comparable relative
speed has been normalised so that the speed is
set to 6 when executed on 6 processors, which
is the lowest number of processors all exa m-
ples can be executed on due to memory r e-
quirement.

0

4

8

12

16

20

24

0 4 8 12 16 20
No. of processors

RD
RD3
AC
AC3
Linear speedup

Relative speed

Figure 3. Relative speed for the four test examples. Speed is normalised so speed is 6 when executed on 6
processors.

7

The speedup curves for RD, and RD3
show close to linear speedup. From 2 to 8
processors super scalability is achieved. Do u-
bling the number of processors from 2 to 4
results in 3-fold increase in speed from 1.24
to 3.70. The AC example shows a clear super
scalability in the interval from 4 to 6 proce s-
sors. This is caused by the fact, that only a
part of the data can be in memory when ex e-
cuted on less than 6 processors. From 8 to 12
processors the scalability is linear. Similar
patterns for speedup is seen for AC3, but here
the super scalability continues until 12 pro c-
essors. From 12 to 16 processors the speedup
is linear. A further increase in the number of
processors results in less than linear scalabi l-
ity.

The less than linear scalability achieved
when the number of processors exceed a ce r-
tain number is caused by the following: As
the number of processors increase, the data is
split in an increasing number of subsets. This
leads to an increase in the number of global
equations. In implementation #3, the global
equations are solved on all slave processors,
so the total number of equations solved i n-
crease with increasing number of processors.
In the AC3 example the number of global

equations increase from 1.2 to 1.7 mio ., and
the total number of equations solved increase
from 36.1. to 60.7 mio. going from 6 to 20
processors. As long as the increase in number
of global equations is less then the reduction
caused by distribution on more processors,
the number of equations solved on each slave
processor decrease. However, the proportion
of global equations solved on each slave i n-
creases.

The number of equations solved on each
slave processor, and the proportion that are
global equations for the AC3 example is in
Fig.4. The total number of equations solved
can be obtained by multiplying the number
solved on each slave with number of proce s-
sors minus one.

Scalability of a parallel program can also
be expressed as execution time with increa s-
ing problem size when executed on a fixed
number of processors. Execution times for the
four test examples when executed on 6 and 12
processors are shown in Fig 5. The observed
times are shown as solid lines, while linear
scalability based on times for the RD example
(1.2*mio. equations) are showed as dotted

Figure 4. Number of equations solved per slave processor and the proportion (in percent) of global
equation depending on number of processors for the AC3 example (30.1 mio. equ ations).

2

3

4

5

6

7

8

6 10 14 18
No. of processors

1000000

0

10

20

30

40

50

60

%

eq. "solved" per slave

% Global eq. per slave

8

0

20

40

60

80

100

1,0 6,0 11,0 16,0 21,0 26,0 31,0
No. of equations in millions

6 proc.
Linear, 6 proc.
12 proc.
Linear 12 proc.

Time (sec.) per round

Figure 5. Size scalability on 6 and 12 processors. Solid line are observed execution time. Dotted lines are
linear scalability based on execution time for the RD example (1.2 mio. eq.).

lines. On 6 processors execution time increase
more than corresponding to linear scalability.
This is also caused by the fact, that for the
larger systems, only a small proportion of the
data can be in the combined memory of the 6
processors. The 12 processor test show close
to linear scalability over the size interval
tested.

6. Further improvement

Further improvements of implementation
#3 could be a change in the data distribution
over slave processors so that all records from
a herd always are on the same processor. In
repeatability models as used for testing, this
will eliminate all global equations for the
permanent environmental effect. At the same
time it will reduce the number of global an i-
mal equations, because only relationship
across herds will generate global equations.

An other possible improvement of impl e-
mentation #3 could be to restrict the number
of global equations solved on the individual
slave processors to the subset of the global
equations that are linked to the local data.
This would limit the increase in the total

number of equations solved with increasing
number of processors.

Implementation #3 will be included in the
DMU package (Jensen and Madsen, 1994)
shortly. The DUM package can be dow n-
loaded by anonymous ftp from: gene t-
ics.argsci.dk in the directory pub/dmu.

7. Conclusions

Implementation #3 show good scalability
both over number of processors and over d i-
mension of the equation system to solve in the
interval tested.

A parallel solver with good scalability
opens for solving larger problems than can be
done on a single processors or problems can
be solved in shorter time.

The evolution in the GEBUS project
clearly demonstrates, that it is crucial for o b-
taining parallel speedup that the interproce s-
sor communication is minimised.

References

Bonaiti, B. and D. Boichard, 1995. Accoun t-
ing for Foreign Information in Genetic

9

Evaluation.. INTERBULL Bulletin no,
11, 4pp.

Henderson, C.R., 1975. Use of All Relatives
in Intraherd Prediction of Breeding
Values and Producing Abilities. J. Dairy
Sci. 58, 1910-1916

Jensen, J. and P. Madsen, 1994. DMU: A
package for the analysis of multivariate
mixed models. Proc. of 5 th World Con-
gress on Genetics Applied to Livestock
Production., 22, 45-46.

Larsen, M. and P. Madsen, 1999. The CEBUS
project: History and overview. Comp u-
tational Cattle Breeding ’99 (this wor k-
shop). 9pp.

Madsen, P., J. Jensen and U. S. Nielsen, 1997.
Effect of Heterosis and Imported Germ
Plasm on ProductionTraits Estimated in
the Danish Multi-breed Animal Model.
INTERBULL Bulletin no. 16, 85-88.

Pedersen, J., G.A. Pedersen, U.S. Nielsen, J.
Jensen, P. Mansen and J.R. Thomassen.
Animal Model for ydelse. (in prepara-
tion)

Schaeffer, L. R. and B. W. Kennedy, 1986.
Computing Solutions to Mixed Model
Equations. Proc. of 3rd World Congress
on Genetics Applied to Livestock Pr o-
duction., 12, 382-393.

