
The CEBUS project: History and overview

Martin Larsen1 and Per Madsen2

1UNI•C, Danish Computing Centre for Research and Education, DTU, Bld. 304, DK-2800 Lyngby, Denmark.
2Danish Institute of Agricultural Sciences (DIAS), Department of Animal Breeding and Genetics,

P.O.Box 50, DK-8830, Tjele, Denmark.

Abstract

In 1995 a project was initiated by DIAS and UNI•C aiming at the development of a parallel solver for
mixed model equations (MME). The project is based on the assumption, that data parallelism (DP) can be an
affordable and realistic way of satisfying the steadily increasing demands of computing resources, which is
needed for the solution of the still larger and more complex MMEs used in animal breeding programs. Since
mid 1997, the project has received support from EU under the name of CEBUS1 (Continuous Estimation of
Breeding values Using Supercomputers).

The iterative linear equation solver (DMU5) from the DMU package developed at DIAS is the starting
point for the parallelisation attempts. This solver can handle large systems by “iteration on data” using a
combination of Gauss-Seidel and Jacobi algorithms. The parallel programs are developed for a distributed
memory architecture using a master-slave concept. The IBM RISC 6000/SP at UNI•C (with 105 processors
among which 64 + 12 are connected by a high performance switch) is used. Several parallel implementations
have been tested with gradually increasing success. The first implementation used standard recursive
doubling of the corrected right hand side (crhs) of the MME. This involved sending all vector components of
crhs between all processors, and led to huge amounts of communication as well as memory problems. In
large mixed models, the performance was worse than in the serial application.

The second implementation used summation of a packed crhs (containing nonzero components only) on
the master processor. It led to substantial reduction in amount of communication and memory consumption.
This implementation (available mid 1998) demonstrated good parallel speedup in medium sized MMEs, and
some parallel speedup in large models provided all data could be in distributed memory (using sufficiently
many processors).

These experiences has led to a third and even more successful implementation, capable of producing
parallel speedup even in very large mixed models. This implementation is described in detail (together with
some principles common to all the implementations) in the paper “Attacking the problem of scalability in
parallel Gauss-Seidel and Jacobi solvers for mixed model equations” by Madsen and Larsen (1999) (This
workshop).

1 Esprit Project no. 24721

1. Introduction

Estimation of Breeding Values (EBVs) by
means of BLUP, is done by solving a linear
system known as Mixed Model Equations
(MME). Increasing size and complexity of the
models in use, puts still higher demands on
the computing resources. With the number of
animals in Danish dairy cattle breeding, an
animal model combined with a repeatability
model will need approx. 10 million equations
per trait. In multi-trait calculations, the
number of equations will increase in

proportion with the number of traits. Still
larger systems need to be considered in case
of test day models. Since both accurate and
frequently updated EBVs are needed to
support fast genetic progress, the execution
time for calculation of a complete update of
the EBVs need to be fairly short (in the range
of few days).

An affordable and realistic way of
addressing this computational challenge could
be to use parallel computers based on
standard type workstations and the distributed
memory model. Computations are thus

2

distributed on a number of processors with
local memory, interconnected by a
communication network. Special software for
calculation of EBVs is needed on such a
machine, in order to manage distribution of
data and communication between the
processors. In theory (assuming ideal load
balancing), use of n processors can reduce the
execution time by a factor of n.

In 1995 a project was initiated by DIAS
and UNI•C aiming at the development of a
parallel solver for mixed model equations
(MME) using data parallelism (DP).The
iterative linear equation solver (DMU5) from
the DMU package developed at DIAS by
Jensen and Madsen (1994) is the starting
point for the parallelisation attempts. This
solver can handle large systems by “iteration
on data” using a combination of Gauss-Seidel
and Jacobi algorithms. Since mid 1997, the
project has received support from EU under
the name of CEBUS (Continuous Estimation
of Breeding values Using Supercomputers).

The project has developed and tested three
parallel implementations with gradually
increasing success. In this paper, we will give
an outline of the parallelisation project, with
special emphasis on the two first
implementations of the parallel solver. Based
on the experiences with the first two
implementations, a third implementation has
recently been developed. The third
implementation is described in detail by
Madsen and Larsen (1999) in “Attacking the
problem of scalability in parallel Gauss-Seidel
and Jacobi solvers for mixed model
equations” (This workshop).

2. Model

For reference purposes, we write a general
multivariate linear mixed model:

y = X1β1 + X2β2 +∑
=

r

1i
iiuZ + Zaa + e

where y is a vector of observations on t traits,
β1 and β2 are vectors of fixed effects, ui , i=1,
2,… ,r are vectors of random effects, a is a
vector of random additive genetic effects and
e is a vector of random residuals. X1, X2, Zi
,i=1, 2,… , r, and Za are known incidence
matrices.

Assumptions on (co)variances are:

V[ui] = Gi = G0i ⊗ I, i = 1, 2,… ,r,
V[a] = Ga = G0a ⊗ A,
V[e] = R = R0 ⊗ I,
Cov[ui, u′j] = 0 , if i ≠ j,
Cov[ui, a′] = 0 , ∀ i,
Cov[ui, e′] = 0 , ∀ i and
Cov[a, e′] = 0 , ∀ i

where G0i,, i=1, 2,… ,r are (co)variance
matrices for the traits influenced by the i’th
of the r random effects other than animal, G0a

is the additive genetic (co)variance matrix for
the t traits, R0 is the residual (co)variance
matrix for the t traits and A is the additive
relationship matrix.

Let: G = ∑
=

r

1i
iG

Z = [Z1 ; Z2 ; … ; Zr] ,
u′ = [u′1 ; u′2 ; … ; u′r]

Use of BLUP and the assumptions on
covariances leads to the MME:

X′1R-1X1 X′1R-1X2 X1′R-1Z X′1R-1Za β1 X′1R-1y
X′2R-1X1 X′2R-1X2 X2′R-1Z X′2R-1Za β2 X′2R-1y
Z′R-1X1 Z′R-1X2 Z′R-1Z + G-1 Z′R-1Za u = Z′R-1y (1)
Z′aR-1X1 Z′aR-1X2 Z′aR-1Z Z′aR-1Za + Ga

-1 a Z′aR-1y

3

3. Iterative solving strategy

The MME in (1) can be solved by Gauss-
Seidel (GS), Jacobi or a combination of the
two methods. Rewrite (1) as: Cx = b.
Decompose C as C = L + D + U, where L is
lower and U is upper triangular and D is
diagonal. The Gauss-Seidel iteration is:

Dxk+1 = (- Lxk+1 - Uxk + b) = crhs
⇒ xk+1 = D -1 crhs (2)

where x k+1 denotes the (k + 1)th iterate to the
solution vector, and crhs is corrected right
hand side vector.

Then the first order Jacobi method is:

Dx k+1 = -(L + U)x k + b = crhs
⇒ x k+1 = D -1 crhs (3)

In Jacobi iteration, only solutions from the
previous round of iteration are used, while the
GS method always use the most recent
updates of the solutions. Jacobi iteration is
known to have poor convergence rate on
equation systems like the MME. Extending
the method to second-order Jacobi improves
rate of convergence (Misztal & Gianola,
1987).

The extension of (3) to second-order
Jacobi iteration is:

x k+1 = D -1 crhs + α(x k - x k-1) (4)

where α is a relaxation factor.
Both GS and Jacobi iteration can be used

in a blocked form. D then contains squared
blocks, and elements of x and crhs are
grouped in subspaces of dimensions
corresponding to the blocks in D.

4. Solving strategy in DMU5

We shortly sketch the solving strategy as it
is implemented in the DMU5 module of the
DMU package by Jensen and Madsen (1994).
This basic strategy is common to the serial

and all tree parallel implementations of the
solver.

The explicit construction of the MME is
avoided by “iteration on data” as proposed by
Schaeffer and Kennedy (1986). The effect in
β1 is chosen as the one with the largest
number of levels (typically herd-year-season
or management group effect). The blocks
used in the iterative solver are defined by
level codes for β1, u and a. For example, all
equations for additive genetic effects for one
animal are treated as a block and will be
solved simultaneously.

 A prepare program common to the serial
and all parallel implementations of the solver,
transforms level codes in the original datasets
into consecutive numbers, and produce
recoded data and pedigree files. The number
of processors to be used for solving the model
are set dynamically when the solver is
invoked. The solver first executes an
initialisation step during which the largest
possible number of records are placed in
memory, the remaining part on disk. Diagonal
blocks are inverted and stored in memory if
possible, otherwise on disk. Equations
corresponding to β2 are treated as a single
block. This block is relatively dense. Its LU-
factorisation is computed and stored.

In each round of iteration, data are
processed in level code sequence of the effect
in β1. When all data belonging to one level
code of β1 has been processed, there are no
additional contributions to the crhs elements
for that group of equations, and an updated
iterate can be obtained by expression (2).
Contributions to crhs for the remaining part
of the MME can then be calculated using the
updated iterates for β1 and the values for β2, u
and a from the previous round of iteration.
When all data has been processed the
complete β1 vector has been updated, and all
contributions from data to the elements in
crhs corresponding to equations for β2, u and
a have been calculated. Correction due to the
relationship matrix for the part of crhs
corresponding to animal equations (a) are
then calculated. An iterate for β2 is found by

4

a backsolve using the LU-factorisation.
Updated iterates for u and a are obtained by
(4). Iterations continue until a criterion of

convergence in the 2-norm of the solution
is met. An outline of the serial solver is
shown in the left part of Figure 1.

Figure 1. Program layout for a serial (left) and parallel implementation #2 (right) of iteration on data

Prepare program

Re-coded
Data

Re-coded
Pedigree

Initialisation of solver

Diagonal
blocks

ITERATIVE SOLVER

do k = 0, kmax until conv.
 scan through data

 GS-solution contributions to crhs endscan
 contributions to crhs from A-1

 JACOBI solution
 (iterate x k+1 produced)
enddo

Solutions

Data Pedigree

Prepare program

Re-coded
Data

Re-coded
Pedigree

Initialisation of solver
Start M processors

Diag. blocks
split in M-1 parts

ITERATIVE SOLVER

do k = 0, kmax until conv.
 if slave then
 scan through part of data

 GS-solution
 local contributions to crhs endscan
 else
 contributions to crhs from A-1

 endif
 global reduce (+) of crhs

 if slave then
 JACOBI solution for 1/(M-1) of u and a
 else
 JACOBI solution for β2
 endif

 (iterate x k+1 produced)
 Exchange components of solution vector

enddo

Solutions

Data Pedigree

Re-coded data
split in M-1 parts

Serial implementation Parallel implementation

5

5. Distributed memory architecture and
DP.

Common to the parallelisation attempts is
use of Data Parallelism (DP) on a distributed
memory architecture. DP means that data
records are grouped in disjoint sets. The
groups are mapped to specific processors. In
parallel DMU5 data distribution takes place in
the solver initialisation phase. For good
performance (minimisation of interprocessor
communication) it is important that records
belonging to the same level code of β1 never
map to different processors.

In a distributed memory architecture, each
processor has its own local memory. The cpu
in one processor cannot read directly in the
memory of another processor. Instead the
processors exchange data through a
communication network.

A master-slave concept is used. The master
processor can perform tasks different from the
slave processors. Slave processors execute
identical codes. In all three implementations
of parallel DMU5, the master processor
control the data distribution step, read recoded
data and transmit data records to the slaves.
The tasks of the master processor during
iterations differ between the implementations.
The LU-decomposition and backsolve in the
block corresponding to β2 is done exclusively
on the master processor.

In all three parallel implementations there
is a need for some kind of “global reduction”
of the crhs vector i.e local components of crhs
need to be summed across processors to get a
global crhs for use in formula (4).The global
reduction is implemented very differently in
the implementations. Since the global
reduction implies interprocessor
communication, execution time in the
iteration round is minimised by minimising
the number of components of crhs which need
to take part in the global reduction.

6. Development platform

The parallel platform used for
development and test is the IBM RS/6000 SP
parallel computer with distributed memory
architecture at UNI-C. This machine has (in
the moment of writing) 105 processors. The
architecture in each processor is that of a
POWER2 RS/6000 workstation. There are 64
+ 12 + 4 processors for parallel batch use, 20
processors for serial batch, 4 interactive nodes
and a control workstation. The parallel batch
nodes are interconnected by a High
Performance Switch.

One parallel batch job is allowed to use not
more than 32 processors. 12 parallel batch
nodes are for test jobs with short execution
time. The remaining 4 parallel batch
processors are reserved for special use. 32 +
12 parallel batch processors have 0.5 GB
memory, the remaining 32 have 256 MB
memory. Each processor has 3.5 GB scratch
disk. All processors have access to a large
home filesystem and a parallel I/O filesystem
as well.

Message passing library used is PVM. A
MPI version of implementation #3 has
recently been prepared.

Parallel implementation #1

In this implementation, the parallelisation
of the DMU 5 solver is made as simple as
possible. Data records are distributed on both
master and slaves in approximately equal
proportions. When all data are processed in
any iteration round, each processor which
solves for the iterate of β1 gets an update of a
local copy of crhs in local memory. A global
reduce is done on all components of crhs
corresponding to the full dimension of the
MME. All processors participate
symmetrically in the global reduce. When the
global reduce is finished, the crhs on each
processor is the global update of crhs. Each
processor will use some of the components in
crhs for the determination of the iterates to

6

β2, u and a. Pedigree processing is done
exclusively on the master processor.

The memory consumption in this approach
is substantial. Each node need three vectors in
the same dimension as the MME: x k, x k-1and
crhs. The vectors are in double precision. This
memory consumption is not dependent on the
number of processors attached to the parallel
job. Therefore a severe limit on the scalability
of this implementation exists. When the three
vectors take up most memory in each
processor, use of virtual memory is enforced,
and system paging results. In case of a
9.5*106 equation model, the memory need for
vectors is (9.5*106*8/10242)*3 MB = 217.4
MB which together with other memory use by
program and system will more than exhaust a
processor with 256 MB memory.

Another problem in this implementation is
the amount of communication generated by
the global reduce operation. A method called
“recursive doubling” can be used to minimise
the number of point to point communications.
In general n processors need

p = ceil(log2(n))

levels of communication where ceil produce
the smallest whole number larger than its
argument. Use of 16 processors on a system
with dimension 9.5*106, send an amount of
communication on the network in 4 levels
producing 16*(9.5*106*8/10242)*4 MB =
4.64 GB in each round of iteration. Since
many of the contributions in this reduction are
0, and most components of crhs are not
needed on the processor for its use of formula
(4), this communication represents a large
waist of resources. Communication buffers
are allocated on both sending and receiving
processors. Therefore, true communication
load due to recursive doubling is twice the
value mentioned above. In addition to this,
iterates of u and a components need to be
broadcasted from the slaves on which they are
computed, to all other processors. The iterate
of β2 is broadcasted from the master to all
slaves. This is necessary in order to have the x

k properly updated on all processors before
the start of the next round of iteration. Taking
this additional communication buffer
allocation into account, the total amount of
communication becomes 9.5 GB at 16
processors.

A speedup curve for implementation #1
was never produced. On large models, it
seemed slower than its serial counterpart. Its
main virtue was to demonstrate that parallel
execution could be obtained, and to probe the
possibilities and limitations of the DP
approach on the machine in question.

Parallel implementation #2

Monitoring the processors during
execution in implementation #1 indicated,
that the master acted as a bottleneck.
Therefore the data records (except pedigree
records) was removed from the master, and it
did not any longer solve for the iterate of β1.
Besides this, the experiences with
implementation #1 demonstrated a need for
radical reduction in memory usage and
amount of communication. These closely
related topics are addressed in
implementation#2 (Madsen and Larsen 1998).

The basic idea is to compress crhs so that
only components related to data on the slave
are allocated. The solver initialisation step is
modified. It predicts the components of crhs
needed on any slave when data are
distributed. This is done by the same
addressing algorithm which is used later on in
the iterations when data are absorbed into
crhs. We now use two types of addressing
spaces for crhs: The one with same dimension
as MME (global), and local spaces on each
slave with decreasing dimension when
number of slaves increase. The initialisation
generate mapping vectors between the local
spaces and the global space. Each slave has a
mapping vector of full length of type
integer*4. This vector (stored in memory)
gives the mapping from the global to the local
space on that slave. The master has mapping
vectors for each slave stored on disk. They are

7

used by the master for mapping from a slaves
local to the global space.

The global reduce is implemented as
follows: Each slave send its compressed crhs
to the master. The master reads the
corresponding mapping vector from disk, and
use it for unpacking the received local crhs
into the global space. The master sums the
crhs contributions. Finally, disjoint parts of
the global crhs are sent to those slaves which
need them for the Jacobi iteration by (4). An
outline of this solver is shown in the right part
of Figure 1.

The amount of communication is reduced
substantially by this method. Continuing with
the example mentioned above, the
communication buffer allocation per iteration
becomes 1.3 GB at 16 processors, which
means a reduction of 86%.

Even though the mapping vectors have full
length, they only fill 4 byte per element
compared to the 8 bytes of crhs. In addition to
this, x k-1 is compressed by a simple linear

transformation of the address space, so that
only components of x k-1 needed on the slave
for use by (4) are allocated on that slave.
Thus, some reduction in memory
consumption is obtained, although memory
consumption is not fully scalable by model
size since the slaves still need a full length x k,
and the master need the global crhs, β2, and a.

This implementation has been tested on the
following three data sets:

• Protein yield for all Red Danish dairy
cows (RD), 1.2*106 eq.

• Protein, fat and milk yield for all Red
Danish dairy cows (RD3), 4.3 *106 eq.

• Protein yield for all dairy cows in
Denmark (AC), 9.5*106 eq.

Relative speedup curves for these models as a
function of number of processors on the IBM
SP at UNI•C is shown in Figure 2.

Figure 2. Relative speedup in implementation #2 for single trait Red Danish cattle (RD, 1.2*106 eq.), three
trait Red Danish cattle (RD3, 4.3*106 eq.) and all Danish dairy cattle single trait (AC, 9.5*106 eq.)

0
2
4
6

8
10
12
14

0 4 8 12 16 20 24 28 32

No. of processors

RD
AC
RD3

RRelative speed

8

Speed is calculated as reciprocal execution
time per round of iteration. Relative speed is
normalised to the same value on 4 processors,
because this is the smallest number of
processors where AC can run due to memory
requirements on 256 MB processors. Because
the master only solve very few equations, a
small drop in performance is observed from
one to two processors in RD. In RD and RD3,
parallel speedup close to linear is obtained
from 2 to 8 processors. At RD it flattens
around 12 processors because the master
becomes a bottleneck due to pedigree
processing and increased communication. For
RD3 some speedup continues until 24
processors, because the larger model size
means that data distribution on more slaves is
needed before the pedigree processing on
master becomes a bottleneck.

AC behaves very different. This model is
so large, that part of data need to be stored on
disk until between 16 and 20 processors.
When all data can be in memory, a 6-fold
increase in speed is observed. Below 16 and
again above 20 processors, the
communication on the master becomes a
bottleneck, and no speedup is observed.

7. Conclusions

Implementation #2 demonstrate that
parallel speedup can be achieved in
moderately sized models. It does not show
full scalability on number of processors and
model size. For the very large MMEs this
implementation is insufficient.

Compared to implementation #1 the result
is however encouraging. The amount of
communication is still relative high. If a new
reduction in amount of communication as
radical as the one already seen can be
achieved, a fast parallel solver should be
obtainable even for large models. And if all
three types of working vectors can be
compressed in proportion with the number of
processors, the solver should be scalable as
well. Precisely these objectives are addressed

in implementation #3, described in detail in
the paper “Attacking the problem of
scalability in parallel Gauss-Seidel and Jacobi
solvers for mixed model equations” by
Madsen and Larsen (1999) (This workshop).

References

Jensen, J. and P. Madsen, 1994. DMU: A
package for the analysis of multivariate
mixed models. Proc. of 5th World Congress
on Genetics Applied to Livestock
Production., 22, 45-46.

Madsen, P. and M. Larsen, 1998. A Parallel
Solver for Animal Genetics. In: Kagström,
B., Dongarra, J., Elmroth, E. &
Wasniewski, J. (Eds.). Applied Parallel
Computing. Large Scale Scientific and
Industrial Problems. Proc. 4th International
Workshop PARA’98, Umeå, Sweden.
LNCS, 1541. 304-308.

Misztal, I. and D. Gianola, 1987. Indirect
Solution of Mixed Model Equations. J.
Dairy Sci., 70, 716-723.

Schaeffer, L. R. and B. W. Kennedy, 1986.
Computing Solutions to Mixed Model
Equations. Proc. of 3rd World Congress on
Genetics Applied to Livestock Production.,
12, 382-393.

