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Introduction 
 
The international evaluation of bulls using multiple 
across country evaluations (MACE) requires 
estimates of the genetic (co)-variances among 
countries.  By considering the trait of interest in each 
country as a different trait the estimation of MACE 
parameters resembles the estimation of parameters 
for a multiple trait evaluation.  However, the 
estimation of MACE parameters is atypical in that 
many animals have evaluations in only one country 
and ties among countries are in general very limited. 
 Sigurdsson and Banos (1995) noted that this can 
cause problems while estimating variance 
components using restricted maximum likelihood 
(REML). This was explained by that in their 
algorithm many bulls have indirect proofs for some 
of the countries, i.e. based solely on pedigree indices 
and correlated information from a different country.  
In order to circumvent this problem they suggested 
the use of a subset of well connected bulls.  Well-
connected being those bulls that have proofs in more 
than one country as well as bulls that are members of 
full-sibs groups that have members with proofs in 
more than one country.  

The purpose of this paper is to show an 
expectation maximization (EM) algorithm for REML 
that allows for the use of information on all bulls in 
data from several countries.  Results of a simulation 
will be shown to compare correlations estimated 
from all data versus parameters estimated from well-
connected subset of the same data. 
 
 
Method and Material 
 
The method presented in this paper is based on the 
idea that estimation of (co)-variances among 
countries  only  requires  bull  equations  for   bulls  
 
 

within a country when he contributes additional 
information from that country.  This means that he 
either has an own observation in a country or he has 
a descendant with an observation in a country.  All 
other bulls will have evaluations based on parents.  
All information about this is contained within the 
parent information.  This approach requires the 
development of an estimation procedure similar to 
the one described by Klei (1995).  

As an example, let [m] be a representation of the 
countries in which a bull has information.  I.e. for 
two countries, [10] indicates information in country 
one only, [01] indicates information in country two 
only, while [11] indicates information in country 
one and two.  Also let q[m] be the number of bulls in 
each category, then the total number of bull in the 
evaluation q equals 
 

q m[ ]∑  
 
This approach requires 
 

sum qm
m

m[ ]
[ ]

[ ]∑  

 
equations where sum m[ ]  is the number of ones in the 

representation (i.e. sum[ ]11  = 2).  Sigurdsson and 
Banos (1995) described a more traditional approach 
in which equations were assigned to each bull in 
each country.  This approach requires n qc ×  
equations, where nc is the total number of countries.  
This value is always larger or equal to  
 

sum qm
m

m[ ]
[ ]

[ ]∑  
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Model 
 
The common MACE model is (Schaeffer and Zhang, 
1993): 
 
y Cc ZQg Zs e= + + +  

 
in which  
 
y : vector of de-regressed proofs 
c : vector of country effects 
g : vector of phantom group effects 
s : vector of random bull effects 
e : vector of random residuals 
C : matrix that assigns de-regressed proof to a 

country 
Z : matrix that assigns de-regressed proof to a 

sire 
Q : matrix that assigns group effects to bulls 
 

In general, applications of MACE assign phantom 
groups to unknown parents within country.  The 
result of this is that phantom groups are totally 
confounded with country effects and therefore the 
MACE model can also be written as: 
 
y ZQf Zs e= + +  

 
with the following distribution properties of the 
random variables: 
 

y
s
e

MVN
ZQf ZGZ R GZ R

G
symm R

T T































+































~ ,
.

0
0

0  

 
where: 
 
f : vector of phantom group + country effects 
G : (co)-variance matrix among the elements of s 
R : (co)-variance matrix among the elements of y 
 

For MACE, since the actual daughter observations 
are unknown, R is assumed to be a diagonal matrix 
with diagonal elements for sire k in country i 
(Sigurdsson and Banos, 1995): 
 
 
 
 

r
h

h
g nik ik

i

i
ii ik, =

−4 2

2  

where: 
 
gii  : genetic variance in country i 
hi

2  : heritability in country i 
nik  : number of daughters on which the proof of 
   bull k in country i was based 
 
The associated mixed model equations are: 
 

Q Z R ZQ Q Z R Z
symm Z R Z G
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EM-REML algorithm 
 
The EM algorithm for REML was described by 
Dempster et al. (1977).  This algorithm was 
modified by Klei (1995) to efficiently handle the 
special data structure occurring in multiple country 
evaluations.  The latter method can easily be 
modified to accommodate the special needs of 
MACE in which only the genetic (co)-variance 
components are estimated and the residuals are 
assumed to be functions of these. 

Define ηk  to be the set of known solutions for 
bull k in the vector of bull solutions s .  In the 
example, for a bull in set q[ ]01  these would be the 
solution for country two.  It is also beneficial to 
define a matrix H m[ ] , which is a picker matrix 

obtained by deleting a row from Inc
 here in the [m] 

representation the corresponding element of [m] is 0. 
 In the example, 
 

( )H[ ]10 1 0= , ( )H[ ]01 0 1= , and 

H[ ]11

1 0
0 1=







  

 
Also define: 
 

( )var[ ] [ ] [ ] [ ] [ ]S m k m k m k
T

m k m k= + −η η η η  
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the sum of squares of BLUPs and prediction error 
(co)-variances of the BLUPs for sire k in group [m]. 
 These can be found by obtaining solutions to the 
mixed model equation  and inversion of the left hand 
sides of these equations.  In this study FSPAK 
(Perez-Enciso et al., 1994) was used to obtain these 
values. 
Define also: 
 

[ ]. [ ]

[ ]

S Sm m k
k

q m

=
=

∑
1

 and .. [ ] [ ]. [ ]
[ ]

S H S Hm m m
T

m
= ∑  

 
It can then be derived that an update for the estimate 
of Go  in round (t+1) can be obtained through 
iteration on: 

 [ ] [ ] [ ]{
[ ] ) [ ] }

1 1

1

( 1) ( ) ( ) ( ) ( )

( ) ( )

( .

/

t t t t t
mo o o o omm

t T t
o om m
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q G H G q

− −

−

+ = + ∑
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until G Go

t
o

t( ) ( )+ =1  and then use the Go
t( )+1  as the 

value in the next iteration round. The EM-algorithm 
can be described as: 
 
E-step : compute BLUP and PEV for s. 
 

M1-step : compute [ ]. [ ]

[ ]

S Sm m k
k

q m

=
=

∑
1

 

 
M2-step : iterate on the update until 

G Go
t

o
t( ) ( )+ =1  and repeat the steps 

until convergence. 
 
Note that the update reduces to: 
 
G S qo

t( )
..

+ =1  
 
when all animals have equations in all countries.  
This is the more conventional update for the genetic 
(co)-variance components. 
 
 
Simulation 
 
Data were simulated as bivariate normal for two 
populations with correlation of either .70 or .95.  
Heritability parameters were .10 or .35, and the 
maximum percentage of sires of sires and sires of 

cows which could be imported from the other 
population was fixed at either 15 or 50.  Population 
size was 24,000 cows and 300 progeny test bulls for 
each population in each generation.  Twenty sires of 
sons were chosen in each population per generation, 
in addition to 50 "proven" sires of cows.  Each 
progeny test bull had 80 progeny in the current 
generation, and could have 300 additional progeny 
in the next generation (in either population) if 
selected as a "proven" sire of cows.  Six generations 
of selection were carried out.  Following simulation, 
breeding values were estimated within each 
population using a univariate animal model.  For 
each of the eight parameter combinations 5 samples 
were generated and analyzed. 
 
 
Methods of Evaluation 
 
Estimated breeding values and progeny counts on 
bulls were used to compute de-regressed proofs 
according to the method described by Rozzi and 
Schaeffer (1996).  De-regressed data were 
subsequently analyzed using the following five 
different methods: 
 
I. All data, assigning an equation to a bull in a 

country where he has information as defined 
previously. 

 
II. All data, assigning an equation to each bull in 

each country. 
 
III. Well connected subset, assigning an equation 

to a bull in a country where he has information, 
and keeping the variances equal to the within 
country variances estimated from a single 
country evaluation on all data. 

 
IV. Well connected subset, assigning an equation 

to a bull in a country where he has information, 
and estimating the variances from the subset 
data. 

 
V. Well connected subset, assigning an equation 

to each bull in each country, and estimating the 
variances from the subset data. 

     
For all analyzes the same programs were used.  

Iterations  were  stopped  when  all  the  parameters  
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showed a relative change to the previous round of 
less than 10-7 or when 1000 rounds of iteration were 
reached. 
 
 
Results and Discussion 
 
Table 1 shows the average number of rounds needed 
to reach convergence.  In this table methods that are 
immediately comparable, I with II and IV with V, 
show that the method of assigning equations based 
on information in a country converges more rapidly 
than  when  each animal has an equation in each 

country.  This can be explained by the large number 
of nuisance parameters (bulls without information in 
a country) when one equation per bull per country 
approach is used.  When all data is being used many 
samples did not reach the required convergence 
within the maximum number of rounds.  This table 
also shows that it is easier to estimate correlations 
well within the parameter space.  Estimates close to 
the edge (.95) were slower to converge.  As expected 
it was also easier to estimate parameters when 
heritabilities were high.  This can be explained by 
the increase in information about the genetic 
component in the de-regressed proofs. 

 
 
Table 1. Average number of rounds of iteration for the different parameter combinations and methods of 

analysis. 
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I 
 

II 
 

III 
 

IV 
 

V  
rg 

 
h2 

 
% exch. 

 
ave. 

 
 

 
ave. 

 
 

 
ave. 

 
 

 
ave. 

 
 

 
ave. 

 
  

.70 
 
.10 

 
15 

 
269 

 
 

 
1000 

 
5a 

 
103 

 
 

 
119 

 
 

 
173 

 
  

 
 

 
 

50 
 

99 
 

 
 

559 
 

 
 

59 
 

 
 

75 
 

 
 

112 
 

  
 

 
.35 

 
15 

 
170 

 
 

 
975 

 
2 

 
59 

 
 

 
81 

 
 

 
113 

 
  

 
 

 
 

50 
 

74 
 

 
 

371 
 

 
 

34 
 

 
 

51 
 

 
 

86 
 

  
.95 

 
.10 

 
15 

 
503 

 
 

 
1000 

 
5 

 
182 

 
 

 
193 

 
 

 
296 

 
  

 
 

 
 

50 
 

605 
 
2 

 
1000 

 
5 

 
400 

 
1 

 
386 

 
1 

 
489 

 
1  

 
 
.35 

 
15 

 
228 

 
 

 
1000 

 
5 

 
82 

 
 

 
159 

 
 

 
242 

 
  

 
 

 
 

50 
 

92 
 

 
 

501 
 

 
 

53 
 

 
 

88 
 

 
 

139 
 

     
aindicates the number of samples for which a 1000 rounds of iteration was reached before the stopping criterion of 10-7 . 
h2 : heritability 
rg : true genetic correlation 
% exch. : percent exchange of genetic material 
Method : evaluation method, for description see main text. 
 
 
 

In situations where countries have a large number 
of genetic ties (high exchange percentage) 
estimation of parameters becomes easier.  The only 
exception being the case of a heritability of .10 and a 
correlation of .95.  This might be explained by the 
high estimated correlation (.97, Table 3) for this 
situation.  In this case the closeness to the edge of 
the parameter space might have affected 
convergence. 

Estimated correlations for the different situations 
using the five methods are in Table 3.  From this 

table it can be seen that subset analysis (Method III 
through V) always gave lower estimates for the low 
heritability.  For high heritability the subset analyzes 
always give higher estimates.  Many of these 
differences were not significant, possibly due to the 
small number of samples.  Largest differences were 
observed in the situation of moderate correlation and 
high heritability.  From this it appears that subset 
analysis can be used when estimating correlation that 
are larger than .90.  Due to the upper limit of the 
parameter space the risk of severe bias is reduced.  
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In cases where estimated correlations are smaller 
than .90 it appears to be beneficial to verify subset 
analysis periodically with a complete data analysis. 
 
Table 2. Standard deviation of the difference in 

correlation estimates from Method I (full 
data) and Method III (subset data) for the 
different parameter combinations. 

  
 

rg 

 
 

h2 

 
 

% exch. 

 
standard 
deviation  

.70 
 
.10 

 
15 

 
.06  

 
 

 
 

50 
 

.01  
 

 
.35 

 
15 

 
.03  

 
 

 
 

50 
 

.01  
.95 

 
.10 

 
15 

 
.01  

 
 

 
 

50 
 

.01  
 

 
.35 

 
15 

 
.01  

 
 

 
 

50 
 

.00 
     
 h2 : heritability 
rg : true genetic correlation 
% exch. : percent exchange of genetic material 
Method : evaluation method, for description see main    

 text 
 

Contrary to expectation (Sigurdsson and Banos, 
1995), Methods I and II gave similar results.  An 
explanation is that termination of iterations in this 
study was based on relative changes in parameters 
and not on a maximum number of rounds of 
iteration.  It appears that the right parameters will be 
found when using Method II, however, that this 
method might be more time consuming than Method 
I.  Time advantages from Method I result from fewer 
rounds of iteration and less time per round.  This is 
indicated by the situation of high correlation (.95), 
low heritability (.10) and low exchange (15).  In that 
situation none of the samples converged within the 
required number of rounds for Method II and as a 
result the estimates are .01 lower than those obtained 
from Method I. 

Instead of looking at the average difference 
between subset and full data analysis, it is also of 
interest to observe the difference between individual 
samples.  Table 2 shows the variation that is 
observed in the estimates obtained for these two 
situations.  From this table it can be seen that only in 
cases of low exchange and low correlation large 
difference can be expected in estimates from 
individual samples. 
 

 
Table 3. Mean correlation estimate and standard error (se) for the different parameter combinations and methods 

of analysis. 
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III 

 
IV 

 
V  

rg 
 
h2 

 
% exch 

 
mean 

 
se 

 
mean 

 
se 

 
mean 

 
se 

 
mean 

 
se 

 
mean 

 
se  

.70 
 
.10 

 
15 

 
.72 

 
.04 

 
.72 

 
.04 

 
.71 

 
.03 

 
.71 

 
.03 

 
.71 

 
.03  

 
 

 
 

50 
 

.74 
 
.02 

 
.74 

 
.02 

 
.72 

 
.02 

 
.72 

 
.02 
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.02  
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.03  
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.01 

 
.70 
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.01 

 
.73 

 
.01 

 
.73 

 
.01  

.95 
 
.10 

 
15 

 
.93 

 
.01 
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.01 

 
.91 

 
.01 

 
.91 
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.01  
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.01 

 
.97 
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.00 

 
.94 

 
.00 

    
h2 : heritability 
rg : true genetic correlation 
% exch. : percent exchange of genetic material 
Method : evaluation method, for description see main text 
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Table 4 shows the estimates of the within country 
variances when using the various methods.  Since 
results for Methods I and II and Methods IV and V 
were similar, only result from Methods I, III, and IV 
are shown.  From this table it can be concluded that 
subset analysis gives severely upward biased  
estimate  of  the  within  country 

variances.  Estimates of within country variances 
from Method III were comparable to Method I.  
Since not all data on which selection was based were 
included in the single country analysis (Method III), 
estimates were smaller than those from Method I, as 
expected (Meyer and Thompson, 1984). 
 

 
Table 4. Mean and standard error  (se)  of the within country  variances for the 

different parameter combinations using different methods of evaluation. 
 

 
 
Conclusions 
 
The approach in which equations are assigned to 
bulls within country influences the rate of 
convergence of the estimating procedure.  This 
effect increases with the number of animals with an 

equation in a country where there is no additional 
information. 

Correlation estimates based on a selected subset 
of animals have a tendency to be biased downward 
for situations with low heritability and tend to be 
biased upward in situations of high heritability. 

  

    A  B  
rg h2 % exch. Method mean se mean se 

.70 .10 15 I 11.68 .25 12.10 .14 
   III 11.63 .24 12.03 .15 
   IV 11.85 .56 12.93 .41 
  50 I 11.04 .06 11.14 .11 
   III 11.23 .08 10.95 .08 
   IV 11.17 .05 11.35 .28 
 .35 15 I 33.98 .52 33.02 .25 
   III 33.82 .53 32.81 .26 
   IV 35.60 1.32 37.93 3.28 
  50 I 33.85 .35 33.14 .37 
   III 33.43 .30 32.46 .41 
   IV 35.25 1.40 37.37 .93 

.95 .10 15 I 11.67 .14 11.79 .25 
   III 11.55 .13 11.66 .27 
   IV 11.84 .50 11.66 .57 
  50 I 11.82 .20 11.45 .18 
   III 11.48 .19 11.14 .16 
   IV 11.30 .44 10.92 .42 
 .35 15 I 33.44 .58 33.12 .76 
   III 33.18 .64 32.60 .69 
   IV 35.71 2.37 36.26 1.66 
  50 I 32.97 .74 32.71 .29 
   III 32.00 .72 31.57 .39 
   IV 31.35 .83 31.79 .72 

h2 : heritability 
rg : true genetic correlation 
% exch. : percent exchange of genetic material 
Method : evaluation method, for description see main text. 
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Estimates of within country variances should be 
based on complete data.  Within country variances 
based on single country data tend to be smaller than 
those based upon a multiple country evaluation. 

Decisions to terminate iteration should be based 
on a measure indicating change in parameters. 

Method III appears to be a viable alternative to 
complete data analysis when correlations are 
expected to be high or when exchange rates of 
germplasm are high. 
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