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Introduction 

 
Mace involves the analysis of performance 
information on traits in different countries.  
Correlations among these traits are usually high.  As 
a result the genetic (co)-variance matrix among the 
traits in the different countries is close to singular.  
The mixed model equations associated with the 
Mace model have therefore the potential of being 
close to singular.  Singularity of a matrix can be 
shown by computing eigenvalues of the matrix and 
observing whether one or more of them are zero.  
Near singularity is indicated by one or more 
eigenvalues close to zero. 

Computing Mace involves solving a large system 
of linear equations.   To avoid problems associated 
with direct solving this matrix, iterative techniques 
are used.  The method mostly used is iteration on 
data which as described by Schaeffer and Kennedy 
(1986) is a Jacobi iteration (Quaas, pers. comm., 
1989).  This method is easy to program and requires 
relatively little computer memory.  This method 
performs well when the matrix is diagonally 
dominant (Golub and Van Loan, 1987).  However, 
this is not the case in a near singular matrix.  
Another approach is Gauss-Seidel iteration (Golub 
and Van Loan, 1987).  The application of this 
method uses the actual mixed model equations to 
obtain solutions iteratively.  The convergence 
condition for this method is positive definiteness of 
the matrix involved.  This is the case for Mace 
mixed models.  It is relatively easy to modify 
iteration on data to perform Gauss-Seidel iterations 
instead of Jacobi iterations (Jansen and Sullivan, 
pers. comm.). 

This papers compares solutions from the two 
iterative methods to solutions obtained from directly 
solving the equations. 
 
  
Method 
 
Let the mixed model equations be represented by: 
 

Cx y=  
 

Exact solutions for x can be obtained through an 
LU decomposition of C such that: 
 
LUx y=  
  
and to solve this compute: 
 

( )x U L y1= − −1  
 

The structure of  L and U makes it possible to 
obtain the solutions without actually computing the 
inverses.  Computation of solutions through the LU 
decomposition were obtained using FSPAK, a sparse 
matrix computation package developed by Perez-
Enciso et al. (1994).  

Jacobi iteration in round (k+1) is  represented in 
terms of x, y, and C by: 
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Notice that the Jacobi update for the solutions in 

(k+1)th  round are based on solutions from the kth 
round.  With some effort it can be shown that in 
order for the Jacobi iteration to converge the matrix 
C has to be diagonally dominant.  This means that 
the condition 
 

max
i ij ii

j i
c c

≠
∑ < 1  

 
has to hold.  The speed of convergence is directly 
related to the degree of dominance of the diagonal, 
cii  (Golub and Van Loan, 1985).  

Gauss-Seidel iteration is very similar to Jacobi 
iteration with the exception that x j

(k )+1   replaces x j
(k)  

in  
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This method in round (k+1) can therefore be written 
as 
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It can be shown that Gauss-Seidel iteration will 
converge as long as the matrix C is positive definite 
(Golub and Van Loan, 1985).  

For this study both Jacobi and Gauss-Seidel 
iterations were used in a block diagonal form where 
each block, Cij, consisted of the part of matrix C 
pertaining to animals i and j, as well as xi, and yi are 
those solutions and right hand sides pertaining to 
animal i.  To obtain the formulas for the block 
diagonal form simply replace the scalars in the 
previous two formulas with the corresponding 
vectors and matrices. 
 
Table 1. Genetic correlations for stature. 
  

 
 
CAN 

 
NLD 

 
DEU 

 
ITA 

 
FRA  

USA 
 
.9760 

 
.9219 

 
.9057 

 
.9685 

 
.9154  

CAN 
 

 
 
.9303 

 
.9164 

 
.9645 

 
.9236  

NLD 
 

 
 

 
 
.9541 

 
.9197 

 
.9462  

DEU 
 

 
 

 
 

 
 
.9160 

 
.9248  

ITA 
 

 
 

 
 

 
 

 
 
.9193 

     
USA  - Stature CAN - Stature 
NLD  - Stature DEU - Stature 
ITA  - Stature FRA - Sacrum Height 
 
     
Table 2. Genetic correlations for rear udder width 
  

 
 
CAN 

 
NLD 

 
DEU 

 
ITA 

 
FRA  

USA 
 
.8986 

 
.7383 

 
.7380 

 
.8238 

 
.6579  

CAN 
 

 
 
.6375 

 
.6261 

 
.7767 

 
.5654  

NLD 
 

 
 

 
 
.8562 

 
.5851 

 
.7661  

DEU 
 

 
 

 
 

 
 
.6032 

 
.7125  

ITA 
 

 
 

 
 

 
 

 
 
.4114 

     
USA - Rear Udder Width CAN - Rear Attachment 
       Width 
NLD - Rear Udder Height DEU - Rear Udder Height 
ITA - Rear Udder Width FRA - Rear Udder Height 

Material 
 
Mace solutions were computed for Stature, Rear 
Udder Width, and Final Score in six countries, 
Canada (CAN), France (FRA), Germany (DEU), 
Italy (ITA), The Netherlands (NLD), and the United 
States (USA) using the most recent genetic 
evaluations from each country that were available in 
in November 1997.  Since not all traits are measured 
in all countries trait combinations were determined 
by computing proof correlations and taking the trait 
that had highest correlation with the USA trait. 
Correlations for these traits are in Table 1 through 
Table 3. 
 
Table 3. Genetic correlations for final score. 
  

 
 
CAN 

 
NLD 

 
DEU 

 
ITA 

 
FRA  

USA 
 
.8723 

 
.7756 

 
.7550 

 
.8455 

 
.7823  

CAN 
 

 
 
.6682 

 
.6220 

 
.7411 

 
.8034  

NLD 
 

 
 

 
 
.5555 

 
.7322 

 
.6417  

DEU 
 

 
 

 
 

 
 
.6817 

 
.5271  

ITA 
 

 
 

 
 

 
 

 
 
.6525 

     
USA - Final Score CAN - Conformation 
NLD - Final Score DEU - Body Type 
ITA - Final Score FRA - Type Composite 
 

Solutions were computed using the LU 
decomposition, Jacobi iteration (3000 and 12000 
rounds) and Gauss Seidel iteration (1000 rounds).  
Results of the iterative methods were compared 
based on averages, standard deviation and 
distributions of differences with the direct method of 
obtaining solutions (LU).  Starting values for the 
iterative techniques were the genetic evaluations 
from each country. 
 
 
Results 
 
The total linear system of equations consisted of 
220,416 equations (36,579 bulls, 156 phantom 
groups and 6 countries).  Solutions were expected to 
be between -4 and +4. 

Eigenvalues for the correlation structures of the 
three traits can be found in Table 4.  As expected 
trait combinations in which many of the same 
traits were involved were closer to singularity, 
eigenvalues closer to zero, than those that used 
traits with different definitions. 
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Comparisons of solution of the iterative 
methods with those obtained through LU 
decomposition are expressed in the following 
tables as LU decomposition - iterative solution. 
 As a result, positive values show that the 
iterative method over-predicts the true 
solutions, while negative values under-predict. 
 
 
 

Table 4. Eigenvalues. 
  

 
Stature 

 
Rear Udder 

 Width 

 
 

Final Score  
.0227 

 
.0769 

 
.0824  

.0328 
 

.1380 
 

.1817  
.0452 

 
.1816 

 
.2394  

.0751 
 

.3294 
 

.3970  
.1566 

 
.7943 

 
.5223  

5.6677 
 

4.4798 
 

4.5772 
 
 

Table 5. Mean and standard deviation of the difference between the iterative solution and the LU solution 
Differences are expressed as iterative solution - LU solution. 

  
 

 
Stature 

 
Rear Udder Width 

 
Final Score 

 
Method 

 
mean 

 
st.dev. 

 
mean 

 
st.dev. 

 
mean 

 
st.dev. 

 
GS 

 
.006 

 
.026 

 
.022 

 
.041 

 
.015 

 
.024  

J3000 
 

.125 
 

.325 
 

.132 
 

.332 
 

.098 
 

.224  
J12000 

 
.061 

 
.166 

 
.053 

 
.153 

 
.052 

 
.111 

     
GS  -  Gauss-Seidel iteration (1000 rounds) 
J3000 -  Jacobi iteration (3000 rounds) 
J12000 -  Jacobi iteration (12000 rounds) 
 
 
Table 6. Extreme deviations of the difference between the iterative solution and the LU solution.  Deviations are 

expressed as iterative solution - LU solution. 
  
 

 
Stature 

 
Rear Udder Width 

 
Final Score 

 
Method 

 
negative 

 
positive 

 
negative 

 
positive 

 
negative 

 
positive 

 
GS 

 
-.289 

 
.294 

 
-.053 

 
.498 

 
-.038 

 
.287  

J3000 
 

-.439 
 

3.452 
 

-.586 
 

3.600 
 

-.230 
 

2.291  
J12000 

 
-.241 

 
1.771 

 
-.314 

 
1.696 

 
-.110 

 
1.117 

    
GS  -  Gauss-Seidel iteration (1000 rounds) 
J3000 -  Jacobi iteration (3000 rounds) 
J12000 -  Jacobi iteration (12000 rounds) 
 
 
From Table 5 it can be seen that all three iterative 
approaches have a tendency to over-estimate the 
solutions obtained through LU.  It is also clear from 
this table that of the two iteration methods Gauss-
Seidel needs the fewest iteration rounds to reach the 
same values as obtained from the LU decomposition. 
Combining this information with the information in  
 
 

Table 6 and Table 7 it can also be observed that 
many more rounds of Jacobi iteration are needed to 
obtain the same precision as what is achieved by 
Gauss-Seidel iteration.  From the previous three 
tables it can also be observed that it would be 
beneficial to go additional rounds of iteration for 
both iterative methods. 
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Table 7. Percentage of solutions within deviation range classes.  Deviations are expressed as iterative solution - 
LU solution. 

  
 

 
 

 
Stature 

 
Rear Udder Width 

 
Final Score 

 
Range 

 
GS 

 
J3000 

 
J12000 

 
GS 

 
J3000 

 
J12000 

 
GS 

 
J3000 

 
J12000 

 
< 

 
-.40 

 
 

 
.0 

 
 

 
 

 
.0 

 
 

 
 

 
 

 
  

-.40 
 

-.30 
 

 
 

.1 
 

 
 

 
 

.0 
 

.0 
 

 
 

 
 

  
-.30 

 
-.20 

 
.01) 

 
.1 

 
.0 

 
 

 
.1 

 
.0 

 
 

 
.0 

 
  

-.20 
 

-.10 
 

.8 
 

.3 
 

.2 
 

 
 

.4 
 

.1 
 

 
 

.1 
 

.0  
-.10 

 
-.05 

 
1.6 

 
.5 

 
.3 

 
.0 

 
.9 

 
.5 

 
 

 
.4 

 
.2  

-.05 
 

.00 
 
23.0 

 
22.5 

 
22.7 

 
25.6 

 
25.8 

 
28.5 

 
25.2 

 
24.4 

 
24.0  

.00 
 

.05 
 
71.8 

 
38.2 

 
50.0 

 
61.3 

 
34.6 

 
42.7 

 
67.7 

 
37.0 

 
45.5  

.05 
 

.10 
 

1.9 
 

9.8 
 

10.2 
 
10.1 

 
6.4 

 
10.8 

 
6.2 

 
10.1 

 
12.3  

.10 
 

.20 
 

.9 
 

9.4 
 

9.0 
 

2.1 
 

7.3 
 

12.6 
 

.9 
 
11.1 

 
13.8  

.20 
 

.30 
 

.1 
 

8.0 
 

3.6 
 

.4 
 
10.8 

 
1.5 

 
.0 

 
9.8 

 
1.7  

.30 
 

.40 
 

 
 

3.4 
 

1.0 
 

.3 
 

7.2 
 

.7 
 

 
 

2.7 
 

.8  
.40 

 
.50 

 
 

 
2.8 

 
1.1 

 
.1 

 
2.1 

 
1.0 

 
 

 
.6 

 
.9  

.50 
 

1.00 
 

 
 

3.0 
 

1.3 
 

 
 

2.4 
 

1.1 
 

 
 

2.7 
 

.4  
1.00 

 
> 

 
 

 
1.9 

 
.7 

 
 

 
1.9 

 
.6 

 
 

 
.9 

 
.5      

1) .0 indicates that at least one solution fell in this category but less than .1 percent of all solutions qualified 
GS  -  Gauss-Seidel iteration (1000 rounds) 
J3000 -  Jacobi iteration (3000 rounds) 
J12000 -  Jacobi iteration (12000 rounds) 
 
 

A recurring question associated with computing 
is how much memory is needed and how long does it 
take.  Table 8 shows the approximate memory 
and time requirements needed to complete 
iteration.  Even though the cost of iteration for 
Gauss-Seidel on a per round basis (~5 seconds) 
is approximately five times higher when 
compared with Jacobi iteration this is offset by 
the gains in increased rate of convergence. On 

a CPU time basis LU decomposition is 
competitive with Gauss-Seidel, however for 
this method memory becomes the limiting 
factor.  Keep in mind that none of the programs 
were developed to have optimal memory and 
time requirements and that these number are 
just a general indication. 

 
Table 8. Timing and memory requirements of the different methods. 
  
Method 

 
LU 

 
Gauss-Seidel 

 
Jacobi  

rounds 
 

 
 

1000 
 

3000 
 

12,000  
CPU time 

 
60m 

 
84m 

 
53m 

 
212m  

Max memory 
 

372 Mb 
 

60 Mb 
 

16 Mb 
 

16 Mb 
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Conclusions 
 
1. Results of this study show the importance of an 

adequate number of iteration for obtaining 
solutions from systems of equations when 
iterative techniques are used to solve them.  It 
might be necessary to, occasionally, compare 
results from iterations with direct solutions to 
validate the stopping criteria. 

 
2. Rates of convergence depend on the iteration 

technique used. 
 
3. Gauss-Seidel iteration is a good alternative to 

iteration on data even though memory 
requirements are increased. 
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