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Abstract 
 
Various approaches have been used to model lactation curves, mostly involving the fitting of parametric 
curves with fixed coefficients.   Recently these models have been extended by allowing the coefficients 
to be random, but the resulting models still require the specification of an underlying parametric curve. 

The fitting of splines represents a fully non-parametric approach to the problem.   Cubic smoothing 
splines have recently been used to model growth curves, and they can easily be incorporated into a 
mixed-model framework.   The potential for the use of splines in modelling lactation curves is explored 
with a simple example. 
___________________________________________________________________________________ 
 
 
 
Introduction 
 
Dairy cattle test day data provide an example of 
longitudinal data, or repeated measures, the essential 
feature of which is the presence of correlations 
between measurements (tests) on the same animal.   
Both genetic and environmental covariances need to 
be taken into account.   Various methods have been 
proposed for analysing such data, ranging from 
relatively simple curve fitting through to a full 
multivariate analysis.   In the genetic context, the 
latter amounts to treating the measurements at 
successive times as separate but correlated traits.   
All longitudinal methods of analysis can be regarded 
as derived from a model in which the data vector, 
arranged by trait within animal, has covariance 
matrix Iq Σ, or AqΣ for an animal model, with the 
different methods making more or less stringent 
assumptions about Σ. 

Two curve-fitting methods, random regressions 
and spline fitting, use patterned covariance matrices 
in the analysis of longitudinal data, in the first case 
quite explicitly, in the second case less so.   Spline 
curves have recently been recommended for 
statistical modelling by Verbyla (1997), on the basis 
that they are flexible and straightforward to fit.   
This paper describes our experience in fitting splines 
to test day records.   First we outline the basic 
mathematical theory of splines and show how they 

can be fitted by methods (BLUP and REML) 
familiar to animal breeders. 
 
 
Cubic splines 
 
Natural cubic splines (NCS) are used for 
interpolation and nonparametric regression, and 
provide a more flexible class of curves than 
polynomials.   A NCS with knots (i.e. data points)  t1 
< t 2 < ... < tn  can be represented as  
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where Σcj  =  Σcj tj = 0,  and 3y+  = y3  if  y > 0, 

3y+ = 0 if y <  0.   From this representation we see 
that:  between any two knots, the spline is a cubic 
function;  the spline and its first two derivatives are 
continuous;   and  the  spline  is  linear for  t < t1 and 
t > tn .  For our purposes, the most important 
property of the spline is the following.  Given data 
(t1 , y1) , ... , (tn , yn), and s(t) a differentiable 
function with a continuous first derivative, the 
minimum value of  
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is attained when s(t) is a NCS.  The second term is a 
roughness penalty and the solution to this 
minimization problem is termed a smoothing spline. 
 
 
Mixed model formulation 
 
For a general spline, the values at the knots are 
 

s = T + DcΦ  
 1 
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and cT = (c1, ... , cn).  Define Q (n x n - 2)  to be the 
divided difference matrix with entries 
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where  hj = tj+1 - tj  and qij = 0 for i > j + 2.  Since 
T ΄ Q = 0, one way to allow for the constraints Tc = 
0  is to write c = Qγ  for an unconstrained vector γ of 
dimension n - 2.   Then 
 

s = T + LγΦ  
 
where L = DQ.   Solving  y = TΦ + Lγ  (n equations 
for n unknowns) produces the equation of the 
interpolating spline which passes exactly through the 
data  points.   With this formulation, γ1 ... γn-2 
are the values of the second derivative of  s(t)  at the 
internal knots t2 ... tn-1, and the roughness penalty 
is γTRγ,  where R is a symmetric matrix of dimension 
n - 2 with elements 
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and ri,j = 0 when |i - j| > 1.   The smoothing spline 
minimizes  
 

T T(y T L (y T L )+ R)γ γ α γγ− Φ − − Φ −  
 
as does the BLUP solution to the mixed model with 
fixed effects TΦ  , random effects Lγ, and  cov(γ) % 
R-1   (Robinson, 1991).   Thus splines can be fitted 
by BLUP (or REML) calculations.   
 
 
 
 
 

The mixed model equations are 
 
(T T) +(T L) = T yγ′ ′ ′Φ  
(L T) +(L L+ R) = L yα γ′ ′ ′Φ  
 
Solving in the usual way produces 
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and 
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Using  (a) I - T(T ΄ T)-1T ΄ = Q(Q ΄ Q) -1Q ΄  and  
(b) L ΄ Q = Q ΄ L = R allows the second equation to 
be simplified to 
 

ˆ(R+ Q Q) = Q yα γ′ ′  
 
the well-known Reinsch equations for the smoothing 
spline (Reinsch, 1967).   The fitted values can be 
expressed as 
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The first term represents the linear regression of y on 
t.   Again using the results (a) and (b), the next two 
terms can be reduced to  
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The spline can thus be  represented as deviations 
from the least-squares regression line by setting the 
random component of the model to Zu, with  Z = 
Q(Q ΄ Q)-1R and u = γ. A further simplification is to 
make the covariance matrix of  u  proportional to the 
identity matrix, e.g., by choosing u = PTγ  and Z = 
Q(Q ΄ Q)-1P, where P is the Cholesky root of  R. 
 
 
Example 
 
ASREML (Gilmour et al., 1997) was used to fit 
splines to first lactation test day records for the 
progeny of 535 sires, a total of 2351 cows in 140 
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herds.  The hierarchical model had linear regression 
and spline terms for the general mean, sires, and 
cows within sires.  The regression coefficients 
(intercept and slope) were treated as random and 
possibly correlated.  In order to keep the number of 
spline knots low, the covariate >days in milk= was 
grouped by test day and coded 1 ... 10.   The analysis 
adjusted for the additive effects of herd and test-
month. 
 
 
Results and discussion 
 
Table 1 shows the estimated components of variance 
and covariance.   The spline terms, which were 
highly significant, play a role similar to the 
exponential term of Wilmink=s curve (Wilmink, 
1987), or the higher order terms in a random 
regression model, but in a more flexible manner.   It 
should be relatively straightforward to combine the 
estimated variance components with the various 
matrices (Q,R, etc.) presented above to produce 
estimates of genetic and environmental covariance 
matrices, and hence heritabilities.  This work is in 
progress.   Breeding values for the sires 

are available from the fitted values (regression + 
spline) at the sire level, and the sum of these over all 
ten test days, suitably scaled, provides an estimate of 
305-day yield.   These were found to be in 
reasonably good agreement with national 
evaluations. 

In general the spline factor can be combined with 
other terms in the model to produce interactions with 
fixed effects or nesting within other random effects 
such as sire or animal.   In a sire analysis, 
animalHspline models the environmental variation 
(rather like an animalHtrait term in a multivariate 
analysis) and sireHspline (equivalent to sireHtrait) 
models the genetic effects.   The model can easily 
accommodate any additional fixed effects expected 
to affect the lactation curve differently at different 
stages.   For example, age at calving might be 
included as an ageHspline term.   When the tests are 
at approximate 30-day intervals, but the cows enter 
the first test with different numbers of days in milk, 
M says, this can be allowed for by including a 
MHSpline interaction term in the model.   This 
spline should look like the first derivative of a 
lactation curve. 
 

 
 
Table 1.  Variance components for regression and spline terms. 
__________________________________________________________________________________________ 

  Regression   
 Intercept      Slope Covariance  Spline 
Mean    1.62549 
Sire   1.52195   0.02479 -0.13465 0.20757 
Cow (sire) 11.42590   0.15255 -0.92907 0.35290 
Residual   3.73973    

__________________________________________________________________________________________  
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