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___________________________________________________________________________________ 

Summary 
 
Analyses are carried out to attempt to reconcile different calibration equations for prediction 
performance of US bulls in the UK.  One estimate has a very wide confidence interval and the other is 
biased mainly because of correlation between US proofs with some group correction terms. 
___________________________________________________________________________________ 
 

Introduction 
 
Initial analysis (1995) showed differences between 
conversion formulae for USA bulls in the UK from 
the accepted and INTERBULL recommended 
international conversion procedure, the Goddard 
method (Goddard, 1985) with intercept and slope 
values of 490 and 0.32 to convert US to UK, and 
regression formulae developed from interbull 
Multiple Across Country Evaluations (MACE, 
Schaeffer, 1994) with intercept and slope values of 
407 and 0.25.  In an attempt to reconcile these 
different formulae, we have carried out several 
analyses. 
 
 
Material and methods 
 
Analyses were carried out on various subsets of data 
sent to INTERBULL in January 1996: 
 
(A) Data sent from USA (23298 bulls) and UK 

(4784 bulls).  Data of this type is used by 
INTERBULL to calculate genetic variances. 

 
(B) Data on 170 bulls with proofs in both 

countries and on 4258 close relatives (3/4 
sibs).  Data of this type is used by 
INTERBULL to calculate genetic 
correlations. 

 
 
 

(C) Data on 170 bulls with proofs in both 
countries. 

 
(D) Data on 40 bulls with reliabilities greater 

than 0.85 in both countries. This data is 
used to mimic the data used in the original 
calibration method. 

 
Data set C was used as an intermediate between 

the MACE-based method and the original 
calibration method.  Data sets A, B, C were analysed 
using deregressed proofs using pedigree information. 
 Data sets D were deregressed ignoring pedigree 
information.  To investigate the effect of using 
pedigree information in deregressing proofs, we 
used a data set (C2) based on C but deregressed 
ignoring pedigree information.  Analyses were 
carried using Residual Maximum Likelihood to give 
estimates of genetic variances and covariances. We 
used programs written by Gilmour et al. (1997) that 
used approximate second differentials (Gilmour et 
al., 1995) which converged, in most cases, with a 
small number of iterations.  For data sets A, B and C 
we used pedigree information in the analysis. For 
data set C2 and D we ignored pedigree information. 
In order to compare the effect of pedigree 
information in the analysis, data set C was also 
analysed ignoring pedigree information (denoted 
C1).   Previous  MACE  analyses  have been carried 
out using heritabilties from the appropriate 
populations. Values for heritabilities of 0.25 for US 
and 0.35 for UK were  used. Analyses were carried 
out for: 
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(1)  UK variances 

(2)  US variances 

(3)  UK and US covariance using estimates for 
variances based on (1) and (2) 

     
(4)  combined UK and US estimating variances 

and covariances. 
 

In one sense, the original calibration method is 
implicitly estimating heritabilities and so analyses 
for (1), (2) and (4) were repeated also estimating 
heritabilities ((5), (6), (7)). 
 
 
Results 
 
Estimates for genetic variance and covariance for 
milk yield (measured in lbs in the US and kg in the 
UK) are given in Table 1 for the six data sets and 4 
analyses assuming heritabilities are known. In Table 
2, corresponding estimates are given when 
heritabilities are also estimated. 

The results show that as the size of the data set 
reduces, the estimate of genetic variance in the UK 
population reduces, but the US estimate is less 
variable. Ignoring pedigree information in the 
analyses leads to an approximate doubling of the 
estimate of genetic variance, presumably due to 
ignoring genetic group effects. There are 
corresponding changes in the genetic covariance 
(σUKUS) as the data set changes, leading to smaller 
changes in genetic regression.  The genetic 
correlation (r) is remarkably constant.  The size of a 
likelihood-based confidence interval increases as the 
data set reduces and is very wide for set D. 

When heritabilities are estimated (Table 2), 
genetic variances, covariances, regressions and 
correlations are similar to those in Table 1, with the  
major  changes  being  in  the  estimates  of  residual 
variances (σ2

eUK  and  σ2
eUS).  The relatively large  

changes  in  residual   variances   and   small  
 
 
 

changes in likelihoods (L(a) - L(b)) from the two 
different models show that it is difficult to estimate 
both environmental and genetic variances from this 
type of data. The genetic regression estimate (b) for 
set D is very similar to the estimate from regression 
of UK daughter deviation on US proof. 

These analyses concentrate on estimating the 
genetic regression, b, in different populations.  The 
constructed calibration equation from regression of 
UK proof on US proof from a MACE analysis for 
bulls with daughters only in the US, bc , will depend 
on this b value but also because  

 
UK proof = bUS proof + 2 (sire UK - b sire 

US proof) 
+ 3 (MGS UK proof - b MGS US 
proof) 
+ group correction 

on the correlation between US proof with the other 3 
terms in the prediction. 

Using 1996 data, this regression, bc , is 12% less 
than the genetic regression, mainly because of the 
correlation of the US proofs with group correction 
terms.  This difference is approximately a quarter of 
the difference in calibration slope. 

Overall, these analyses suggest the MACE 
analysis is a more complete and appropriate analysis, 
being based on much more data and a more 
comprehensive model. 
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TABLE 1 
 

Estimates of genetic parameters for milk yield using various data sets and models  of 
0.35 (UK) and assuming heritabilities 0.25 (US). 

 
 

Set 
Analysis 

 
 

 
A  

 
B  

 
C  

 
C1  

 
C2  

 
D 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
1 

 
σ2

UK 
 

39145 
 

57915 
 

48359 
 

81669 
 

86652 
 

68059 
 

 
 

σ2
eUK 

 
408233 

 
603906 

 
504269 

 
851606 

 
903562 

 
709685 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
2 

 
σ2

US 
 

531040 
 

551761 
 

553465 
 

1012250 
 

1270770 
 

565819 
 

 
 

σ2
eUS 

 
7965200 

 
8276000 

 
8760358 

 
15185300 

 
19063400 

 
8488130 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
3 

 
σUKUS 

 
125260 

 
162023 

 
148750 

 
272680 

 
315440 

 
178860 

 
 

 
b 

 
0.236 

 
0.293 

 
0.268 

 
0.273 

 
0.248 

 
0.316 

 
 

 
r 

 
0.87 

 
0.91 

 
0.91 

 
0.95 

 
0.95 

 
0.91 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
4 

 
σ2

UK 
 

39150 
 

58240 
 

59470 
 

87610 
 

99730 
 

67780 
 

 
 

σ2
US 

 
531190 

 
551550 

 
604080 

 
955550 

 
1167140 

 
566590 

 
 

 
σUKUS 

 
126340 

 
161570 

 
173000 

 
275470 

 
327750 

 
178590 

 
 

 
σ2

eUK 
 

408260 
 

607320 
 

620120 
 

832610 
 

1042180 
 

706820 
 

 
 

σ2
eUS 

 
7967330 

 
8273260 

 
9060800 

 
12905300 

 
17507700 

 
8498770 

 
 

 
b 

 
0.238 

 
0.292 

 
0.286 

 
0.288 

 
0.280 

 
0.315 

 
 

 
CIb 

 
0.222-0.245 

 
0.274-0.300 

 
0.246-0.318 

 
0.266-0.310 

 
0.260-0.301 

 
0.265-0.365 

 
 

 
r 

 
0.88 

 
0.90 

 
0.91 

 
0.95 

 
0.96 

 
0.91 

 
 

 
L(4)-L(3) 

 
0.10 

 
0.34 

 
0.24 

 
0.80 

 
0.74 

 
6.13 
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 TABLE 2 
 

Estimates of genetic parameters for milk yield using 
various datasets and models 

 
 
 

Set 
Analysis 

 
 

 
A  

 
B  

 
C  

 
C1  

 
C2  

 
D 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
5 

 
σ2

UK 
 

35986 
 

52270 
 

50666 
 

8492 
 

75624 
 

18914 
 

 
 

σ2
eUK 

 
624044 

 
1043160 

 
152000 

 
255647 

 
3198810 

 
44518700 

 
 

 
L(5) - L(1) 

 
2.51 

 
1.43 

 
0.12 

 
0.11 

 
0.36 

 
2.86 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
6 

 
σ2

US 
 

600767 
 

634760 
 

403458 
 

665221 
 

616703 
 

570000 
 

 
 

σ2
eUS 

 
5170098 

 
4771060 

 
29181600 

 
71728900 

 
125465000 

 
1710000 

 
 

 
L(6) - L(1) 

 
36.00 

 
9.70 

 
4.08 

 
0.89 

 
5.72 

 
0.24 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
7 

 
σ2

UK 
 

36690 
 

53280 
 

46210 
 

81960 
 

85650 
 

67480 
 

 
 

σ2
US 

 
589500 

 
611060 

 
429622 

 
876510 

 
889700 

 
534520 

 
 

 
σUKUS 

 
126530 

 
169820 

 
131275 

 
255680 

 
26486 

 
176560 

 
 

 
σ2

eUK 
 

596900 
 
1015640 

 
1214450 

 
11609500 

 
1047340 

 
697510 

 
 

 
σ2

eUS 
 

5486990 
 
5695460 

 
18193600 

 
18181010 

 
34235150 

 
46621810 

 
 

 
b 

 
0.214 

 
0.270 

 
0.310 

 
0.291 

 
0.298 

 
0.330 

 
 

 
r 

 
0.86  

 
0.91  

 
0.93  

 
0.95 

 
0.96  

 
0.93 

 
 

 
L(7) - L(4) 

 
30.06 

 
7.66 

 
5.50 

 
0.79 

 
5.70 

 
0.30 

 


