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Abstract  

The objective of this study was to describe an algorithm to deregress GEBV in single-step genomic 

BLUP (ssGBLUP). The iterative method suggested by Jairath et al. (1998), which was for the pedigree-

based EBV, was extended to support GEBV. The inverse of the unified relationship matrix (H-1), which 

is a function of the inverse of genomic relationship matrix (G-1) and the inverse of the additive 

relationship matrix (A-1), was considered in the deregression method. With more genotypes, G-1 can be 

replaced with a sparser inverse by the Algorithm of Proven and Young (APY) or a transformed matrix 

(single-step GTBLUP). The deregression algorithm consists of a series of matrix-vector multiplications, 

and the number of iterations is expected to be limited. Therefore, the total computing cost should be 

lower than PCG to solve the mixed model equations in the original single-step genomic evaluation. A 

validation study using real data is needed to confirm this method works as expected. 
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Introduction 

The traditional, pedigree-based estimated 

breeding values (EBV) are “deregressed” to 

give pseudo-phenotypes for further genetic 

analyses. This technique is essential in MACE; 

EBV are deregressed for the across-country 

evaluation. As a result, each country receives 

the MACE EBV of foreign bulls on their own 

country scale; The MACE EBV are comparable 

with the EBV of domestic bulls. 

The deregressed proofs are also useful for 

genomic evaluation, particularly “multi-step” 

methods in dairy cattle. Genomically enhanced 

breeding values (GEBV) are predicted using 

pseudo-phenotypes and genotypes of animals in 

a reference population, which typically consists 

of domestic and foreign sires. The pseudo-

phenotype for domestic bulls can be daughter 

yield deviations (DYD) or deregressed proofs 

calculated based on EBV. The foreign bulls 

have deregressed MACE EBV. The entire 

system of multi-step approaches relies on 

unbiased EBV. 

 

 

As more young bulls have been selected 

based on GEBV, domestic EBV tend to be 

biased downward (Masuda et al., 2018) because 

the pedigree-based BLUP cannot account for 

the genomic pre-selection of young bulls (Patry 

and Ducrocq 2011). Some scientists developed 

methods to adjust EBV to reduce the pre-

selection bias (e.g., Mäntysaari and Strandén, 

2010; Wiggans et al., 2012). However, the 

methods are ad hoc, and the bias may not be 

removed. 

An essential solution to remove pre-

selection bias is a “single-step” method 

combining all available phenotypes, pedigree, 

and genotypes. Two models have been tested in 

genomic prediction in dairy cattle: single-step 

genomic BLUP (ssGBLUP; Aguilar et al., 2010; 

Christensen and Lund, 2010) and single-step 

SNP BLUP (ssSNPBLUP; Liu et al., 2014). The 

single-step GBLUP is simpler in 

implementation and has better convergence 

behavior than ssSNPBLUP. However, a 

concern was the computational cost of the 

inverse of genomic relationship matrix G-1, 

which is integrated into the inverse of unified 
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relationship matrix (H-1) together with the 

inverse of additive relationship matrix (A-1). 

The issue has been solved using a sparse version 

of G-1 (Misztal, 2016) or a transformation of 

relationship matrices (Mäntysaari et al., 2017). 

Some countries have already implemented 

ssGBLUP in the genetic evaluation of dairy 

cattle 

(https://interbull.org/ib/nationalgenoforms).  

In the future, it may be possible for countries 

to contribute to the traditional MACE 

evaluation by providing deregressed GEBV to 

Interbull. For the traditional EBV, an iterative 

method (Jairath et al., 1998) has been used for 

deregression. An extension of this method to 

ssGBLUP is straightforward. Esa Mänysaari 

and Zengting Liu suggested the technique at a 

meeting of an Interbull working group. Masuda 

et al. (2021a) independently developed the 

method and applied it to simulated data. 

Nevertheless, the approach has not been 

formally described. 

The objective of this study was to describe 

an algorithm to deregress GEBV in ssGBLUP. 

Note that Liu and Masuda (2021) 

comprehensively discussed how the 

deregression should be applied to ssSNPBLUP. 

The points that they make are also valid to 

ssGBLUP. Therefore, this paper focuses more 

on the computational efficiency of deregression 

in ssGBLUP. 

 

Methods 

Deregression model 

The deregression is based on the following 

single-trait model: 

𝐲 = 𝟏μ + 𝐮 + 𝐐𝐭 + 𝐞 

where y is a vector of deregressed GEBV, μ is 

the overall mean, u is a vector of GEBV, t is a 

vector of unknown parent groups (UPG), also 

known as phantom parent groups, e is a vector 

of residuals, 1 is the vector of ones, and Q is a 

matrix relating UPG to deregressed values 

(Quaas, 1988). We assume the additive genetic 

variance (𝜎𝑢
2), the residual variance (𝜎𝑒

2), and 

the variance ratio (𝜆 = 𝜎𝑒
2/𝜎𝑢

2) are known. 

 We define three groups for animals; group 1 

is for non-genotyped animals with the 

phenotype(s), group 2 is for all genotyped 

animals, regardless of whether they are 

phenotyped or not, and group 0 for ancestors of 

the animals in groups 1 and 2. 

Let 

𝜃 = [

𝐮0
∗

𝐮1
∗

𝐮2
∗

𝐭

] = [

𝐮0

𝐮1 + 𝐐1𝐭
𝐮2 + 𝐐2𝐭

𝐭

], 

where Q1 is Q for group 1, and Q2 for group 2. 

The inverse of additive relationship matrix for 

θ is 

𝐀∗ = [

𝐀00 𝐀01 𝐀02 𝐀0𝑡

𝐀10 𝐀11 𝐀12 𝐀1𝑡

𝐀20 𝐀21 𝐀22 𝐀2𝑡

𝐀𝑡0 𝐀𝑡1 𝐀𝑡2 𝐀𝑡𝑡

]. 

This matrix can be constructed using 

Henderson’s algorithm (Henderson, 1976; 

Quaas, 1988). When the UPG effect is treated 

as random, i.e, 𝑣𝑎𝑟(𝐭) = 𝚺𝜎𝑢
2 , Att is replaced 

with Att + 𝚺−1 (Masuda et al., 2021b). Applying 

QP-transformation (Misztal et al., 2013, or 

Tsuruta et al, 2019), the inverse of unified 

relationship matrix is available as 

𝐇∗ = [

𝐇00 𝐇01 𝐇02 𝐇0𝑡

𝐇10 𝐇11 𝐇12 𝐇1𝑡

𝐇20 𝐇21 𝐇22 𝐇2𝑡

𝐇𝑡0 𝐇𝑡1 𝐇𝑡2 𝐇𝑡𝑡

] 

= 𝐀∗

+ [

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 (𝐆−1 − 𝐀22

−1 ) −(𝐆−1 − 𝐀22
−1 )𝐐2

𝟎 𝟎 −𝐐2
′ (𝐆−1 − 𝐀22

−1 ) 𝐐2
′ (𝐆−1 − 𝐀22

−1 )𝐐2

]. 

Under the metafounder model (Legarra et al., 

2015) or an alternative UPG model (Masuda et 

al., 2021b), the inverse of the unified 

relationship matrix has the following form: 

𝐇∗ = 𝐀# + [

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 (𝐆−1 − 𝐀22

#  ) 𝟎
𝟎 𝟎 𝟎 𝟎

] 

where 𝐀#  is the “inverse” of additive 

relationship matrix including metafounders’ (or 

https://interbull.org/ib/nationalgenoforms
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UPG’s) contributions, and 𝐀22
#  is the inverse of 

the additive relationship matrix based on 𝐀#for 

genotyped animals. 

 When G is large, the direct inversion is 

infeasible. Two solutions have been suggested. 

Misztal et al. (2014) developed the Algorithm 

for Proven and Young (APY), which results in 

a sparse inverse (𝑮𝐴𝑃𝑌
−1 ) accounting for all the 

additive variation in G. Mäntysaari et al. (2017) 

suggested single-step GTBLUP, which 

transforms G inexpensively to compute the 

inverse (𝑮𝑤
−1). Both the methods are expected to 

be capable of millions of genotyped animals and  

 

facilitate solving the mixed model equations in 

a practical time. In deregression, 𝐆−1  can be 

replaced with 𝑮𝐴𝑃𝑌
−1  or 𝑮𝑤

−1. 

This model considers all genotyped animals 

used in the original genetic evaluation because 

G-1 accounts for precise relationships among 

genotyped animals. Liu and Masuda (2021) 

emphasized that the deregression method 

should be based on the animal model. Therefore, 

𝐲 includes cows with phenotypes(s) only. The 

deregressed GEBV for bulls can be calculated 

as in Liu and Masuda (2021). 

 

 

Algorithm 

The mixed model equations are

[
 
 
 
 
𝟏′𝐖1𝟏 + 𝟏′𝐖2𝟏 𝟎 𝟏′𝐖1 𝟏′𝐖2 𝟎

𝟎 𝜆𝐇00 𝜆𝐇01 𝜆𝐇02 𝜆𝐇0𝑡

𝐖1𝟏 𝜆𝐇10 𝐖1 + 𝜆𝐇11 𝜆𝐇12 𝜆𝐇1𝑡

𝐖2𝟏 𝜆𝐇20 𝜆𝐇21 𝐖2 + 𝜆𝐇22 𝜆𝐇2𝑡

𝟎 𝜆𝐇𝑡0 𝜆𝐇𝑡1 𝜆𝐇𝑡2 𝜆𝐇𝑡𝑡 ]
 
 
 
 

[
 
 
 
 
 
𝜇̂

𝐮0
∗̂

𝐮1
∗̂

𝐮2
∗̂

𝐭̂ ]
 
 
 
 
 

=

[
 
 
 
 
𝟏′𝐖1𝐲1 + 𝟏′𝐖2𝐲2 

𝟎
𝐖1𝐲1

𝐖2𝐲2

𝟎 ]
 
 
 
 

, 

 

 

where y1 is y for non-genotyped animals, and y2 

for genotyped animals. The weight matrices are 

𝐖1 = diag{𝑛𝑖1}  and 𝐖2 = diag{𝑛𝑖2} , where 

𝑛𝑖1 (𝑛𝑖2) is effective record contribution (ERC) 

of i-th non-genotyped (genotyped) animal. If an 

animal has no phenotype(s), the weight is set to 

0.  

 The deregressed GEBV for cows  (y1 and y2) 

can be available using an iterative method. 

Following Jairath et al. (1998), a possible 

algorithm to obtain y can be found as follows. 

1. Initialize  𝜇̂ = 0 , 𝐮0
∗̂ = 𝟎 , 𝐮1

∗̂ = 𝟎 , and 

𝐮2
∗̂ = 𝟎. 

2. Compute 𝐮1
∗̂ = 𝐮1 − 𝟏𝜇̂  and 𝐮2

∗̂ = 𝐮2 −

𝟏𝜇̂, where 𝐮1 (𝐮2) is a vector of GEBV for 

non-genotyped (genotyped) animals. 

 

 

 

 

 

 

3. Solve 

[𝐇
00 𝐇0𝑡

𝐇𝑡0 𝐇𝑡𝑡] [
𝐮0

∗̂

𝐭̂
] = [

−𝐇01𝐮1
∗̂ − 𝐇02𝐮2

∗̂

−𝐇𝑡1𝐮1
∗̂ − 𝐇𝑡2𝐮2

∗̂
]. 

4. Compute 

𝐳1 = 𝐖1𝐲1 = 𝐖1𝟏𝜇̂ + 𝜆𝐇10𝐮0
∗̂

+ (𝐖1 + 𝜆𝐇11)𝐮1
∗̂

+ 𝜆𝐇12𝐮2
∗̂ + 𝜆𝐇1𝑡 𝐭̂ 

𝐳2 = 𝐖2𝐲2 = 𝐖2𝟏𝜇̂ + 𝜆𝐇20𝐮0
∗̂

+ 𝜆𝐇21𝐮1
∗̂ + (𝐖2

+ 𝜆𝐇22)𝐮2
∗̂ + 𝜆𝐇2𝑡 𝐭̂ 

and 

𝑚 = 𝟏′𝐖1𝐲1 + 𝟏′𝐖2𝐲2 = 𝟏′𝐳1 + 𝟏′𝐳2. 

5. Compute 𝜇̂ = 𝑚/(𝟏′𝐖1𝟏 + 𝟏′𝐖2𝟏). 

6. Go to Step 2 until convergence is reached. 

7. Compute 

𝐲1 = 𝐖1
−1𝐖1𝐲1 = 𝐖1

−1𝐳1 

    𝐲2 = 𝐖2
−1𝐖2𝐲2 = 𝐖2

−1𝐳2. 
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Deregressed GEBV for bulls are available 

through the method by Liu and Masuda 

(2021). 

 

Discussion 

The algorithm consists of a series of matrix-

vector multiplications. The number of iterations 

is expected to be limited to get convergence. 

Although step 3 needs to solve a system of 

sparse equations, it can be solved by 

preconditioned conjugate gradient (PCG), 

which is inexpensive. Therefore, the total 

computing cost should be lower than the 

original single-step evaluation. 

The deregression method shown here is 

flexible to support any models defined in the 

ssGBLUP framework. The user can replace G-1 

with 𝑮𝐴𝑃𝑌
−1  or 𝑮𝑤

−1 . A different assumption in 

UPG can be applicable. 

The deregressed proofs should be reversible 

(Mäntysaari et al., 2011) in the sense that the 

recalculated evaluations based on deregressed 

proofs are identical to the original sire 

evaluations. To ensure reversibility, Liu and 

Masuda (2021) suggested a deregression 

formula should include all animals with 

phenotype(s), all genotyped animals, and the 

same pedigree animals used in the original 

single-step evaluation. 

Masuda et al. (2021a) tested a prototype of 

the current method on simulated data with 6900 

genotypes. However, they did not use the same 

pedigree and genomic information as ssGBLUP 

evaluation. Also, their method incorrectly 

treated contributions from genotyped daughters. 

Although they did not check the reversibility, 

the resulting deregressed proofs would likely 

have been biased because of the missing 

information. Regarding the cost of iterative 

deregression with H-1, each round required 

nearly the same computing time as a round of 

PCG (preconditioned conjugate gradient) in 

ssGBLUP. Less than 20 rounds were needed to 

get convergence for deregression, compared to 

more than 500 rounds in ssGBLUP.  

The current method is useful for an 

evaluation center computing the ssGBLUP 

evaluations, because pre-calculated G-1 and the 

other parts of H* are immediately available. In 

other words, there is no advantage to use this 

method for populations where H* has not been 

calculated. Liu and Masuda (2021) suggested a 

deregression approach derived from 

ssSNPBLUP. Their method is, in theory, 

applicable to GEBV calculated from any single-

step model. However, neither method has been 

tested with real data. Further research is needed 

to verify reversibility and computational 

feasibility for both methods. 

 

Conclusions 

This study suggested an algorithm to 

deregress GEBV from ssGBLUP evaluation. 

The method is computationally feasible. It 

supports any options for modelling missing 

parents (UPG and MF) and the inverse of 

genomic relationship matrix ( 𝑮𝐴𝑃𝑌
−1  or 𝑮𝑤

−1 ). 

Further study is required to verify this approach 

using real data. 
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