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Abstract  
 
Multitrait evaluation methods have potential benefits when used to select for mastitis resistance. Six 
alternatives were simulated where 1000 sires having 10 different grand sires had 50 (27) or 100 (55) 
daughters for somatic cell scores (figures for udder conformation), with a distribution expressed as 
standard deviation of 0 (0), 10 (5) and 20 (10) (figures for udder conformation). 

Indirect evaluation methods for not observed mastitis resistance using a multitrait method  were 
always better than indirect evaluation methods based on genetic regression on somatic cell scores, fore 
udder attachment and udder depth. Evaluations were nearly as accurate as direct evaluation using single 
trait evaluation of mastitis resistance, especially for low numbers of daughters per sire. Correlations 
between true breeding values and estimates were between 0.55 and 0.71 for direct and 0.52 and 0.62 for 
indirect selection using the multitrait method. 

Combined evaluation, grouping direct information on mastitis resistance and indirect through 
somatic cell score and udder conformation, consistently gave higher correlations between true and 
estimated breeding values for mastitis resistance relative to evaluation from direct recording only, with 
values between 0.65 and 0.77. 
  
 
    
1. Introduction 
 
Direct selection for mastitis resistance is difficult 
but highly desirable as mastitis is a major disease in 
dairy cattle. Also consumer acceptance for dairy 
products is partly dependant on udder health in 
order to avoid use of antibiotics. On farm mastitis 
losses can be explained by direct labour and 
veterinarian costs and indirect costs as early culling 
and lower production. Two types of mastitis can be 
distinguished, clinical and subclinical. Even if 
genetic correlations between these traits are not 
necessarily one (Emanuelson et al., 1988), selection 
could be done on clinical that is easier to observe. 
Nordic countries are following this approach, but in 
most countries mastitis is not or only partially 
recorded (INTERBULL, 1996). Therefore,  the 

logical alternative approach  is the use of  indicator 
traits that are recorded, for the trait mastitis 
resistance (MR) that is not recorded. The most 
important trait is the somatic cell count (SCC) often 
represented as a logarithmic function of SCC called 
somatic cell score (SCS). The genetic correlations 
between SCS and MR are considered important and 
negative (e.g., Emanuelson et al., 1988; Shook, 
1989; Rogers, 1996). Also udder conformation is 
considered important for MR. Heritabilities for 
udder traits are normally considered moderate to 
high (e.g., Misztal et al., 1992; Gengler et al., 
1997a). Udder conformation traits as udder depth 
(UD) and fore udder attachment (FU) are 
genetically linked to better MR, less depth and 
stronger attachment being related to higher MR  
(e.g., Rogers, 1996). Other traits are used in the 
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literature, especially milking speed. Milking speed 
is not systematically recorded in all countries and 
the recorded traits are not always the same (e.g., 
mean or maximum milking speed, scored or 
measured by farmers or technicians) as reported in a 
recent INTERBULL study (INTERBULL, 1996). 
Therefore this trait was not included in this study. 

The problem is now how to evaluate MR? In 
dairy cattle evaluations, single trait models are still 
very common. The reasons are the complexity of 
multitrait (MT) models (e.g., high number of 
equations, convergence issues and different fixed 
effects per trait). Also the difficulty  to get good 
covariance estimates is limiting their use for the 
moment. If, MR is known for all or at least a major 
part of the animals, MR could be directly evaluated 
using a single trait model (ST). 

However, in most countries MR is not recorded 
itself (INTERBULL, 1996), therefore needs to be 
predicted out of correlated traits. The most common 
approach is to use a selection index where the trait 
we want to select on is MR (or udder health), and 
the information vector contains the estimated 
breeding values (EBV) for SCS, UD and FU (e.g., 
De Jong and Lansbergen, 1996). This leads to 
multiple genetic regression equations (Harris et al., 
1992) where selection index like b coefficients are 
computed and applied on EBV for SCS, UD and 
FU. Another indirect approach would be to include 
unrecorded MR in a MT model were evaluation is 
done directly out of the mixed model equations. The 
first objective of this paper was therefore to study 
the possible benefits of a MT model over other 
indirect evaluation methods for MR. 

A logical extension of such a MT model would 
be to introduce recorded MR together with other 
related traits as SCS, FU and UD in a MT system. 
Such a system can be called combined selection. A 
certain number of other methods exists to combine 
direct and indirect information (e.g., Weigel, 1996), 
but the simplest and most flexible is the MT method 
using directly MR, SCS, FU and UD. Therefore the 
second objective of this study was to test the 
advantage of the combined method using a MT 
model over direct or indirect evaluations. 
 
 
 
 
 
 
 
 

2. Material and Methods 
 
2.1. Covariances 
 
Covariances needed for this study were obtained 
using the correlations and heritabilities shown  in 
Table 1. These values were based on literature 
compilations done by De Jong and Lansbergen 
(1996) and were similar to values reported by others 
(e.g., Rogers, 1996). 
 
 
Table 1. Assumed genetic correlations (above diagonal), 
heritabilities (on diagonal) and phenotypic correlations 
(below diagonal) 
  
 

 
Trait  

Trait 
 
MR 

 
SCS 

 
FU 

 
UD  

MR 
 
 0.03 

 
 -0.70 

 
 0.35 

 
 0.40  

SCS 
 
 -0.40 

 
 0.12 

 
 -0.30 

 
 -0.35  

FU 
 
 0.10 

 
 -0.10 

 
 0.29 

 
 0.72  

UD 
 
 0.10 

 
 -0.10 

 
 0.47 

 
 0.40 

MR is mastitis resistance 
SCS is somatic cell score 
FU is fore udder attachment 
UD is udder depth 
 
 

Heritability for MR was considered very low 
with 0.03. Estimate used for SCS was slightly 
higher with 0.12.  Heritabilities for the other traits 
were 0.29 for FU and 0.40 for UD. 

Absolute genetic correlations were considered 
strongest between MR and SCS, what is mostly 
accepted, but still not negligible for MR with FU 
and UD with values around 0.4. Phenotypic 
correlations were lower. Correlations between FU 
and UD were very similar to most literature values 
(e.g., Gengler et al., 1997a). 
 
 
2.2. Simulations 
 
Six data sets representing a different alternative 
were simulated in order to test two types of numbers 
of daughters per sire and three distributions of 
daughters. Ten sire families were simulated 
considering the 10 unrelated foundation sires 

 
gFS = Ln    (1) 
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where 
 
gFS is a vector of known true breeding values 

(TBV) for MR, SCS, FU and UD for every 
foundation sire, 

L is the lower Cholesky decomposition matrix 
of the genetic variance-covariance matrix G 
= LL' and 

n is a vector of standardized independent 
normal deviates. 

 
Hundred sons with daughters were simulated per 

foundation sire, dams of sons were considered 
unknown. True breeding values for every sire were 
simulated as 
 
gS = 0.5gFS +sqrt(0.75)Ln  (2) 
 
where 
 
gS is a vector of TBV for MR, SCS, FU and UD 

for every sire with daughters 
gFS, L and n are defined as for (1). 
 

Foundation sires and sires were only simulated 
once, for every sire, daughters were simulated using 
the assumptions described in Table 2. These 
assumptions were based on values suggested by G. 
de Jong (personal communication). Six alternatives 
were simulated. 
 
 
Table 2. Average number of daughters (#) and standards 
deviation on the number of daughters (STD) per sire in 
the simulated alternatives, specified for somatic cell score 
(SCS) and udder conformation 
  

Alternativ
e 

 
Trait 

 
 

 
SCS 

 
Udder conformation  

 
 
# 

 
STD 

 
 

 
# 

 
STD  

A0 
 
50 

 
0 

 
 

 
27 

 
0  

A10 
 
50 

 
10 

 
 

 
27 

 
5  

A20 
 
50 

 
20 

 
 

 
27 

 
10  

B0 
 
100 

 
0 

 
 

 
55 

 
0  

B10 
 
100 

 
10 

 
 

 
55 

 
5  

B20 
 
100 

 
20 

 
 

 
55 

 
10 

True breeding values for every cow were simulated 
as 
 
gC = 0.5gS +sqrt(0.75)Ln  (3) 
 
where 
 
gC is a vector of TBV for MR, SCS, FU and UD 

for every cow 

gS, L  and n are defined as for (1) and (2).  
 
Records were simulated as 
 
yC = c + gC + Kn   (4) 
 
where 
 
yC is a vector of phenotypic values for MR, SCS, 

FU and UD for every cow 
c is a vector of constants 
K is the lower Cholesky decomposition matrix 

of the residual variance-covariance matrix R 
= KK' 

gC  and n are defined as for (3). 
 
If  SCS or FU and UD were not recorded for this 
cow the corresponding phenotypic values were put 
to missing. For MR two options were considered, all 
cows had MR records or no cow had a MR record. 

As no fixed effect was simulated number of 
daughters was equal to effective number of 
daughters. 
 
 
2.3. Genetic evaluations 
 
Genetic evaluations were made using an animal 
model. All animals, foundation sires, sires and cows 
were analyzed. Variance-covariance components 
were considered known. As the objectives were to 
estimate potential benefits of multitrait evaluations 
for indirect  and combined evaluation of MR 
through knowledge of SCC and udder conformation 
the following five evaluations were made: 
 
 
I. Single trait evaluation of MR (ST-MR) 
 
 
II. Multiple regression on single trait EBV using 

selection index theory: 
 
Estimated breeding values  for SCS, FU and UD 
obtained using ST models were weighted with 
constant, pre-determined regression coefficients, 
based on an assumed variance-covariance matrix 
between these indicator traits. Simplified 
assumptions on the reliability/accuracy of the single 
trait EBV and on the number of records on relatives 
were used. Multiple regression coefficients were 
computed as: 
 
Cov(MR, indicator traits)*[Var(indicator traits)]-1 

 
Two different sets of multiple regression 
coefficients were computed: 
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a. Regression coefficients obtained by ignoring 
covariances between indicator traits 
(SI-STC): 
 
SI-STC: SBVMR = ! 0.701*SBVSCS 

+ 0.350*SBVFU 
+ 0.400*SBVUD      

 
b. Regression coefficients obtained with full 

knowledge on covariances (SI-MTC): 
 

SI-MTC: SBVMR = ! 0.636*SBVSCS 
+ 0.065*SBVFU 
+ 0.131*SBVUD 

 
where 

 
SBV is the standardized estimated breeding 

value (EBV divided by the genetic 
standard deviation). 

 
For the first method (SISTC) the relative 

importance of SCS, FU and UD were 0.63, 0.16 and 
0.21. For the second method (SI-MTC) the 
corresponding figures were 0.95, 0.01 and 0.04. The 
use of the MT regression coefficients increased the 
weight of SCS in the indirect evaluation of MR. 
 
 
III. Multitrait EBV 
 
In MT methods, regression coefficients are 
calculated ‘internally’, accounting for full 
knowledge on covariances, and on the amount of 
information per individual bull. Two different 
situations were considered: 
 
 
a. MT (MR missing): 
 

Mastitis resistance was not recorded. This option 
corresponds to an indirect evaluation  based on 
the knowledge of the indicator traits SCS, FU 
and UD.         
 

b. MT (MR known): 
 

Mastitis resistance was recorded. This option  
provides an combined evaluation as both direct 
(MR records) and indirect (SCS, FU and UD 
records) are used. 

 
The two MT evaluations were made using a 

canonical transformation adapted for missing values 
as described by Gengler et al. (1997b). The program 
allows use of missing values for different traits and 

computes approximate reliabilities (Gengler and 
Misztal, 1996) if required. Single trait runs were 
also done using this program by forcing covariances 
between traits to zero. This computer program is 
written in standard Fortran 77 and is available from 
the first author on request. 
 
 
2.4. Comparisons 
 
In order to allow comparisons across models and 
data sets, only sires with records were compared. 
Pearson correlation coefficients were computed 
between the known TBV and the recorded EBV. 
Also variance of (EBV-TBV) for these sires were 
computed as observed prediction error variance 
(PEV). Results were expressed relative to the 
genetic variance and to the single trait MR 
evaluation (ST-MR) as the simulated sire population 
was the same, only simulated daughter populations 
were different in each alternative.  
 
 
3. Results and discussion 
 
Table 3 shows the results from the comparison of 
the five evaluations for MR using the six different 
alternatives. A first observation was that because of 
the low heritability for MR, correlations between 
TBV and EBV were always rather low to moderate 
with values that ranged from 0.47 to 0.77. 
Correlation were higher when more information was 
available. Also PEV expressed in percent of genetic 
variance was between 82% for the worst prediction 
and 36% for the best prediction. Prediction error 
variance decreased with more data. Relative PEV 
expressed in percent of PEV associated with ST 
direct evaluation of MR was between 173% for the 
worst and 79% for the best situation. 

Results for direct ST evaluation of MR (Table 3) 
showed that correlations between TBV and EBV 
were between 0.55 and 0.71. Prediction error 
variance ranged from 61% to 44% of genetic 
variance. As obviously expected with increased 
numbers of daughters the correlations increased and 
the PEV decreased, but heterogeneity of numbers of 
daughters had only very limited influence on quality 
of evaluation, and this even in an opposite direction 
to what might be expected (higher correlations, 
lower PEV). This result is difficult to explain, but 
might be due to sampling errors. 

In most countries very limited direct information 
is known for MR. Therefore indirect evaluation 
methods are needed. Table 3 gives the results for the 
three indirect evaluation methods tested in this 
study. 
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Table 3. Correlations between true and estimated breeding values for mastitis resistance, prediction error 
variances (PEV) expressed in % of genetic variance and relative prediction error variances (Rel PEV) in % 
compared to single trait mastitis resistance for the 6 alternative and the 5 models, results for 1000 sires with 
daughters 
  

Alternative 
 
 

 
Evaluation models  

 
 
 

 
Direct  

 
 

 
Indirect 

 
 

 
Combined  

 
 
 

 
ST-MR 

 
 

 
SI-STC 

 
SI-MTC 

 
MT (MR 
missing) 

 
 

 
MT (MR 
known)  

A0 (50 " 0 / 27 " 0) 
 
Correlations 

 
0.55  

 
 

 
0.48  

 
0.51  

 
0.52  

 
 

 
0.65   

 
 
PEV 

 
61  

 
 

 
82  

 
64  

 
64  

 
 

 
50   

 
 
Rel PEV 

 
100  

 
 

 
134  

 
105  

 
105  

 
 

 
82   

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

A10 (50 "10 / 27 " 5) 
 
Correlations 

 
0.60  

 
 

 
0.52  

 
0.54  

 
0.55  

 
 

 
0.68   

 
 
PEV 

 
56 

 
 

 
75 

 
61 

 
61 

 
 

 
47  

 
 
Rel PEV 

 
100  

 
 

 
134  

 
110  

 
109  

 
 

 
84   

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

A20 (50 "20 / 27 " 
10) 

 
Correlations 

 
0.58  

 
 

 
0.52  

 
0.55  

 
0.56  

 
 

 
0.69  

 
 

 
PEV 

 
58 

 
 

 
74 

 
60 

 
60 

 
 

 
46  

 
 
Rel PEV 

 
100  

 
 

 
128  

 
104  

 
104  

 
 

 
79   

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

B0 (100 " 0 / 55 " 0) 
 
Correlations 

 
0.70  

 
 

 
0.56  

 
0.62  

 
0.62  

 
 

 
0.76   

 
 
PEV 

 
45 

 
 

 
78 

 
54 

 
54 

 
 

 
37  

 
 
Rel PEV 

 
100  

 
 

 
173  

 
120  

 
120  

 
 

 
82   

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

B10 (100 " 10 / 55 " 
5) 

 
Correlations 

 
0.70  

 
 

 
0.52  

 
0.61  

 
0.62  

 
 

 
0.76  

 
 

 
PEV 

 
44 

 
 

 
75 

 
54 

 
54 

 
 

 
37  

 
 
Rel PEV 

 
100  

 
 

 
170  

 
123  

 
122  

 
 

 
84   

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

B20 (100 " 20 / 55 " 
10) 

 
Correlations 

 
0.71  

 
 

 
0.56  

 
0.61  

 
0.61  

 
 

 
0.77  

 
 

 
PEV 

 
44 

 
 

 
74 

 
55 

 
55 

 
 

 
36  

 
 
Rel PEV 

 
100  

 
 

 
169  

 
126  

 
126  

 
 

 
82  

 MR is mastitis resistance 
 ST-MR is single trait mastitis resistance 
 MT (MR known) is multitrait, mastitis resistance known for all animals 
 SI-STC is a selection index type multiple regression of MR on other traits, using  single trait assumptions 
 SI-MTC is a selection index type multiple regression of MR on other traits, using multitrait assumptions 
 MT (MR missing) is multitrait, mastitis resistance missing for all animals 
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The first indirect evaluation method (SI-STC) 
based on a simplified multiple regression  for MR 
on ST SCS, FU and UD EBV showed low 
correlations between TBV and EBV with values 
between 0.48 and 0.56. Also PEV were extremely 
high with values between 74% and 81% of genetic 
variance showing the problem of predicting 
accurately using this simplified method. If 
compared with the ST-MR evaluation, correlations 
between TBV and EBV were always lower and 
PEV up to 70% higher. 

The second indirect evaluation method (SI-MTC) 
considered covariances between SCS, FU and UD. 
As expected it was able to improve the evaluations. 
Correlations went up to values between 0.51 and 
0.62. Prediction error variances were strongly 
reduced going down to nearly the level of ST-MR 
and was only between 5% and 26% higher than for 
the ST direct evaluation. Therefore better indirect 
evaluations can be obtained using the second set of 
equations (SI-MTC) obtained with full knowledge 
of covariances between indicator traits. 

The MT method with MR missing showed a 
slight improvement over the multiple regression 
method with full knowledge of covariances (SI-
MTC) with correlation between 0.55 and 0.62. 
Prediction error variances were also very similar to 
those found with (SI-MTC) and were between 54% 
and 61% of the additive variance. 

A MT system that predicts an unrecorded trait is 
theoretically the most accurate way of procedure. 
The reason is that the mixed model equations of 
Henderson (1984) directly in the calculations use 
the correct selection index like weights to weight 
information. The SI-MTC method uses the right 
covariance matrix as MT, but simplified 
assumptions were made on the information for each 
sire. In this study, the distribution of daughters was 
not very heterogeneous and the heritability for MR 
was also extremely low, so accurate indirect 
evaluation could already be done using simple 
selection index theory. But for a general use the MT 
model has practical advantages as the direct 
computation of EBV for MR. Also the fact, that if, 
eventually limited, MR data becomes available, it 
can be easily integrated leading to a combined 
evaluation of MR, is an important advantage of this 
method. 

Table 3 shows the results for the combined 
evaluation based on the MT method using known 
MR records. As expected, the inclusion of recorded 
 MR in a MT system improved dramatically the 
correlations between TBV and EBV. Values for 

correlations were now between 0.65 and 0.77. 
Associated was a drop in  PEV expressed relative to 
the ST model between 16% and 21%. These results 
indicate that traits with low heritability, but 
correlated to other more heritable traits, can be 
better evaluated using a MT system. 

 
 

4. Conclusions 
 
Potential benefits from multitrait evaluation were 
shown for situations where information on mastitis 
resistance and strongly correlated traits are 
available. This result is not surprising as the use of 
all available information together should give the 
best evaluation. In situations where no direct 
mastitis observations are available, using accurate 
selection index weights (developed using the 
correlations among these traits) can already give 
good results. But a more flexible method would be 
the integration of MR as unrecorded trait in a MT 
system with SCS, FU and UD being, at least 
partially recorded. Such a method would also be a 
good approach if limited MR data is or becomes 
available as it can integrate these easily. Similar 
conclusions were made by Weigel (1996) for the 
use of correlated traits to improve accuracy of early 
evaluation of length of productive life. Also he 
concluded that a MT system would directly provide 
the combination of direct and indirect information if 
available and would be very easy to use. A 
conclusion that we can support given our results. 
 
 
5. Implications of multitrait methods 
 
From a more technical point of view, the use of MT 
methods, even if their theoretical advantages are 
clear, is limited because of some problems. First the 
presence of missing records as in our case for MR, 
SCS, or FU and UD can complicate the 
implementation of MT model. Here recent advances 
as described by Gengler et al. (1997b) based on 
Ducrocq and Besbes (1993) may have cleared the 
way to use a canonical transformation to simplify 
the MT model.  Another problem is the fact that 
different models should be used, as in our example 
for MR, SCC and udder conformation. We avoided 
this problem by not simulating fixed effects. 
Different possibilities can be imagined to solve it. 
First the different models can be directly taken care 
of in the mixed model equations (Henderson, 1984). 
But this approach makes the use of computational 
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simplifications as canonical transformation 
impossible or at least difficult. Recently two new 
ideas emerged that could help solve this problem. 
First, a method that is currently discussed for test 
day yield evaluation (Wiggans and Goddard, 1996) 
would be to split the general model in two parts, or  
two steps. A first part, grouping trait specific fixed 
effects and a second part that is common for all 
traits. Iterative solving of both parts or steps using 
the results from the other step to adjust the data, 
would yield BLUE estimates for all fixed effects, 
specific or not, and MT BLUP evaluations for all 
traits. A second idea would be to use a MT type 
method based on MACE (Multiple Across 
Countries Evaluation) like procedures (Schaeffer, 
1994). This method would combine daughter yield 
deviations or deregressed proofs for MR, SCS, or 
FU and UD in new combined evaluations for MR 
and also SCS, FU and UD. The disadvantage of 
MACE is that it is more complicated to use and 
does not yield interdependent sets of equations, as 
preliminary genetic evaluations for the different 
traits or blocks of traits do not use feed-back from 
the MT step as in the two step model. 
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